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More on one-loop massless amplitudes of superstring theories

Akihiko Tsuchiya
Department of Physics, Tokyo Institute of Technology, Oh ok-ayama, Meguro, Tokyo, 152, Japan

(Received 3 October 1988)

A systematic way of explicitly evaluating one-loop superstring amplitudes with M )4 external
massless bosons is studied. In particular, we give an algorithm to derive various new theta-function
identities which are useful for directly summing over spin structures of massless amplitudes. These
identities make the validity of the cancellation mechanism of the dilaton tadpole divergence in
higher-point amplitudes of type-I theory very transparent.

The evaluation of one-loop massless M-point ampli-
tudes in superstring theories is an old problem. There
has been a great deal of argument on massless amplitudes
for various models, on various formalism for several
years after Green and Schwarz discovered the divergence
and the anomaly cancellation mechanism of the four-
point amplitude of type-I superstring theory. It was
confirmed that the divergence cancellation holds for arbi-
trary M, for both parity-conserving and parity-violating
parts of the open sector of type-I superstring theory. '
Also the ultraviolet finiteness of the amplitudes of type-II
and heterotic models is assured by their modular invari-
ance. Still, few concrete calculations of amplitudes have
been done except for M 4 and some examples for M= 5
(Refs. 3 and 4). This is partly because calculations are be-
lieved to be algebraically tedious, and somewhat opaque,
even though there is no conceptual difTiculty. The pur-
pose of this paper. is to diminish the cumbersomeness in
calculating massLess amplitudes for M )4, and to give the
systematic way of it, especially in summing over spin
structures and evaluating kinematical factors. For sim-
plicity, we concentrate on considering the parity-
conserving part of type-I theory. Some example calcula-
tions are done in the form in which it is straightforward
to see that the dilaton tadpole cancellation mechanism
holds. Throughout the paper we adopt the old covariant
method since it is more convenient than the light-cone
gauge method in many respects for evaluating loops with
M) 4 external bosons, as was already noted in Ref. 5.
Schematically the whole of the M-point amplitude (corre-
sponding to the planar diagram) has the form

where

XgP (x ),
j=0

8,(olr)e.„(x,lr)P(x)=
e.„(olr)e,(x, lr)

is the fermion one-loop correlation function and x is the
difference of inserting points of vertices. In the path-
integral formalism the factor [8,+,(Olr)/8, (olr)] comes
from both fermionic (chiral Dirac and superghost) and
bosonic determinants. In massless amplitudes we only
have to consider the case

x =0.
j=0

It is a technical problem to evaluate the right-hand side
of Eq. (4), but it considerably simplifies matters to see
some important properties of amplitude such as the valid-
ity of the divergence cancellation mechanism, the pole
structures of amplitudes, etc. , as we will see later. As is
well known, for i =0, 2, 3, 4,

8 +,(olr)
Go —= g (

—1)
8,(olr)

=0,

In (2) the "fermionic part" G, means a spin structure sum
over products of partition functions and fermion correla-
tion functions, which have the form

8„+,(Olr)6 (xo,x„.. . , x, , )= g (
—1)

& (»e)'1(~

1t = 2sri exp—277( VI Vg )
ei(vI —vglr)/ei(olr) .

M
AM = g (kinematical factor bosonic correlation

i=0

X fermionic part G; ), (2)

(3)

62(xo, x, ) =0,
63(xo,x „x2 ) =0

64(xo, x, ,x2, x3)=1 .
In the above, the first three identities are part of the con-
tents of the so-called nonrenormalization theorem. All
these identities are proved by Riemann theta formula or
Jacobi fundamental formula, but neither of these two for-
mulas is convenient for evaluating G; for i ) 5. In Ap-
pendix 8, we sketch a rather different way of summing
over the right-hand side of (4), which is useful to obtain
G; consecutively for large i. The results for i=5,6,7 are
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a
G, (xo,x„x„x,,x4)= g ln8, (x, ),

j=0 xj
(8)

1
G6(XO7x 1 7X27x3 7x47x5 )

5 g 5

ln8, (x ) + g ln8, (x )+12',
j=0 jBx.

