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As a preparation for a consistent Dirac constraint quantization and an anomaly-free, operator
representation of the spacetime diffeomorphism algebra, we develop a covariant canonical theory of
a parametrized massless scalar field propagating on a cylindrical Minkowskian spacetime. We show
how to pass from the Schrodinger picture to the Heisenberg picture on the extended phase space of
this parametrized system, how to construct a pair of canonical representations of L DiffM by using
these pictures, and how to relate canonical representations of conformal isometries to those of
L DiffM. We reconstruct the spacetime structures needed for operator ordering from the geometric
data on a single embedding. We keep the formalism covariant under all relevant transformations.

I. INTRODUCTION

If a field propagates on a Minkowskian background,
most people do not consider measuring it on curved hy-
persurfaces or studying its propagation from one such hy-
persurface to another. Yet this is exactly what one must
do in curved spacetimes and what one should do even in
flat spacetimes if one wants to use the well-understood
concept of field dynamics as a testing ground for more
complicated generally covariant dynamical systems such
as strings or Einstein’s theory of gravitation. The frame-
work for discussing such questions was constructed by
Dirac.! By a process known as parametrization, space-
time diffeomorphisms are adjoined to the field variables
and the spacetime action is thereby made generally co-
variant. The phase space of the theory is correspondingly
extended by addition of spacelike embeddings (parame-
trized hypersurfaces) and their conjugate momenta. The
covariance of the spacetime action leads to constraints
among the embedding data and the field data. The Ham-
iltonian of the system becomes a linear combination of
these constraints. The Poisson brackets of the con-
straints have a characteristic structure known as the
Dirac “algebra”!; this structure is common to all covari-
ant systems (in particular, to parametrized field theories,
strings, membranes, and Einstein’s theory of gravitation
with or without sources). It ensures that the dynamical
evolution does not depend on the choice of foliation con-
necting the initial embedding with the final embedding.?

While the constraints follow from the invariance of the
spacetime action under spacetime difftfomorphisms, the
Dirac ‘‘algebra” does not resemble the Lie algebra
L DiffM of the difftomorphism group DiffM. In
parametrized theories, however, it is possible to replace
the Dirac constraints by an equivalent set of constraints
(“diffeomorphism Hamiltonians”) whose Poisson algebra
is homomorphic to L DiffM.> This homomorphism
reflects the spacetime covariance of the canonical version
of the parametrized theory.

In the Dirac constraint quantization, one attempts to
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turn the constraints into operators and impose them as
restrictions on physical states. Our main goal is to show
that this can be done without violating the spacetime co-
variance of the canonical theory and the associated
foliation independence of the field evolution. Our task
amounts to finding a factor ordering of the diffeo-
morphism Hamiltonians which makes their operator
commutator algebra homomorphic to L DiffM. The
difficulties in attaining this goal are obvious. It is well
known that commutators of the energy-momentum-
tensor operators acquire Schwinger terms* which, be-
cause the constraints contain projections of the energy-
momentum tensor, can be expected to creep into the
Dirac  “algebra” or the L DiffM algebra of
diffeomorphism Hamiltonians as anomalies. [This seems
to happen in string theory where it led people to side step
the question of whether there exists a consistent Dirac
constraint quantization by resorting to alternative, not
manifestly equivalent, techniques, such as gauge (parame-
trization) fixing,® introduction of the ghost fields,® and/or
the use of the Becchi-Rouet-Stora-Tyutin (BRST) formal-
ism.”] We shall show that in a parametrized (free) field
theory these difficulties can be surmounted by construct-
ing a covariant (but embedding-dependent) factor order-
ing which cancels all anomalies in the operator represen-
tation of L DiffM.

Our method is applicable to an arbitrary free field
theory, but we shall develop it here for a massless scalar
field propagating on a flat cylindrical (RXS'!) Min-
kowskian background. There are many reasons for

- choosing this particular system: (i) The solution of both

the classical and the quantum problems is simple and ex-
plicit. (ii) The system has an infinitely dimensional sym-
metry group, namely, the group C of conformal
isometries. There is an interesting interplay between this
group and the group of spacetime diffeomorphisms. (iii)
The formalism is closely connected with that of the bo-
sonic string model. In fact, there exists a nonlocal canon-
ical transformation® in the extended phase space which
takes the constraints of the parametrized theory of D-2
independent scalar fields propagating on a flat back-
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ground into those of a string in a D-dimensional target
space. (iv) The Schwinger terms are finite. (v) Products
of the field operators at the same point can be well
defined.’ (vi) The closing of space into a circle S! makes
the system analogous to a closed string and also gets rid
of the infrared problem.

We shall reach our goal, a consistent Dirac constraint
quantization of the parametrized massless field theory, in
the following paper.!® Here we shall develop and em-
phasize several features of the classical formalism
without which, we believe, one cannot properly under-
stand how the constraint quantization proceeds. (1) The
possibility of reconstructing privileged spacetime struc-
tures from the geometric data on a single embedding; (2)
the relation between the Schrodinger and Heisenberg pic-
tures for parametrized systems; (3) the way in which rep-
resentations of L DiffM are constructed in these pictures;
(4) the interplay between representation of L DiffM and
representations of a possible symmetry group; and (5) the
manifest covariance of the formalism. Let us comment
on these topics one by one.

(1) The normal factor ordering of a free field theory de-
pends on such geometric spacetime structures as the Kil-
ling vector fields. In parametrized field theories one is
asked to write the factor-ordering prescription entirely in
terms of the data on a given embedding. One must thus
be able to reconstruct the appropriate spacetime struc-
tures from the hypersurface data. This problem is solved
in Sec. II. :

(2) Finding a consistent factor ordering of the con-
straints in the Schrodinger picture is not easy: it
amounts to an infinite number of ordering decisions, one
on each embedding, which must be made so that L DiffM
is represented by the diffeomorphism Hamiltonian opera-
tors without any anomaly. It is much easier to perform
the factor ordering once and for all in the Heisenberg pic-
ture, and then find the embedding-dependent reordering
term which compensates for the anomaly. This requires,
however, a clarification of what is meant by the Heisen-
berg picture in a parametrized theory.

