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We show that the chiral anomaly can be canceled by a single antisymmetric tensor if the anomaly
form factorizes into the product of two invariant polynomials of curvature two-forms, R and I'.
This generalizes the Green-Schwarz cancellation mechanism, where the factorization is of the form
(TrR —Trr ) times an invariant polynomial. The Yang-Mills group constraints differ from those
obtained by the Green-Schwarz mechanism if the anomaly form is factorized differently and thus
new anomaly-free theories emerge. This generalized mechanism works for any theories in D =4k
dimensions and nonsupergravity theories in D =4k —2. However, for supergravity-type theories in
D=4k —2 only the original Green-Schwarz factorization works. We explicitly construct many
anomaly-free theories in D =8 and D= 10, using the generalized mechanism.

I. INTRODUCTION

From the anomaly point of view, the most surprising
fact about superstring theories is that the new anomaly-
canceling mechanism is built-in. Green and Schwarz
showed that the two-index antisymmetric tensor field 8
can cancel the chiral anomaly if the anomaly form, which
is a (D +2)-form for a space-time of dimension D, can be
factorized in such a way that it is of the form
(TrR —aTrF )X(F,R). Note that X(F,R) is an invari-
ant polynomial made of curvature two-forms F for the
Yang-Mills part and R for the gravitation part and the
coefficient a depends on the space-time dimension. It is
amazing that just one B field, which is a part of a super-
gravity multiplet, with the right transformation property
is enough to cancel the entire anomaly. Eventually,
Lerche, Nilsson, Schellekens, and Warner succeeded in
deriving this canceling term in the string one-loop ampli-
tude. Baulieu found that the anomaly of any theory can
be canceled by introducing many antisymmetric tensors
of different ranks, as long as the anomaly form of that
theory is made of the product of traces of R and F. [We
will call the (D +2)-form, which is related to the anoma-
ly, the I-form. This form can be determined from the in-
dex theorem. ] However, we are interested in cases
where just one new field can cancel the entire anomaly of
the original anomalous theory.

In this paper, we show that the generalized Green-
Schwarz mechanism exists: if the anomaly form can be
factorized into a product of two invariant polynomials,
X»XD+2», then the anomaly can be canceled by a sin-
gle antisymmetric tensor B2I 2. The reason why we can
do this is the following.

Proposition. For the factorized I-form Iz„+3
=X2&X2„+2 2I, the anomaly can always be written as

1 1
~2n ~21 —2~ 2n +2—2l

where co21 2 is the anomaly for X21.
Furthermore, the field strength dH of this antisym-

metric tensor is uniquely fixed as

They find that the anomaly from this form is given by

~10 3 (~3L ~3Y )d~6+ 3 (~ZL ~21')X8( (1.2)

where we will give the precise definition of these forms in
the next section. This anomaly can be canceled by add-
ing to the action a term of the form

ES BX8(R,F) —', (co3L co3 r—)co—7—

if the variation of B satisfies

M = —(co2L —co2r ),

(1.3)

since then co,p+66S =0.
However, one should note that there are ambiguities in

defining the various forms that appear in the system of
equations for forms, since any exact form is closed, i.e.,
d co=0. In the equations above, the coefficients —,

' and —,
'

change into ( —,
' —P) and ( —', +/3) if we add a term of the ex-

act form, /3d((co3L —co3r)co7), to co» (Ref. 6). (The con-
sistency condition 6co', 0= —dco9 is still satisfied. ) Howev-
er, the coefficient in front of BX8(R,F) is uniquely fixed
(i.e., never changes), although it seems that the anomaly
is not a well-defined object. In the next section we ex-
plain how ambiguities appear in the determination of the
anomaly, using the system of equations for differential
forms, and, utilizing these ambiguities, derive the gen-
eralized Green-Schwarz mechanism. In Sec. III we give
new anomaly-free theories in D = 8 and 10, using the gen-
eralized mechanism. We also show that supergravitylike
theories in D =4k —2 cannot have the new anomaly-

0 =d~2& —2+~2I —i
p

where ~2I —d ~2I
p

In order to derive the result just mentioned, we must
investigate the ambiguities of fixing the anomaly of a
theory, which have not been emphasized before. Let us
look at what Green and Schwarz did in D =10, we
demand that the anomaly form I&2 factorizes as

I,z
= (TrR TrF )X8 (—R,F) .
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canceling mechanism, except the original Green-Schwarz
one.