6

G7(xO, x1,x2, x3,x4, x5,x6) = g ln8, (xj)24 .
p Bxj

3 a'
ln8, (x. )

24 j, ax,'

1 8+— g ln81(x )
j=0

6 g2
ln8, (xj )+ 142)1

j—p Bxj
(10)

It is straightforward to calculate 6, for i ~ 8.
The results (8)—(10) indicate the existence of massless poles in amplitudes with more than five external bosons (see the

notes at the end of Appendix B). After averaging the fermion correlation functions over various boundary conditions,
G; can be written entirely in terms of 8,(v~q. ), or in terms of constants. On the other hand, in Eq. (2), the bosonic corre-
lation function which correctly includes contributions from zero modes has the form

(X(x,. )X(x )) =in'(7(x; —x ) .

Hence one-loop amplitudes can be written in terms of the odd theta function which is unique on a torus.
Let us begin evaluating M-point amplitudes with reviewing the M=4 case for later convenience. The amplitude does

not include the bosonic correlation function and has the form [in the following we concentrate on obtaining AM in (2)]

=g,
1 k'1g 2k j2

g 'k', 3
g

4k'4

&C t[t4(1,2, 3,4)G4(v1 —v2, v2 —v3, v3 —v4, v4 —v, )+combinations)3

+ [t2(1,2)t2( )G4(vl v2 v2 v1 v3 v4 v4 v3)+combinatio»]3 1 )

where

t2(1,2) =[5 ' '5 ' '+antisymmetrized terms on (i,~j, ), (i2~j 2)]2 «m,

5jl 25j2 1 5 1 25jl j2

(12)

(13)

t4(1, 2, 34)= [5 ' '5 ' '5 ' '5 ' +antisymmetrized terms on (i,~j, ), (i2~j 2 }, (i3~j 3 ), (i 4~j 4)]1««m, . (14)

Here "combination" means different possible ways of symmetrizing the interchange of a pair of pairs (i,j, ), (i2j2),
(i3 j3 ), (i4j 4) [see Fig. 1(a)]. All G4 in (12) equal one by (7) and the integrand of A4 becomes the well-known form with

the following kinematical factor:

t ij klm77pqj k j gkk 1 gmk 77 gpk ~ (15)

where t' "' "~ is given in Ref. 7. In covariant calculation tensors t2, t4 represent the way of contractions of fermionic
fields in vertex operators to give one-loop correlation functions. Antisymmetry under the exchange i,~j, is due to the
exchange of fermion fields in a vertex operator: k f(x, )(.1t(7(x, )~g 1'(x, )k f(x, ). Accordingly what we need for the
evaluation of kinematical factors of higher point amplitudes is the straightforward extension of t2, t4 (and similar ten-
sors corresponding to contractions of boson fields which we will omit):

t (1,2, . . . , m)=[5 ' '5 ' ' 5 ' 5 '+antisymmetrized terms on (i,~j, ), (i2~j2), . . . , (i ~j )]

(16}

These observations are simple, but useful for discussing the divergence cancellation mechanism. In the light-cone gauge
calculation there appear terms with an e tensor in kinematical factors of M 5 point amplitudes —and, more impor-
tantly, terms with e-5, e 5-5, . . . tensors which are not obvious to be canceled and give potentially divergent terms. In
the covariant method such terms do not appear from the beginning.

Considering the above, the five-point massless amplitude is easily found to be
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A =g, 'k, 'g'k 'g'k 'g'k 'g'k '

X I[t5(1,2, 3,4, 5)G5(v, —vi, v2 —v3 v3 v4 v4 v5 v$ —v, )+combinations]

+[t,(1,2, 3)t~(4, 5)G, (v, —v~, v2 —vi, vi —v, , v4 —v5, v5 —v4)+combinations]]

4

+ A4(1, 2, 3,4) g P~ k, in/(v5 —v;) +combinations (17)

ik. -X(j)In Fig. 1(b) S represents the contraction of the bosonic field, that is g;i~ g, (BX(i)e ' ) in this case corresponding
to the last line of (17).