For ordinary physical systems the Heinsenberg picture
variables are the initial canonical data. After parametriz-
ation, time itself (represented by embeddings for a field
system) becomes one of the canonical variables. It thus
seems that in the Heisenberg picture on the extended
phase space of a parametrized system, time, together
with the rest of the canonical variables, should
be replaced by its initial value; if so, dynamics comes to a
standstill. This accounts for a widespread feeling that
in parametrized theories one should work in the
Schrodinger picture and that the transition to the Heisen-
berg picture is not feasible.

We have argued elsewhere!! that time plays a different
role in parametrized formalism than the dynamical vari-
ables and we gave the canonical transformation from the
Schrodinger canonical variables to the Heisenberg canon-
ical variables on the extended phase space. This transfor-
mation leaves the Heisenberg time equal to the
Schrodinger time (the Heisenberg embedding equal to the
Schrodinger embedding), but it turns the suitably chosen
constraints into the Heisenberg embedding momenta.

KAREL KUCHAR 39

This is the main advantage of the Heisenberg picture
over the Schrodinger picture; it follows that in the Dirac
constraint quantization the algebra of the constraints is
trivially taken over to the quantum theory without any
anomaly. The anomaly appears in the algebra of the
Heisenberg operators which evolve the fields, but because
these operators are not subject to constraints, the anoma-
ly still leads to consistent evolution. Moreover, one can
redefine the Heisenberg evolutions operators so that one
cancels the anomaly, and then pass to the Schrddinger
picture.

Section III is an explicit and detailed account of how
the transition from the Schrodinger picture to the
Heisenberg picture and back works in classical dynamics
of our system of interest (the massless scalar field on
RXS'). We are using a statistical description of an en-
semble of such fields by means of the distribution func-
tion on the extended phase space. This sets the stage for
the Dirac constraint quantization of the field in the fol-
lowing paper.

(3) The Lie algebra L DiffM allows two representations
by the Poisson algebra of suitable dynamical variables on
the extended phase space: one based on the Heisenberg
embedding momenta and the other on the Schrodinger
embedding momenta. Depending on what picture is
used, one of these representations is trivially realized and
the other ensures the independence of the dynamical evo-
lution of the choice of foliation. The generators of the
two representations evolve, respectively, the states (distri-
bution functions) or the Schrodinger field variables. The
diffeomorphism group thus plays a dynamical role in the
theory. This topic is developed in Secs. IIT and IV. The
main theme of the following paper is to turn these two
representations into operator representations while at the
same time avoiding the anomalies.

(4) The group of conformal isometries C may be con-
sidered as a subgroup of the dynamical group DiffM, but
it is more important as the symmetry group of the sys-
tem. In this way of looking at things, the representation
of L DiffM is based on the Heinsenberg embedding mo-
menta and the representation of LC on the Schrodinger
embedding momenta. One can show that the mixed Pois-
son brackets between two such generators, one of
L DiffM and another of LC, (weakly) vanishes. As a
consequence, the generators of LC are constants of
motion and they simultaneously generate canonical trans-
formations which leave the diffemorphism Hamiltonians
(weakly) invariant. This relation between the two groups
and their representations is described in Sec. IV. In the
following paper we show that this relationship is dis-
turbed by the anomaly. This does not affect, however,
the consistency of the Dirac quantization.

(5) So far we have talked about the active actions of
DiffM and C in the framework of the parametrized
canonical formalism. The formalism also uses coordi-
nates in M and on 2. One should check that all formulas
are covariant under passive transformations of these
coordinates and thus express genuine relationships be-
tween geometric objects. We take special care both in
this paper and in the following paper always to exhibit
this covariance manifestly.
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II. SPACELIKE EMBEDDINGS INM =R XS'!

A. A cylindrical Minkowskian spacetime

A cylindrical Minkowskian spacetime (M =R XS',G)
can be foliated by maximal hypersurfaces (circles); we
choose the unit of length such that their circumference
equals 277. We orient the circles “counterclockwise” and
denote the unit vector field tangent to them by s. The
congruence of geodesics orthogonal to the foliation of
maximal circles is timelike; we denote the timelike
future-oriented unit vector field tangent to it by t. We
thus obtain an oriented Minkowskian basis t,s:

t%t,=—1, s%,=1, and t%,=0.

(2.1)

We cover M by a single patch of Minkowskian coordi-
nates T'(X), Z (X),

X*=(T,Z2), TE(—w,w), ZE€[—m,7], (2.2)
such that
t,2=—T, ands,=Z , (2.3)

and identify the points (7,Z = —7) with the points
(T, Z =m).

The null vectors

e)=tts 2.4)

are tangent to the counterclockwise (clockwise) propaga-
ting future-oriented null rays. They are normalized by

enial) =0, ey “e)y="2, 2.5)
and related to the affine parameters

T*=T+Z (2.6)
by the equations

ete=—T" o, €)=20,:=20/0T* . @.7)

The advanced and retarded time variables TF have the
range TTE€[T™ —2m,T +27], T E(—w,»); the
point T+t — T~ = —27 must be identified with the point
T — T~ =2#. Both of them increase in the future direc-
tion, but each time the null ray crosses the ‘“dateline”
Z=x7, TY, or T~ jumps back by 27. In the null coor-
dinates X*=(T",T™),

e—)*=(2,0), e4),*=(0,2),

e(‘)a:(oy_l)y e(+)a=(_110): 2.8)
G+~:_%: G+_=—2’ -
G,,=G__=0=Gtt=G6"".

Most calculations involving a massless scalar field are
simplest when done in the null coordinates. The results
can then be cast into a form which is valid in arbitrary
coordinates by using the geometrically defined vector
fields e(4.).

The local frame t,s of the privileged Minkowskian ob-
server can be boosted into the local frame
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t=t coshn+ssinhy ,
(2.9)
§=tsinhny+scoshy ,

of an observer moving with the speed v = tanhn with
respect to the privileged observer. The boosted null

frame
€4, =tts (2.10)

is related to the privileged null frame (2.4) by scaling fac-
tors:

1+v
—v

€+ =A%le(y,, with A= coshn+ sinhn=

(2.11)

B. Spacelike embeddings in M =R X S'!

In hypersurface dynamics one addresses the question
of how does a field evolve from one Cauchy hypersurface
to another. Good Cauchy hypersurfaces are only those
globally spacelike hypersurfaces in M which are
homeomorphic to the T =0 circle. We represent them by
(orientation-preserving) embeddings

XE Emb(Z,M):Z—>M=RXS' (2.12)

of an oriented circle 2 into the spacetime M.