~2/ —ld~2n 2l— d ~c~2/ —ld~2n 2/—
0 1 0 1

+( 1 c)d&2/ —1~2n —2/ j (2.8)

II. GENERALIZED GREEN-SCHWARZ MECHANISM

I2n +2 X21X2n +2—21 (2.1)

where the space-time dimension is 2n and X2 (m =2I
and 2n +2—2l) are made of polynomials of traces of R
and I'. We call X2 invariant, since its variation under
the gauge transformation vanishes and it is closed:

6X2m =0 and dX2 =0 . (2.2)

For these two invariant polynomials, we can find the sys-
tem of equations

0
X2m d~2m —1 ~

In this section we prove the proposition given in the
previous section. We give a rather detailed exposition of
how to get the anomaly by the system of equations for
forms, since we are interested in the ambiguities for the
anomaly.

Let us assume that the anomaly form is factorized as
the product of two invariant polynomials:

+ ( 1 a)c~2/ —ld~2n —2/
0

+ ( 1 —a)( 1 —c)X2/co2„2/+ 5 A +dB, (2.9)

where the ambiguity appears as arbitrary coeKcients a, b,
and c and arbitrary functions 3 and B, since 6 =0 and
d =0. Using

Note that because of the chain rule above in one case we
have (b —1) and in the other (1—c). Consequently, the
gauge variation of co&„+1becomes

~~2 + 1 d [ ab~2/ —2d~2n + 1 —2/
0 1 0

+a (b 1 )d~2/ —2~2n +1—2/
1 0

+ ( 1 a )cc02/ —ld ~2n —2/

+(1—a)(1 c)d—aPz/ I~a —2/+&~—l .

Therefore, the anomaly co&„, which satisfies 5coz„+,= —dco2„, is given by

~2n ~~2/ —2X2n +2 —2/ + ( )d~2/ —2~2n + 1 —2l
1 1 1 0

0 1
&~2m —1 d~2m —2 ~ (2 3)

0 1 w 0
2l —2~2n +1—2/ ) ~ ~2/ —2~2n +1—2/1~2/ —2da/2n +1—2/

1 2~2m —2 d~2m —3 ~

where 2m =2I and 2n +2—2l. Therefore, the most gen-
eral Chem-Simons form co&„+,, which satisfies

I2n+2 =du2n+1, 1S given by0

c02 +1 a 2/ —1X2 +2—2l+( )X2/~2 +1—2l+0 0 0

0 ~ 0a~21 —1 4~2n+1 —21

0 1~ ~21 —2~2n + 1 —21 f ~21 —2~ 2n +2 —21

(2.10)
0 1 i ~ 0 1 0 a 1d (~2/ —1~2n —2I! ~ ~2/ —1~2n —2l ~2/ —1~~2n —2/

1 0 ~ 1

21 —2 ~2n —21 ~21 —1~ ~2n —21

we get a symmetric form of the anomaly

~2 a~2/ —2X2 +2 —2/+( )X2/~2 —2/+~~ +

+ ( 1 a )d~2/ —1~2n + 1 —2/ +d ~ (2.4) (2. 1 1)

where a is an arbitrary coeKcient and 3 is an arbitrary
function. We keep the arbitrariness as much as possible
until the end. Note the exterior derivative chain rule for
forms,

I ~21 —1~2n +1—21

0 0 1P( ~2!—2~2n + 1 ~21 —1~2n —2/ )
(2.12)

d( „~)=d „~+( —)"