Similarly, six- and seven-point massless amplitudes of the parity-conserving part of type-I superstring theory are

A =g"k" g"k"g"k"g'4k'4g"k" g"k"
X I [t6(1,2, 3,4, 5, 6)G6(vl v2, v2 v3~ v3 v4~ v4 v5&v5 v6~v6 vi)+combinations]

+[t,(1,2, 3)ti(4, 5, 6)G6(vi —vi, v2 —v„vi —vi, v4 —vs, vs —v6, v6 —v~)+combinations]

+[t4(1,2, 3,4)t2(5 6)G6(vi v2 v2 v3 v3 v4 v4 vi v5 v6 v6 vs)+combinations]

+[t2(1,2)t2(3, 4)t2(5, 6)G6(vi —v2, v2
—vi, vz —v4, v4 —vi, v5 —v6, v6 —v~)+combinations]I

5

+ A5(1, 2, 3,4, 5) g g6 k; 1ng(v6 —v;) +combinations
r

a2+ A4(1, 2, 3,4) $5 g6 z lnt/i(v5 —v6) +combinations
Bv56

A =g'k 'g'k 'g'k 'g'k 'g'k 'g'k 'g'k '

X I[t (71,2, 3,4, 5, 6, 7)G ( 7v—i v2, v2
—vi, vz —v~, v~ —v5, v5 —v6, v6 —v7, v7 —v, )+combinations]

+[t5(1,2, 3,4, 5)t2(6, 7)G7(vi —vz, v2
—vi, vz

—v4, v4 —v5, v5
—vi, v6 —v7, v7 —v6)+combinations]

+ [t3 ( 1 2 3 )t4(4 5 6 7 )G7 ( vi v2 v2 v3 v3 vl v4 v5 v5 v6 v6 v7 v7 v4) +coiilbinations]

+[tz(1,2, 3)t2(4, 5)t2(6, 7)G7(v, —vz, vz —vi, vi —v„v4 —v~, v&
—v4, v6 —v7, v7 —v6)+combinations]I

6
+ A6(1, 2, 3,4, 5, 6) g g7 k, lng(v7 —v; ) +combinations

(18)

a'+ A ~(1,2, 3,4, 5) g6 g7 lng(v6 —v7) +combinations
BV67

Equation (18) with the result of the parity-violating part
completes the one-loop hexagon amplitude for type-I
theory after including contributions from Mobius and
nonplanar parts. Similarly we can construct higher-point
amplitudes. Using t tensors will also facilitate the cal-
culation of string loop corrections to the effective field
theory.

Next we discuss the dilation tadpole divergence cancel-
lation mechanism. Under Jacobi transformation, A~
transforms as

AM ~(lnq) AM v —+ —,w —+ ———m+4
'T 'j

Also the factor (lnq )
+ ' comes from the Jacobian;

hence, the (lnq) factor in the integrand cancels out.
Note that 6,- is a modulator form" itself, while the bo-
sonic correlation function is not. Extending the argu-

ment given in Appendix 8, we can prove that A~ can be
entirely written by the modular forms g2, g3 and some
derivatives of In&i(v~~) with respect to v for arbitrary M.
All these three have the same form structure as functions
of q: constant+polynomial of q . Therefore the dilation
tadpole cancellation mechanism is always applicable.