We label the points x of 3 by a single coordinate
x €[ —,m] and identify the points x'=—m and x ! =7.
The embedding is then described by the equation

Xe=X%x"). (2.13)
(It is not necessary that the join x'==+7 be mapped into
the dateline Z ==, but in practical calculations it is
convenient to assume this.) The spatial metric induced
on 2,

g11(x;X1:=G (X (X)X (x)XB(x) ,

(2.14)
2:=3X%x!)/ox!,
must be spacelike, g,; >0. The notation (x ;X] which we
shall use extensively in the following emphasizes that a
quantity is a function of x €= and simultaneously a func-
tional of X € Emb(Z, M). In the null coordinates

guxH=—T" ,xHT* |(x") . (2.15)

The metrics G%,G 4 and g'',g,, are used for the raising
and lowering of the corresponding indices.

The projector X { transforms as a covector and g,; as a
covariant tensor under DiffY. In a one-dimensional
space, densities of weight w >0 transform as covariant
tenisors of rank w and densities of weight w <0 as contra-
variant tensors of rank w. This fact provides a simple
bookkeeping for the density character of a quantity by
the number and the position of the attached index 1.

Besides g;;, we shall introduce two other metrics
g'*) |, associated with the “distances” ds'™’=+dT* on
S given by the differences of the null coordinates T*
which the embedding intersects:

g =g g® | with g =£T* . (2.16)
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Similarly,

g11=g:8; Wwith g;:=(detg,;)!"?. (2.17)

Each metric induces an appropriate covariant derivative,
D, and D'*’|. The Christoffel affine connection T'! }, is
the arithmetic mean of the affine connections I''*! | :

+

I =(In(+T* ) ,=—1 (2.18)
=,

'y =(Ing,),=Lr™*" +101 ). (2.19)

The Levi-Civita pseudotensor €,; on M enables us to
introduce the normal

Piai=€pX T, mign *=—gy, (2.20)
which is a covector, and the unit normal n,:=g'n,,.
The natural basis (n§,X§) and cobasis (n}, X)) associat-
ed with the hypersurface have the standard orthonormal-
ity and completeness properties. In the null coordinates

X
(2.21)

H =

=T, Xp=3T" 7',
+

5
— + 1 — + =
ny — T 1 n+—+%(T 1) 1.

The change of the hypersurface basis along the embed-
ding is related to the extrinsic curvature:

K, :=X8(VX¢)n, and K:=K} . 2.22)
From definition (2.22) we get

T ,11 T+ ,11
T, T",

B

g, K=

— (=)
-—7(I‘ n—T 11)-

1
2
(2.23)

The difference of two affine connections is a (mixed) ten-
sor which, in a one-dimensional space, can be identified
with a covector. From Eq. (2.23) we see that the
difference of I''*'! |, yields the mean extrinsic curvature.
Equations (2.19) and (2.23) then enable us to write!?

r'h,=r!,¥g,K . (2.24)

In a given spacetime, the extrinsic curvature of a hy-
persurface is limited by the Gauss-Codazzi equations and
its change from one hypersurface to another by the
Mainardi equation (Appendix A). In two-dimensional
spacetime, the Gauss-Codazzi equations are identically
satisfied and K (x) on X can thus have an arbitrary distri-
bution. The Mainardi equation implies that the normal
change of g,K on a flat background depends only on the
intrinsic metric of =,

(8g(x)K (x)/8X*(x")n®(x")= —g,(x)A8,(x,x") .
(2.25)

Here A=g''D,D, is the covariant Laplacian on =. The
8 function, as indicated by the attached index 1’, is a sca-
lar in the first argument and a scalar density in the
second argument.

C. The spacetime basis and the hypersurface basis

From the hypersurface basis vectors (n%g'X%) we can
form the null vectors

n, “=n"tg'X§ . (2.26)
In the null coordinates
n(")‘ll:(—ZT_,[;O), n(+)l11:(0,2T+’1) s
(2.27)

nye=(0,—(T" D7, n,) =0T~ N7%0).

Because the scalar product n(,“n _,,= —2 is the same
as the product (2.5), n(4,® can differ from e, * at most
by a position-dependent boost (2.11):

ne Mx;X1= AT (x5 X e 1) AX (%)),
(2.28)

=1 a
A==3n1) % )q -

Here, A(x) is related to the speed v (x) of the hypersur-
face observer n(x) with respect to the privileged inertial
observer t(x) as in Eq. (2.11). We shall call A the slope
factor because it determines the slope of the hypersurface
X (x) with respect to the foliation of maximal hypersur-
faces T'= const. The invariant scalar product in (2.28)
can be evaluated in the null coordinates:

A=T" /=T~ . (2.29)
It is obvious that A is a scalar on 3, i.e., that it does not
depend on the parametrization of =.

An observer who is confined to a small piece of an
embedding cannot determine A(x) because the privileged
inertial frame e, ¢ is fixed only by global considerations.
In particular, he cannot recognize e, ,“ from the frame
field € 1, “ boosted by a constant A, Eq. (2.11). However,
from the geometric data on the whole embedding
X:2—M (from the intrinsic metric g,; and the extrinsic
curvature K;;) he can reconstruct A(x) without going
directly to the privileged T = const foliation. This is a
fundamental point in our discussion of potentials
designed to cancel the anomalies in the Dirac constraint
algebra.