6(co„co~ )=5'„co~ +( —
) co„leo~

(2.5) Then we have

P ~~2/ —1~2n +1—21 +P~2/ —15~2n + I —2/
0 0 0 0

where B changed into B'. Now we choose the arbitrary
functions A and B' to be

d5+5d =0 . (2.6)

where n (m) and a (p) denote the ranks of forms with
respect to d and 5, and the anticommutation rule for the
exterior derivative and the gauge variation

0 n 0 ~ 1
I ~ ~21 —1~2n + 1 —21 &~21—1~~2n + 1 —21

I ~21 —1~ 2n +2 —21 I ~ 21~2n + 1 —21

1 0 0 1
( ~2/ —2~2n + 1 ~21 —1~2n —21) (2.13)

The gauge variation of the Chem-Simons form is given
by

where in the last step we used Eq. (2.10). Therefore, by
choosing p= 1 —a, we obtain the proposition in Sec. I

0 1 0~2 +1 a d~21 —2d~2 +1—21

—(1 a)dco2/ Idea&„—2/
—d (5A—),

where we have used 5~2 1=—dm2 2. However,0 1

d~2/ ~2n +1—2l d f. b~2/ —2 ~2n +1 2/—1 0 1 0

1 1
~2n ~21 —2~ 2n +2—21

The choice of P= —a leads to

(2.14)

1 ~ 1
~2n ~ 21~2n —21 (2.15)

Hereafter, we will take the anomaly of the first form. Be-
cause of the two alternative choices for the anomaly, the+(b —1)d~2/ —2~2n+1 —2/1 ~ (2.7)
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dual form of a canceling mechanism is always there.
In physical terms, the reason for the ambiguities in the

choice of the form for the anomaly can be explained as
follows: the ambiguity associated with the exact form
dB' comes from the fact that the actual physical anomaly
is the integral of the anomaly co&„over the (compact)
space-time manifold without boundary. The ambiguity
associated with 6A is the fact that we can always add
(polynomial) counterterms to the action. Thus, if the
anomaly can be given as the gauge variation of some-
thing, then it is not a true anomaly. Therefore, Eqs.
(2.11), (2.14), and (2.15) tell us that even though the lead-
ing anomaly terms are absent by the requirement of the
factorization, there still remains a nontrivial piece of the
anomaly. Because ~&1 2 is the anomaly for X2, , what our
proposition says is that the anomaly at dimension 2n can
be "reduced" to the anomaly at 2I —2 if the anomaly
form is factorized into X21X2„+2 21. This is the reason
why the anomaly can be canceled in such a simple way by
adding the following term to the action:

III. MORE ANOMALY-FREE THEORIES

As we have discussed in Ref. 8, the anomaly structure
is completely different in -dimensions 4k and 4k —2: in
D =4k, only Yang-Mills gauged Weyl fermions contrib-
ute to the anomaly, while in D =4k —2 all Weyl fermions
contribute to the anomaly. Note that we only deal with
the field-theory limit of some theory. Therefore, we dis-
cuss theories in D =4k and 4k —2 separately. Note that,
for the original Green-Schwarz factorization, solutions
are given in Refs. 8 and 9.

A. D =4k theories

I4k+~ = A (R )Ch(F), (3.1)

where we pick the (4k +2)-forms from the right-hand
side. The explicit form of the Dirac genus 3 (R) and the
Chem character Ch(F) are now well known:

In dimension D =4k, the I-form (not the anomaly it-
self) is given by

~~ —B21-2X2n+2-21

with

6B21 —2 ~21 —2

(2.16)

(2.17)

Ch(F) =Tr exp(iF),

Bk
A(R)=exp —g, T« "

, 4k(2k)!