Up till now we have discussed type-I theory. In calcu-
lating closed-superstring amplitudes, we should take care
of the mixing between right and left movers. Take, for
example, type-II theory. The whole of the amplitude has
the form

M

J ~ d'z, d'ui)w)

5

+( ) ' A . (20)
r
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~c ~2 1c ~3 1c al,
3c a4 2c a4

0 (z) =0'(z12co), 2c03)

Z=zH' 1 —„m, n m, n

exp
m, n

2'+'.
2Q

(Al)

(c)

0 88 ca
ca&~

0 8
C D

d lno (z) p dg(z)

cop: ( co ) +673 ), P ( co ) =e

g(co )=q, (v=1,2, 3),
go=60 g 0 „, g3=140 g 0

(A2)

where 0 „=2m', +2nco3. In the text and Appendix B
we choose 2~&=1, 2co3=~ as is often denoted in string
theories. We also define the following functions:

8 8
m, n

P (z)=[P(z) e]'~—
m, n

08 ooo
C
C

800 0
C
C

(2„)( )
d "P(z)

Z2n

=polynomial of P(z) of order n+1, (A3)

P' "+"(z)=P'(z)X [polynomial of P(z) of order n ],
FIG. 1. Schematic explanation of contractions of vertices. (A4)

P'(co )=0, (A5)

Owing to the momentum constraint ao=uo, we find after
momentum integration that the bosonic fields of right
movers Xz and left movers XL have nonzero correlations
on a torus:

IP'(z)] =4[P(z)] —gzP(z) —g3 . (A6)

The o. function and P function are related to the 8 func-
tion as

&a xga x;&= QPv
4m Im~

(21)

Therefore, contractions between right- and left-handed
polarization tensors occur in evaluating M &4 ampli-
tudes, and AM takes a rather complicated form com-
pared to the open-string amplitudes. However, the
method of calculations is entirely similar to those of
open-string amplitudes (one can consider right and left
movers of the "fermionic part" separately), and we do
not present the results here.

We expect that there would be an appropriate formula
between higher-genus theta functions with various
boundary conditions, which makes some discussions on
superstring amplitudes more transparent.

Note added in proof. After submitting this work I no-
ticed Ref. 11 in which the advantage of the covariant
method has already been emphasized with concrete cal-
culations.

2
81(z)

cr(2', z) =2',exp(2g, co,z ) .
8)(0)

APPENDIX A

We set up in this appendix the notation and some for-
mulas of elliptic functions used in the text and Appendix
B.

We first define the o. function as

1 8,(0)
n)=P~))= ——.

6 8,(0)
'

8)(0) 8,( )
P (2co)z)= 2', 8,+,(0) 8, (z)

The following formulas are utilized:

m 84(0) m 8q(0)
e —e =—

2 1 4 2 & 3 2 4
e —e =—

COi CO i

m. 83(0)
e —e =

4CO(

g2
e, +e2+e3 =0, e, e2+e2e3+e3e, =—

e)e2e3 =

and

(A7)

(A10)
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1 P(x() ) P'(x() )

1 P(x, ) P'(x, )

P"-"(x )

P' '(x )
o(xo+ . +x;, ) g o(xz —x„)

A, (p

1 P(x;, ) P'(x; 1) . . P' '(x; 1) k=0
o'(xk )

(Al 1)

From a modern point of view, one can regard (Al 1) as a
corollary of Fay's formula. '

APPENDIX B

where

=(e2 —e, )(e3 —e2)(e, —e3),

R„=g [P(x ) —e . ]'~ = g P,(x ) .

(82)

(83)
In this appendix we give a method to sum over the

right-hand side of Eq. (4) and express G; entirely in terms
of (9,(v~r) or constants. First note that one-loop fermion
correlation functions are Szego kernels on a torus P
defined in in Appendix A. We can rewrite 6, as

j=o j=o

WlicI1 wc sct x()+x1+. . . +x; 1=0 as 1I1 (6), wc scc
that the right-hand side of (A 1 1) vanishes, so there exist
ao, a, , . . . , a,. 2 which satisfy a set of equations

1+aoP(z)+a, P'(z)+a2P"(z)+ . +a; 2P' '(z) =0
1

G; =, [(e)—e3)R2+(e3 —e2)R, +(e2 —e, )R3],g1/2

(81)

(84)

for z=xo, x&, . . . ,x;,. By Cramer's formula, we explic-
itly have (omitting xo)

1 P(x, )

1 P(x2)

p(n —1)(X )

p(n —1)(X

p(n+1)(x )x)
p(n+1)( )X2

~ .