The reconstruction of A(x) starts from an observation
that its logarithmic derivative ( InA(x)) ;, unlike A(x) it-
self, is a local function of the geometric data:

(InA(x)) ;= —g(x)K (x) . (2.30)
By integrating this equation we get
1
Ax)=A(0)exp | = [ dx'g (x"K(x)|. @231

Note that A(—m)= A(7) because for any smooth embed-
ding

J,dx'e:1 (0K (x)=0. (2.32)
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To determine the integration constant A(0), we use the
fact that the privileged Killing vector field t has no circu-
lation around X=:

fzdxltl(x)=0, where ¢,:=1,X¢ . (2.33)

[Indeed, #,(x)=—T ;(X(x)) is a gradient of a globally

A(0)?= f dx'g,(x)exp

f dxg,x)K

Note that in spite of the fact that A(x) is obtained from
g11(x) and K, (x) by nonlocal operations, namely,
through the integrals (2.31) and (2.35) along 2, it is still a
local functional of the embedding X (x). Indeed, any de-
formation of X (x) outside a small interval about x does
not change A(x;X]. This is seen directly from Eq. (2.29)
and, in the integral expressions for A(x ;X], it is ensured
by Eq. (2.32). In its turn, Eq. (2.32) is related to the
Mainardi equation (2.25) which implies that

8 [ dx'g (0K (x)/8X(x")=0 (2.36)

Once we know the slope factor (2.29) as a functional
(2.31) and (2.35) of the intrinsic and extrinsic geometry of
an embedding, we also know the metric covectors

g(i)lziTiJ:gH\il (2.37)

as functionals of g; and K. By integrating Eq. (2.37)
along an arc of the embedding which does not cross the
dateline we reconstruct the finite differences

THx)—THx)=% [Tdx g (x" AT (x")  (2.38)
X

of the null coordinates from the geometry of the hyper-
surface. These differences enter as arguments of various
singular functions which characterize the solution of the
wave equation on M =R XS 1 In particular, we shall use
Eq. (2.38) for writing the normal-ordering kernel of the
Hamiltonian flux on a spatial hypersurface.

III. PARAMETRIZED SCALAR FIELD ON M =R X S

A. Spacetime approach

After understanding the geometry of the spacetime
background M =R XS!, we introduce a massless scalar
field ¢ propagating on that background. The dynamics of
¢(X) follows from the spacetime action

S[¢]=—1 fMdVGaﬁ(X>¢,,1(X>¢,,3(X) (3.1
here
dV=€,z3,dX",dX" (3.2)

is an invariant volume element on M. The field equations
O¢:=G PV V ;=0 take the form

—é,r7+¢ 2zz=0 and ¢ , =0

in the privileged systems of coordinates (7,Z) and
(T, T™). The two forms of the wave equation (3.3) lead

(3.3)

]/f dx'g,(x)exp
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defined time scalar 7.] We find ¢, as a function of A from
Eqgs. (2.4) and (2.28):
f(x)=1g (XA x)—A(x)) . (2.34)

Equation (2.33) then determines the integration constant
A(0) in expression (2.31):

(2.35)

X1 '
— fo dx'Vg (x")K (x")

[

naturally to the two forms of its solution traditionally as-
sociated with the names of Bernoulli and of D’Alembert.
The Bernoulli solution is a superposition of a homogene-
ous mode and the harmonic components in the coordi-
nate Z:

1
T,Z = ——
o ) Vo

L 5 %(akei(kl—lklﬂ
k=

“ ., Ikl

+c.c.)

(3.4)

The coefficients q,p are arbitrary real numbers, the
coefficients a, arbitrary complex numbers; the summa-
tion 3’ is over all whole numbers k except zero. The
D’Alembert solution is a superposition of two arbitrary
functions ¢g and ¢ :

NT , TH)=¢pa(T ) +¢g(TH) (3.5)

The ¢@( T

#s(T 1) wave travels clockwise; neither of them changes
its profile. The Bernoulli solution is related to the
D’Alembert solution by

) wave travels counterclockwise and the

b ol TH)=——

1 +
—_— + Tﬁ
Vs |2@teT)

_rE
sre KT+ cc)

(3.6)

In Eq. (3.6) we have divided the constant level q equally
between the ¢o and ¢g solutions. We see that the
coefficients a; with a positive k describe waves propaga-
ting counterclockwise and those with a negative k de-
scribe waves propagating clockwise. Note that

¢ +=¢g,+ and ¢ _=dgo _ .

The energy-momentum tensor T ,5(X) of the scalar
field is symmetric (7T ,3=Tp,), conserved (V,,‘T =0),
and trace-free (T3=0). In the null coordinates these
equations imply

=T, (TH)=(¢ (TF))*.

3.7

(3.8)

Ty
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B. Parametrized field: The Schréodinger picture

In hypersurface dynamics we follow the evolution of
the scalar field ¢(¢,x):=¢(X (¢,x)) along a foliation

X*=X%t,x) (3.9

of spacelike embeddings.!> We express the spacetime ac-
tion (3.1) as a functional of ¢(¢,x) and of the foliation
(3.9). We differentiate Eq. (3.9) and substitute the
differentials into the expression (3.2), thus recasting the
invariant volume element into the form

dV=(—n,(t,x;X]X%t,x)dt (g, (x;X]dx') . (3.10)
We write ¢ , in terms of é and ® 1
¢.o=(d—¢ XpXP)n, X") 'n,+¢ X, 3.11)

and substitute expressions (3.10) and (3.11) into the space-
time action (3.1). We obtain the hypersurface action

X« — 1 . v 4
SIXtx),¢(x0]= [ dt [ dx'l\(x;X.4,X.6)

(3.12)
whose Lagrangian density

I, =—1g,(—n, X" )G X (1,x))$ . 5 (3.13)

is a homogeneous function of the velocities X% ¢. The
hypersurface action leads to valid equations under in-
dependent variations of X *(¢,x) and ¢(¢,x) (Ref. 14).

We define the momenta (x) conjugate to ¢(x),
m(x):=dl,/3¢=nd, , (3.14)

and cast the hypersurface action into a canonical form in
the field variables ¢(x), 7 (x):

S[x“ = (md— :
(X% ¢,7] fRdt fzdx (md—h,) (3.15)
The Hamiltonian density

hl “‘7Tl¢ X (3-16)

is linear in the embedding velocity X The coefficient
hia=Tapn? (3.17)

is the energy-momentum flux in the direction normal to
the hypersurface. To express it as a functional of the
canonical variables ¢ and 7; we invert Egs. (3.11) and
(3.14),

¢ ,=—mnl+é X} (3.18)
and substitute expression (3.18) into Eq. (3.17):

hig=—hynt+h,xL . (3.19)
The coefficients

hiy=hni=3(m )2+(¢,1)2)
and (3.20)

hi=h X{=mé,

[the energy and momentum two-densities measured by
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the hypersurface observer (n{,X{)] do not depend ex-
plicitly on the embedding.