(3.2)

It is easy to see this form of the anomaly sti11 satis-
fies the Wess-Zumino consistency condition 6cuz„

d CO2n—
2

~~2n ~~21 —2~ 2n +2 —21 ~ ~21 —3~ 2n + 2 —21

2
~21 —3+2 n +2 —2l )

6H=0 . (2.18)

For the field strength of the form, for an unknown Y,

using the fact that X2„+2 21 is an invariant polynomial.
Now we want to fix the field strength (curvature) for

this antisymmetric tensor B21 2. If we demand that the
new kinetic term for this antisymmetric tensor does not
affect the anomaly cancellation, we must have

where we use the convention 2~=1, and Bk's are Ber-
noulli numbers B,= 6 B2 3o B3 42 B4=

3o, . . . .
The most trivial cancellation is to make I4k+2 =0, which
requires that all odd-order traces of F vanish. Therefore,
this trivial cancellation of the anomaly always occurs
when the Yang-Mills gauge group is of noncomplex type:
Sp(N), SO(odd), SO(4k), SU(2), G2, F4, E7, E8. In order
to have a nontrivial case, the representation must be com-
plex and the gauge group must be SU(N) (N ~ 3),
SO(4k +2), or E6, since SU(N) has nonvanishing odd-
order indices up to order N, SO(4k +2) has a (2k +1)th-
order index, and E6 has fifth- and ninth-order indices.
All other cases are trivial even for these complex groups.

In order for the anomaly to be canceled in a nontrivial
but simple way, this form must be factorized into

I4k + 2
—X2lX4k +.2 21

H =dB21 2+ Y,
we have

5H=5dB2~ 2+5Y = —d (M21 ~)+5Y

=+d (cuz& 2)+5Y = —5cozl, +5Y .

(2.19)

(2.20) X2=i TrF . (3.3)

Thus, one of the X's is always 4m-form and the other is
(4n +2)-form. In particular, since 3 (R ) contains only
4m'-forms while Ch(F) contains even-order forms, the
only choice for X2 is

Therefore, we find that the solution is given by

Y —
A@21 i+6C, (2.21)

where C is an arbitrary function. However, H should not
contain any gauge variations and thus we find a unique
field strength for B21 2..

However, this factorization occurs only for U(1), since
semisimple groups have always a vanishing TrF. Even if
a theory has a U(1) factor, this factorization will not be
allowed if TrF =0. Thus, it is very unlikely to have a fac-
torization of the form X2X4k. Now we discuss the cases
in D =4 and 8.

II =dB„,+~210 (2.22) D=4

Note that the Bianchi identity d H =0 is satisfied, since

d H =d(d )=dX =0
In this dimension, the anomaly form is given by

I6 = 3 (R )4i Trj +i TrF (3.4)
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where A (R )4 denotes the fact that a four-form is taken
from the Dirac genus. Thus, the only allowed factoriza-
tion is of the form X2X4, which demands that TrF does
not vanish. However, in the standard model,
SU(3), X SU(2)L X U(1)i, all possible U(l) factors have
vanishing traces. Actually, in various situations we have
TrF =0 automatically and the factorization does not
work: One case exists when the U(1) operator Y is con-
tained in a vector charge operator Q, since then

0=Tr( QL +Qz ) =Tr[non-U(1) factors]+Tr( FL + Yii )

=Tr( YL + Y~ ) .

Another case exists when the U(1) operator comes from a
simple or semisimple grand unified theory (GUT). There-
fore, it is very unlikely to have new anomaly-free theories
in D =4. We hereafter disregard the factorization of
X,X4k type.

2. D=8

Since we discard the possibility of X2X4& type, the only
allowed factorization is of the form X4X6 in this dimen-
sion. Thus, the possible factorization is in the form

I,o=[cA (R)~+ao](r4+ro6), (3.5)

where c =0 but r4&0, we have r4 ~ A&ao. However,
since aocc TrF =0, this will not happen. ) Since E6 and
SO(10) have no third-order Casimir invariants, the last
equation for these groups means TrF =0, which is the
complete cancellation of the anomaly. [For these two
groups, it is very easy to find infinitely many solutions for
the complete cancellation of the anomaly, using two irre-
ducible representations (irreps). Two solutions are given
in Ref. 8.] Thus, in order to get the nontrivial factoriza-
tion, the gauge group must contain SU(N) (N ~ 3).