P' )(x )2

a„=(—1)"
1 P(x;, ) . P'" "(x;,)

P(x, ) P'(x)) p(i —2)(x )

(85)

P(x;, ) P'(x; 1) P' '(x;, )

Now we consider a polynomial f (x) defined by

f(P(z))=[1+aop(z)+a2P"(z)+a~p( '(z)+ . . +a, 2P' '(z)].
—[a,P'(z ) +a 3P'"(z)+ +a; 3P' '(z) ] (86)

We assume for awhile that i is even. Considering (A3)
and (A4), f(P(z) ) can be written as

f(P(z) ) = [h (P(z) )]'—[P'(z)]'

X [polynomial of P(z)],
h (P(z)) =1+aoP(z)+a2P "(z)+

+a, ,P"-"(z) .

(87)

where' c is a numerical constant. So, R defined in (83)

By the (84) equation, f (x)=0 has i roots at x =P(xo),
P(x, ), . . . , P(x, , ); hence, f (x) has the form

f(x)=a, 2c [x P(x() )][x P(x, )]— [x P(—x, , )], —

(89)

I

can be rewritten as

R
[f(e )]'" [f(P(~,))]'~' h(e, )

(810)
ca; ca CQ;

Here we used (A5). Substituting (810) and (A3) into (Bl),
6; can be written as

ang (const) '" a;

(e2 —e3)e) +(e3 —e, )e2 +(e, —e2)e3
X

(e2 —e))(e3 —e2)(e1 —e3)
(811)

Only minor modifications are needed in the above argu-
ment in the case that i is odd.
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In (811), the el-dependent factor can be written as a symmetric polynomial of e„e2,e3 so that it can be represented
by the modular form g2, g3 when we consider (A10). G; depends on xk through the ratio a„/a, 2 which is a functional
of P (x). One can prove that

r
—3 (i —1)!

a).
(812)

aJ (i —1)! 1

(i —3)! 2

2

gg(xi) — QP(x ) (813)

a;

aJ

(l —1)! 1

(i —4)! 6
3

gg(xj) —g P(xl) —3 gg(x, )
~J

QP(x ) (814)

a;

i —2

(i —1)! 1

(i —5)! 4!
4 Q2

g((x)) — g P(x ) —4 gg(x ) g P(x ).
Bxj J

2+3 QBx P(x ) —6 gg(x ) QP(x ) (815)

where we again defined xo—:—(x, + +x, , ) and all
summations are taken over from j =0 to i —1. For ex-
ample, a; 3/a; z has poles at x, =0 and
x& = —(x2+ +x;, ) as a function of x&. Examining
residues and periodicity we have

QI =(i —1)[g(x, )+ +g(x; &)
a;

—g(x&+xz+ +x; &)]

which coincides with the right-hand side of (812). Note
that a; 3/a; 2 is elliptic, though each g(x) is not. From
the form of poles and residues, a, ~/a; 2 is found to be
essentially equivalent to the elliptic function which has
poles I/x;x~ (i&j ). The right-hand side of (813) has ex-

I

actly such a structure. The second term of (813),
[QP(x )], is added so as to subtract poles such as 1/x;.
Similarly a; 5/a; z is found to be essentially the elliptic
function which has poles 1/x;x xk (i &j, j&k, k&i ), and
last two terms of the right-hand side of (814) are added to
[gg(xi)] so as to subtract poles such as 1/x,3, 1/x, x .
In this way we can easily express a, , /a, 2 (s) 6) in
ternis of g(x) and its derivatives, though the resulting
form would be long. Expressing g(x) and P(x) in terms
of ln8, (v~r) using (A2) and (A7) we have (8)—(10) in the
text. These structures of poles have clear physical mean-
ing. In calculating string amplitudes x is the difference of
inserting points of vertex operators, so that structures of
a„ /a; 2 indicate the existence of massless poles which
should appear in factorizing M 5 point amplitudes.
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