The action (3.15) is still not written in a canonical form
with respect to the embedding. Because 4, is linear in
the embedding velocity, the embedding momentum

Py (x):=3(md—h,,XP) /0X*=—h,, (3.21)
is subject to the constraints

P, (x)=0 (3.22)
with

P (x):=P (x)+h(x; X,¢,7] . (3.23)
The canonical action

S[X,¢,P,w]:= fR dt f2 dx (P, X*+mé)  (3.24)

in the extended phase space must be varied subject to
these constraints to yield the correct field equations.

The action (3.24) and the constraints (3.23) are written
in terms of the Schrodinger fundamental variables
X%x),Po(x),¢(x),7(x) which provide a canonical
chart in the extended phase space. The only nonvanish-
ing fundamental Poisson brackets are those between
canonically conjugate pairs of variables:

(x)}=0={X%x), m{x")] ,
P (x), p(x")}=0=

{X%x), Pyg(x')}=838,(x,x"),
{d(x), mp(x")}=8(x,x"),
{X%(x), XB(x")} =0={P,(x), Pyg(x")} ,
(3.25)
{¢(x ¢(x')}= ={m(x), m(x")} ,
{x
{

{Pia(x), m(x")} .

Note that these Poisson brackets remain invariant under
a spacetime transformation X%— X% =X%(X?) which in-
duces the transformation

XX (x):=X%(XP(x)) ,
Pip(x)—>P g (x):=Xj(X"(x))P,(x),
Xg:=03Xx°/3x”

(3.26)

of the embeddings and their conjugate momenta.
C. The algebra of constraints: The Schrédinger picture

The algebra of the constraints (3.23) can be determined
by direct calculation. In the projected form

P]ll::P“l—*_hlll’ P11=Pll+hll s (3.27)

the embedding variables X%x),P,,(x) decouple from the
field variables ¢(x), 7(x): P;, and P;; depend only on
the embedding variables and the energy-momentum two-
densities (3.20) depend only on the field variables.

Evaluation of the Poisson brackets is most straightfor-
ward in the hypersurface null basis n4, f=n{£X{. The
projections A (4):=h,n{ of the energy-momentum flux
into the null basis are related to the normal and tangen-
tial projections (3.20) by 4 ,4+,=h;;, £h,, and
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hiy+)=hy thy and
(3.28)
hin =5y Tha—)

by =3k —hy)) .

One can express h 4, in terms of the null momenta

Ty =N+) 19 =mEd; . (3.29)
This leads to
hie) =3 - (3.30)

From the fundamental field brackets (3.25) we get the
Poisson brackets of the null momenta:

{1000, Trgay(x )} =E28p,(x,x7)

(o)), i) (x)} =0 . 3D
This yields the algebra of the null projections:
(1) (), ) (X))

=4+2(hyy4)(X)8p 1 (x,x") = (x>x"))

= F2hyy+)(X)D 8 (x,x") = (x<>x")) (3.32)
and

{Bie)(x), By (x)}=0. (3.33)

The first form of Eq. (3.32) makes manifest the fact that
the Poisson brackets do not depend on the embedding
variables, the second form makes manifest the two-
density character of the brackets in both the x and x’ ar-
guments. It is easy to prove that the projections
P1y(+)(x) obey the same algebra (3.32) and (3.33) as the
flux projections Ay+,(x), and hence the projected con-
straints Py, 4 ,(x) also obey the same algebra.

Similarly, the normal and tangential flux projections
hy1.(x), By (x) obey the same algebra as the embedding
momentum projections Py (x), Py;(x) and as the pro-
jected constraints Py (x), Pyj(x). We shall write this
algebra for the last set of quantities:

{P“(x), Pl'l'(x')] =P11(x)81!’1(x,x')"(x(—)x') ,
(P, (x), Ppy(x)] =Py, (x)81 (x,x" )= (xox’) , (3.34)
IPlll (x), Pl'l'l(x’} :PII(X)Sll’l(x,x’)_(xHx’) .

As in Eq. (3.32) one can also use the form which makes
manifest the density character of the Poisson brackets.
The algebra (3.34) of the projected constraints is the
Dirac algebra.! (In two dimensions, when using the two-
density constraints, the Dirac algebra is a true algebra.15 )

In hypersurface dynamics, however, it is far more con-
venient to work with the unprojected constraints (3.23).
It holds that

Pio=Pio—thino) e e a - (3.35)
In the null coordinates, in view of Eq. (2.27),

P, (x)=P, 4 (X)ELh o) ()N TE N7 (3.36)
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Evaluation of the Poisson brackets is straightforward and
leads to the conclusion that in these coordinates the
brackets of the unprojected constraints have to vanish:

{Po(x), Pyg(x)}=0. (3.37)

However, the bracket (3.37) transforms as a bicovector at
X (x) and X (x’') under spacetime transformations (3.26)
and hence Eq. (3.37) must hold in arbitary spacetime
coordinates. The algebra of the unprojected constraints
is Abelian. One can trace this back to the independence
of the spacetime action of the choice of foliation.'*

D. Parametrized field: From the Schrodinger
picture to the Heisenberg picture

Each one of the Schrodinger fundamental variables
X%x), P,,(x), $(x), my(x), and hence also any dynamical
variable F[X,P,¢,m] constructed out of them, evolves
from one embedding X*(x) to another according to the
Hamilton equations of motion

S3F[X,P,¢$,m]/6X%x)

={F[X,P,¢,7],P(x;X,P,¢,7]} . (3.38)

We do not a priori identify the embedding X“(x) which
is an independent variable in the variational differential
equation (3.38) with the embedding X “(x) which is one of
the canonical variables describing the parametrized sys-
tem. Such an identification, Eq. (3.42), follows naturally
from the Hamilton equations (3.38) themselves. At the
end of the day, the embedding X*(x) becomes one of the
Heisenberg variables in the extended phase space.

We assume that the Schrodinger variables take the ini-
tial values

XUx)=oXHx), Pio(x)=¢P,(x),

(3.39)
d(x)=¢(x), m(x)=mx),
on an initial embedding X%(x)=X %(x), say,
X %x): (T(x)=0, (Z(x)=x . (3.40)

Of course, oP,(x) is determined from (X% x) and
¢(x),,(x) by the initial constraint (3.22).

In principle, we can solve the Hamilton equations of
motion for these initial conditions. First of all, due to the
structure (3.23) of P,,(x), Eq. (3.38) yields

8XB(x") /86X x)=858,(x",x) .
Under the initial conditions (3.39) this has the solution

X% x)=X%x) . (3.42)

(3.41)

Second, by solving the Hamilton equations (3.38) for the
field variables we get

d(x)=¢(x;X,d,7]
and (3.43)
m(x)=m(x;X,¢,7] .