Now we try to look for new nontrivially factorizing
solutions for Eq. (3.9) in SU(N) (N ~ 3). We have, for a
representation A =g A,

TrF' g A, =g Q (A. )Trf
(3.10)

TrF g A = g Q5(A )Trf

10 do Q2
6+d, d(A, ) g, (A )

Xgp(AJ)Q3(AJ)Trf Trf',
where do and Q2 are the dimension and the second-order
index of the adjoint rep, Q (AJ ) the mth-order index,
and f the fundamental rep (N). Thus, Eq. (3.9) demands
that

where the superscript (subscript) denotes the Yang-Mills
degrees (the gravitational degrees). By comparing with
Eq. (3.1), we obtain and

g Q3(A) ) =0, g Q~(A ) =0, (3.11)

A
/3 8TrF —cA4r4

i 34TrF =cA4r0+r4&0,3~ 3 ~ 6 2 4

i TrF =mr

(3.6)

r

TrF g A~
10do O, (A )03(A )

Trf Trf
6+do d(A, )

(3.12)

TrF=0 . (3.7)

Then we have cr4 =0, which leads to two solutions. One
solution is for c&0 and r4 =0:

Iio =( A4+ao)TrF

TrF =0,
TrF =c TrF

(3.8)

We must require the independence of TrR, since other-
wise the topology of space-time must be fixed. Thus,
from the first equation, we have

Note that the right-hand side is in proportion not to TrF
but to Trf . This way of factorizing is in close resem-
blance to the anomaly-free solution for the D = 10 nonsu-
pergravity theory. ' For a single irrep solution, it is ex-
tremely rare for a complex rep to satisfy the absence of a
cubic trace, although we know at least two irreps with
very high dimensions ( —10") which do so." Thus we
look for solutions with two irreps: A=m, A&+m2A2.
Using the fact that

Q„QA, =g Q„(A, ),
we must have, in order to get the nonvanishing m. 's,

I =cz4r6
10 00

TrF =TrF =0,
i TrF =mr

(3.9)

Note that in this case 5B contains only the Yang-Mills
Chem-Simons form, while in the first case 6B contains
both the Lorentz and Yang-Mills pieces. (For the case

which is the Green-Schwarz factorization. Because
TrF &0, the gauge group must contain SU(N) (N ~ 3).
The solutions belonging to this case are given in Ref. 8.

The new nontrivial solution is, for c =0 and r4 =0,

(3.13)

A= 105I210}+ [4950*I, (3.14)

Q3( A, )Q~( A2) —
Q3 ( A~ )Q~ ( A, ) =0

Because Q5 =0 for any irrep of SU(3) and SU(4), it is easy
to find infinitely many solutions. For SU(N) (N ~ 5), the
solutions are rare. For the notation of the irrep, we use
the Young-tableau notation [f&,f2, . . . , f„], where f
denotes the number of boxes at the jth row. After
searching solutions with irreps having up to six Young-
tableau boxes with N ~20 for SU(N), we have found
four solutions.

(1) For SU(10),
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where the first (second) irrep is of type [1,1,1,1] ([2,2,2]).
(2) For SU(16),

Now, the generalized Green-Schwarz factorization
takes one of three forms:

A = 1 16 [ 120 J + t 7140*], (3.15) I» =XIX(p, X4X8, or X6X6 (3.22)

where the first (second) is of type [1,1] ([2,1,1]).
(3) For SU(17),

A =8211[153)+ [395353*j, (3.16)

However, for factorizations of types X&X&p or X6X6 we
must have

(3.23)

where the first (second) is of type [2] ([4,2]).
(4) For SU(17),

A=476[680] + [138720*), (3.17)

where the first (second) is of type [1,1,1] ([2,2,2]). The as-
terisk denotes complex conjugation.