These solutions can be inverted to yield
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d(x)=¢(x;X,¢,7]
and (3.44)
m(x)=m(x;X,¢,7] .

Any dynamical variable F which has vanishing Poisson
brackets with the constraints,

{F[X,P,¢,7],P,(x;X,P,¢,7]} =0, (3.45)

has the same value on any embedding X*(x) along the
dynamical trajectory (3.38) and is thus a constant of
motion. By the method of their construction, the initial
fields (3.44) are constants of motion:

{$(x),P1o(x")} =0={m (x),P,(x")]} . (3.46)

Also, the constraint functions (3.23) are constants of
motion; this is the content of Eq. (3.37). The constraints
tell us that the value of these constants of motion must be
necessarily put equal to zero. It we wish, we can now
complete the solution of the Hamilton equations of
motion by substituting the field solutions (3.43) into the
constraint functions (3.23) and writing

P (x;X,0,P,w]=P (x)—h (x;X,d,w] . (3.47)

By imposing the constraints P,,=0, we get the solution
of the Hamilton equation for P, ,(x).

The constraint functions (3.23) and the embedding
variables (3.42) have the Poisson brackets

(XUx), Pyglx')} =888,(x,x") ,

(3.48)
{X%x), XA(x")} =0 .

The initial field variables, as the field variables on any hy-
persurface, have the fundamental brackets

{d(x),m(x")}=8(x,x") (3.49)

(the other brackets being zero). We have thus discovered
that the dynamical variables X% x),P;,(x),$(x), 7 (x)
have Poisson brackets which are appropriate for a canon-
ical chart on the extended phase space: Eqgs. (3.48), (3.37)
(3.46), (3.49). These variables are nothing other than the

Heisenberg fundamental variables on the extended phase
space of the parametrized scalar field theory. Equations
(3.23) and (3.44) give the canonical transformation from
the Schrodinger variables to the Heisenberg variables;
Egs. (3.43) and (3.47) give the inverse canonical transfor-
mation from the Heisenberg variables to the Schrodinger
variables. The argument we have just sketched illustrates
for a simple example of a massless scalar field in two di-
mensions the general connection between Schrodinger
and Heisenberg pictures for parametrized systems.!!
While the Heisenberg field variables are the initial
values of the fields and hence constants of motion, the
Heisenberg embedding variable is not the initial embed-
ding, but it is identical with the Schrédinger embedding
variable. Also, while the Heisenberg embedding momen-
tum is a constant of motion, the Schrodinger embedding
momentum is not, and the canonical transformation be-
tween them, Egs. (3.23) and (3.47), is not an identity
transformation. The Heisenberg time X*(x) still runs;
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the transition from the Schrodinger picture to the
Heisenberg picture does not yield the “frozen time for-
malism.”'®

A classical state of the field is described by the statisti-
cal distribution function p on the extended phase space.
One can always eliminate the embedding momenta by us-
ing the constraints. When this is done, the statistical dis-
tribution is a functional p[ X, ¢, 7] in the Schriédinger pic-
ture and a functional p[X,¢,7] in the Heisenberg pic-
ture. We postulate that the statistical distribution is a
constant of motion on the extended phase space:

(P (x)} =0 .

In the Heisenberg picture, P,,(x) is a fundamental vari-
able and Eq. (3.50) merely tells us that p does not depend
on the Heisenberg embedding:

(3.50)

p=pld, 7] . (3.51)

The distribution (3.51) is interpreted as the probability
distribution of the initial field data ¢(x),7;(x) on the ini-
tial embedding. In the Schrédinger picture, P,, is not a
fundamental variable, but it is constructed from the fun-
damental Schrodinger variables according to Eq. (3.23).
Equation (3.50) in the Schrodinger picture has the mean-
ing of the Liouville equation:

SplX, ¢, m] /86X % x)=—{p[X,$, 7], ho(x;X,,7]} .
(3.52)

It determines how the probability distribution of the
Schrodinger variables ¢(x),7,(x) on an embedding X *(x)
changes if we change the embedding.

Equation (3.50) is thus trivial in the Heisenberg pic-
ture, but nontrivial in the Schrodinger picture. We en-
counter an opposite situation when we study the equa-
tions

{d(x), Py (x")}=0={m(x), P.,(x")} . (3.53)

In the Schrddinger picture, these equations are trivial, be-
ing merely a part of the fundamental Poisson-brackets re-
lations. In the Heisenberg picture, P, (x’) is given by
Eq. (3.47); Eq. (3.53) then acquires the meaning of the
evolution equation for the field variables:

8¢(x;X,b,m]/6X%x")

={¢(x;X, b, 7], h o (x;X,p,7]} , (3.54)
and similarly for m(x;X,é,7]. The functionals (3.43)
are supposed to solve this equation. Equations (3.53) in
the Heisenberg picture are nontrivial: ultimately they are
equivalent to the wave equation (3.3).

The consistency of Eq. (3.50) is ensured by the vanish-
ing of the Poisson brackets.(3.37). In the Heisenberg pic-
ture, Egs. (3.37) serve as a starting point of the formalism
and require no proof. In the Schrddinger picture, their
proof is nontrivial; we have given it in Sec. III C. Their
meaning is also nontrivial; they ensure that the evolution
of the Schrodinger state p[X,¢,7] from an initial embed-
ding (X *(x) to a final embedding X *(x) does not depend
on the foliation X %(¢,x) along which we evolve the state.
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Similarly, the consistency of Egs. (3.53) is ensured by
equation

{P(x), Prg(x")} =0 . (3.55)

Equation (3.55) is a starting point of the Scrodinger pic-
ture formalism; in the Heisenberg picture the P,,(x) are
given by the expressions (3.47) and Eq. (3.55) need to be
proved (see Sec. III E). Their role in the Heisenberg pic-
ture is equally nontrivial: they ensure that the evolution
of the field variables ¢(x ;X],7,(x;X] by Egs. (3.54) from
the initial data ¢(x),a;(x) on an initial embedding (X *(x)
does not depend on the foliation X%(#,x) along which we
reach the final embedding X%*(x).

To summarize, both P, (x) and P,,(x) form an Abeli-
an Poisson-brackets system, Eqgs. (3.55) or (3.37). Wheth-
er we are working in the Schrodinger picture or in the
Heisenberg picture, one set of these equations is always
trivial and another set requires proof.

In the Dirac quantization of a constrained system, one
usually thinks in terms of the Schrodinger picture. Un-
fortunately, a consistent factor ordering is difficult to find
and the commutators of the constraint functions typically
acquire an anomaly. Even the form of this anomaly on
curved embeddings is not properly given in the existing
literature. Moreover, when one imposes the constraints
as limitations on the Schrodinger picture states, the
anomaly leads to inconsistencies. It is thus better to
quantize the system first in the Heisenberg picture. The
constraints in this picture preserve their trivial algebra
and one can impose them on the Heisenberg picture
states. It is the algebra of the P,,(x) operators which ac-
quires an anomaly. Fortunately, it is quite straightfor-
ward to find the correct form of this anomaly and to
show that the consistency of the quantum evolution equa-
tions analogous to Egs. (3.54) is still maintained. The
anomaly in the algebra (3.55) does not matter because the
P,,, unlike the P,,, is not constrained to vanish. In the
Heisenberg picture it is also easier to see how the anoma-
ly in the algebra of the P,(x) variables can be removed
by their redefinition. It is then possible to pass to the
quantum Schrodinger picture in which the algebra of the
constraints is also free of the anomaly.

To implement this program one must first learn how to
do the classical calculations directly in the Heinsenberg
picture.

E. Parametrized field: From the Heisenberg picture
to the Schrodinger picture

A major advantage of the Heisenberg picture is that
the Poisson brackets can be evaluated directly between
spacetime fields and then restricted and projected to
embeddings. As usual we assign the Poisson brackets

{q1P] =1, {ak’a* l}z_i|k|8kl »
{a,q}=0={p,p},

to the coefficients q,p,a; characterizing the Bernoulli
solution (3.4). [We shall soon show that this amounts to
assigning the correct Poisson brackets (3.49) to the
Heisenberg fields ¢(x), 7 (x).]

(3.56)
{ar,a;} =0={a*,a* ]
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Equations (3.56) imply that the D’Alembert fields (3.6)
have the Poisson brackets

{$e.0(T5), g o TH)}=—10(TE—T*)

1.1 o
+4 277_(T T+) (3.57)
and
+ “N=—Ll 1 s
{0 (T7),dax(T )} 4_277_(T T ), (3.58)
with
+y.— 1 o s Lot
o(T~): Py T +2k§1 kska . (3.59)

The linear terms in (3.57)-(3.59) are due to the equiparti-
tion of the homogeneous mode between ¢ and ¢g. The
expression (3.59) is representation of the step function on
a circle: :
—1 for T*e(—27,0),
6(T*)= 10 for T*=0,
for T*€(0,27) ,

(3.60)
1
2
NT*+2mn)=0(T*)+n for n =0,£1,%2,... .

Its derivative yields the 8 function

142 3 coskT*
k=1

1
y=_"_
0.+(T) 2

1 Q art_g ot
- kzwe 8(T*) . (3.61)
As with any function which depends either on T" or on
T, 0(T*) and 8(T?) are solutions of the wave equation;
6(T*) is an odd solution and 8(T*) an even one.
From Eqgs. (3.57) and (3.58) we get the Poisson bracket
of the total D’Alembert solution (3.5) with itself:

(X)), p(X))=—L0(TT—T*)—1o(T~—T7) .

(3.62)
Its successive differentiations yield
(¢(X),¢ (X))} =18(T*—T%) (3.63)
and
{6 L(TF),¢ (TH)}=18 (TT—TF) . (3.64)

From the last equation we obtain the Poisson brackets
between the components (3.8) of the energy-momentum
tensor:

(Ty o (TH), Ty (T} =Ty (TS (TE—TY)
—(THT?), (3.65)
(T, (T, T__(T7)}=0.

Finally, Eq. (3.63) yields the Poisson bracket of the field
with the energy-momentum tensor,
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(9(X), Ty (X))} =0 (THNTE—T"), (3.66)

and Eq. (3.64) its differentiated form

(¢ (TH), T (T} =¢ (TS (T*—T*). (.67

We start now restricitng these relations to a spacelike
embedding T*=T%(x). Two points on such an embed-
ding have the null coordinates T =T¥(x) and
T+ =T*(x') whose differences have an opposite sign,
(TT"—T*' T~ —T7')<0, and range |TT—T%|<27.
The step functions in Egs. (3.62) then cancel each other
and the Schrodinger field variables

d(x):=d(X(x))
have the vanishing Poisson brackets on the hypersurface:

{d(x),¢(x")}=0 . (3.69)
Define the field momentum by Eq. (3.14), i.e.,

(3.68)

7 (x):=¢ (T TGNTT ((x)—¢ (T (xNT™ (x) .
| (3.70)
From Eqgs. (3.63),
{¢(x),m(x)}=1[8(TT(x)=T (x'NT" 1(x")

=T (x)—T (x'NT~ (x")].

(3.71)

The spatial delta functions §;(x,x’) and their derivatives
d; and 9, are related to the spacetime delta functions

8(T*—T%) and their derivatives 3, by the relations
which are summarized in Appendix B. By Eq. (B1),

{d(x),m(x")}=8p(x,x") . (3.72)
Finally, from Egs. (3.64) and (3.70),
{m(x),m(x")}=0. (3.73)

Equations (3.69), (3.72), and (3.73) show that the transfor-
mation (3.68), (3.70), (3.5), and (3.6) from the mode vari-

ables 9, P;9k>Pk>

1 1 1 .
qk:“/—im(a* ktag), Pk:‘/—il(a* Kk —ag)

(3.74)

to the Schrodinger variables ¢(x),7(x) 1is (an
embedding-dependent) canonical transformation.

The mode coefficients q,p;q,,px have a simple relation
to the field variables ¢(x) and 7;(x) on the initial hyper-
surface 7" =x, T~ = —x. When we decompose ¢(x) and
(x) into the real Fourier components

d(x)= ‘¢0+\/2 2 (¢'° coskx + ¢ sinkx)

(3.75)
1

11'1()(:):—:

+v2 (& coskx + i sink.
Vs |To E(q& coskx +ary’ sinkx )

=1
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we get

$0=4, =P,

o_ 1 11
¢ = 75 (G tai), P=T5 kPR, 370
ﬂ(k”:T/“E-(pk_'_p—k)’ 7T(I<S)— ‘/Zk(qk —k)

k=12,....