B. D =4k —2 theories

since Xz or X6 must contain Yang-Mills two-forms and
thus we cannot get any terms containing gravitational
12-forms. Therefore this possibility cannot be realized,
since this equation says that TrR is no longer indepen-
dent of TrR, i.e., the space-time topology must be fixed.
Thus we have only one possible way of factorizing I».

For the factorization of the type X4X»,

In D =4k —2 dimensions, not only the Yang-Mills but
also the gravitational particles contribute to the anomaly
and thus we discuss both the supergravity-type theories
and nonsupergravity theories.

1. Supergravitylike theories

First, we look at D = 10. For theories with a gravitino
and Yang-Mills particles, the I-form can be written as

Iiz=(c TrR +ao)(rs+r4+ro),
we have

R»=c TrR r&,

R8TrF =c TrR r4+apr8,
R4TrF"=c TrR rp+cx&r4,

R,TrF'=a4r'

(3.24)

(3.25)

R»= n C3TrR
12

3

+ n+ 8

Bq

4
C)C~TrR TrR

1

+ ——— C, (TrR )
n 1 4 3 p 3

3f 2 B]

R s
= —

—,
' [Cz TrR + —,

' C, ( TrR ) ],
R4= —C,TrR1

1
R p

I» =R»+R8TrF +R4TrF +RpTIF

where

(3.18)

(3.19)

First of all, c&0, since otherwise we get a nontrivial rela-
tion between TrR and (TrR ) by having R iz =0. Then
the rest of the coefficients (rs, r4, ro, ao) are completely
fixed in terms of c. Thus, we get only the famous Green-
Schwarz factorization. In D =8, we had a choice of two
factorizations by the choice of either c =0 or c&0, but
not here.

Therefore, we have shown that for the supergravity-
type matter content in D = 10 the Green-Schwarz factori-
zation is the only way to cancel the anomaly, using a sin-
gle antisymmetric tensor. It is interesting to note that the
modular invariance for heterotic-type string theories re-
quires the Green-Schwarz factorization of the anomaly as
shown by Schellekens and Warner. '

We can generalize the argument to higher dimensions
of D =4k —2. In the case of supergravitylike theories we
have

with
I4g =R4k +R4(g ))TIF + ' ' ' +RpTIF (3.26)

and n =nG+1+9 .
4k (2k)!

(3.20)
For the factorization of the type X4& zX4&+&
(1 ~ 1 ~ k), we always get the constraint

The number of Yang-Mills particles is n6 and the num-
ber of spin- —, singlets is l. One immediate consequence
for the factorization is that

R4k =0 . (3.27)

Therefore the only allowed factorization in supergravity-
like theories is of the type

12
n — =n —504=0

B3
(3.21) I4k =X~(X4k 4i (1 l k —1) . (3.28)

since we demand that TrR is independent of TrR and
TrR . It is important to notice that for this value of n
the coefficients for TrR TrR and (TrR ) do not vanish
in R».

In the case of D =10 supergravitylike theories, we have
only one factorization possible of the type X4X8 with X4
containing TrR (i.e., c&0). In higher dimensions of
D =4k —2, the pure gravitational I-form R4k is of the
type
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c0TrR +c,TrR TrR +c2TrR TrR " "+
(3.29)

where c. are all independent in usual cases. (For nonsu-

pergravity theories, c are all in proportion to one single
constant. See the next subsection. ) Thus, for the factori-
zation of l )2, one gets the equation solely made of traces
of space-time curvature two-forms. This means that the
space-time topology must be fixed for a theory to become
anomaly-free. Consequently, for supergravitylike theo-
ries in D =4k —2, only the original Green-Schwarz
mechanism can cancel the anomaly.

TrF ~TrF, TrF ~TrF (3.36)

which means

Q, ~o, Q, =o, Q, =o, Q, =o. (3.37)

We gave a general solution for SO(N) for any N in Ref. 9:
A = (m spinors) —m 2' ' vectors. The famous
SO(16) X SO(16) solution is given by' A =(16,16)—(128, 1)—(1,128).

In the second case, which is a new anomaly-free solu-
tion, we have

2. Nonsupergravity theories in D=10

For spin- —,
' Weyl nG Yang-Mills particles and l singlets

we have

I,z
= (nG + I) 3 (R },z —

—,
' 2 (R )sTrF

Note that these index constraints for the Yang-Mills
group are the same as those of D = 18 supergravity-type
theories, except the traces are more stringent for
supergravity-type theories. Thus all the solutions we
have found for D =18 in Ref. 9 apply here in D =10.
For example, the adjoint rep of E8 is a solution with

+—A(R) TrF — TrF—4 1

4! 4 6!

The factorization requires that

nG+I =0,

(3.30)

(3.31)

I(2
=TrF ——38+1 ~ ] A4TrF- (TrF )

2 2

2 4!100 6!7200

(3.38)

In the last case we have

which can be satisfied easily by adjusting l, or having
different chirality particles. ' (However, in general we
need a certain number of singlets. This is the price we

pay for nonsupergravity theories in D =4k —2. Note
that we do not need singlets to cancel anomalies in
D =4k.) Doing this, the pure-gravity 12-form part goes
away, in contrast with the case in supergravity-type
theories. Hence we can have three possible factoriza-
tions: X2X,0, X4X8, and X6X6. However, for X2X,0 we
need TrF&0. Now, we discuss the factorization of the
typ~~ X4X, .

For the factorization X&X8,

TrF =0, TrF ~ a~, TrF ~ nz, (3.39)

which means

Q2 =0 Q3=o Q4=o Q6=o. (3.40)

These are more stringent than the last two cases and so
far we could not find solutions, except the trivial vector-
like theories.

For the factorization of the type X6X6, with TrF =0,
we have only TrF available for six-forms and thus the
groups are limited to only SU(N) (N ~3} and U(1). In
this case, index constraints are

X4=c TrR +a&, X8 =r8+r4+r0,
we have

O=c TrR r8,
—

—,
' ASTrF =a rs+c TrR r

+—A, TrF4=a4rs+c TrR'r,',
1——TrF =0. r6 4 8

0 0

(3.32)

(3.33)

Q, =o, Q, ~o, Q, =o, Q, =o .

We find a solution for any N of SU(N):

A =2N t N I
—(adjoint) —(N + 1 )(singlets),

using the fact that'

Q (N)=Q3(N)=1,

Q (adjoint) =2N, Q3(adjoint) =0

(3.41)

(3.42)

(3.43)

We have three choices: (c&0, rs =0), (c =0, rs&0), or
(c =0, rs=0). In the first case, we have the Green-
Schwarz factorization and

for even m. Hence, in D =10 we have new anomaly-free
theories, using the generalized Green-Schwarz mecha-
nism introduced in Sec. II.

TrF =0, TrF o-TrF (3.34) IV. CONCLUSIONS

which means, in group-theory indexwise,

Q2=o Q3 =0 Q&&0, Q6=o . (3.35)

We have shown that the chiral anomaly can be can-
celed by a single antisymmetric tensor if the I-form fac-
torizes as the product of any two invariant polynomials.
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In the original Green-Schwarz case, one of the invariant
polynomials is TrR —o. TrF . However, a different
choice of invariant polynomials does not allow factoriza-
tion for D =4k —2 supergravity-type theories. Only
theories in D =4k and non-supergravity-type theories in
D =4k —2 have the alternative factorization available.
We have found new anomaly-free solutions for them in
D =8 and 10, using the alternative factorization.
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