The Fourier coefficients ¢, $'",¢% and 7,7, 7l have

the Poisson brackets appropriate to canonical coordi-
nates and their conjugate momenta. We can think of
them, or the related coefficients q,p,a;,a* ;, as about two
alternative sets of Heisenberg data. The transformation
(3.68), (3.70), (3.5), and (3.6) together with the
identifications (3.74)—(3.76) spells thus explicitly what Eq.
(3.43) implied as a program.

Canonical transformation of the field variables must be
complemented by the corresponding transformation of
the embeddings and their conjugate momenta. While the
embeddings are the same in the two pictures, Eq. (3.42),
the embedding momenta change. In Sec. IIIE we
proved that the transition (3.36) from the Schrodinger
variables to the Heisenberg embedding momentum is a
canonical transformation, Egs. (3.37), (3.46), and (3.48).
Here we are going to prove that the inverse relation (3.47)
is a canonical transformation by performing all calcula-
tions in the Heinsenberg picture.

We define the Schrodinger embedding momentum by
Eq. (3.36) and show that it has the correct Poisson brack-
ets

($(x),Pps(x")} (x), Py (x")]

with the Schrodinger field variables (3.68) and their con-
jugate momenta (3.70). By projecting the spacetime
brackets (3.66) we learn that

=0={m, (3.77)

{d(x) by (X} =¢ L(x)8(x,x") . (3.78)

Similarly, from the definition (3.70) of 7,(x) and by pro-
jecting the spacetime bracket (3.67) we learn that

{m(x), b (x)} =% (THx")S; (x,x") . (3.79)

The same expressions, (3.78) and (3.79), however, also fol-
low from the action of the Heisenberg embedding
momentum P (x’) on the Schrodinger field variables
(3.68) and (3.70):

{B(x),Prilx)} =6 +(x)8,(x,x"),

{m(x),Pro(x)}=%[¢ o+ ATEXNTF 1(x)8;(x,x")
+¢ (TH(x)8, 1(x,x")]

=t¢ (THx"))8y 1(x,x") . (3.80)
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This leads to Eq. (3.77).

We now turn to the brackets between the variables
X%x) and P,,(x) themselves. Among these, only the
verification of

{Pli(x),Plti(x')}:O (3.81)

requires some work. We start from the brackets

(P, (x),Py s (x")}
={P.(x)—h4(x),Ppy(x)—hpy(x")}
={h (x),hpe(x")]}

—({h1+(x),P(x")} —(x<x')) .

(3.82)

The definition (3.17) relates the Hamiltonian flux to the
components of the energy-momentum tensor. From the
Poisson brackets (3.65) and the identity (B2) for the
differentiated & functions we immediately get the algebra
of the flux components:

{he(x),hy s (x")]

=(T* 1 (x) 7 h 1 (x)8),(x,x" ) —(x<>x") ,  (3.83)

{hi;(x)hy_(x")}=0.

On the other hand, we evaluate

{hye(x),Ppi(x )} =£T* [(x)T4 4 18, ,(x,x")  (3.84)

and interchange the points:
{h 4 (x),Ppy(x")}] —(x<ox')

=(T* [(x) 7 h2 (%8 1(x,x" ) —(x<>x") . (3.85)

We see that expressions (3.85) and (3.83) exactly cancel
each other in Eq. (3.82). This proves Eq. (3.81).

We carried out all calculations in the null coordinates,
but the transformation properties of the Poisson brackets
under spacetime transformations (3.26) enable us to write
our results in a form which is valid in an arbitrary coordi-
nate system. In particular, the fundamental Poisson
brackets (3.77) and (3.81) take the covariant form (3.25).
The algebra (3.83) of the Hamiltonian fluxes also has a
covariant transcription,

(B3, hypx"))
=C" p(x,x"; X]h 1, (x)8; 1(x,x")—(ax—Bx’) ,
(3.86)

whose coefficients C'7 5 are constructed from the null
hypersurface basis (2.26) and (2.27):

C' plx,x";X]:=3(n 4, () n— o (X yp(x")
=y ) A e (R4 p(x7)

(3.87)
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Both the spatial and the spacetime indices at the two
points involved are correctly matched to produce a mani-
festly covariant result.

This completes our proof that the transitions (3.68),
(3.70), (3.5), (3.6), (3.42), and (3.35) are a canonical trans-
formation from the Heisenberg picture to the
Schrodinger picture.

1V. SPACETIME DIFFEOMORPHISMS
AND CONFORMAL ISOMETRIES
IN THE HAMILTONIAN FORMALISM

The hypersurface action (3.12) of the parametrized
theory is invariant under spacetime diffeomorphisms and
also under conformal scalings of the metric G. This leads
us to the question of what role the diffeomorphism group
DiffM and the group of conformal isometries C play in
the parametrized canonical formalism. We shall see that
DiffM is a dynamical group of the theory: the generators
of L DiffM can be represented by Hamiltonians, i.e., by
generators of canonical transformations which yield the
actual motion of the system in the extended phase space.
On the other hand, C is a symmetry group of the theory:
the generators of LC can be represented by dynamical
variables which generate canonical transformations that
leave the Hamiltonians (weakly) invariant and which thus
are constants of motion.

A. Spacetime diffeomorphisms and conformal isometries

Modulo certain technical niceties, the Lie algebra
L DiffM can be identified with the set of all complete vec-
tor fields U on M whose Lie bracket is (up to sign) their
commutator

3
axe

[U,VI=(UPVe ;—VEU® p) 4.1)

Conformal Killing vector fields u form a subalgebra LC
of L DiffM. When acting on the (flat) metric G, a confor-
mal Killing vector field u scales it by a factor W[u]:

(£uG)aB=VauB+Vﬁua:W[u]Gaﬁ . (42)

From the conformal Killing equation (4.2) it follows that
Wlu]l=divu=V_ u*. (4.3)

When written in the null coordinates, the conformal Kil-
ling equation yields

u- =0=ut _ (4.4)
and

Wlul=u" ,+u" _. 4.5)

From Eq. (4.4) we see that the general conformal Killing
vector has the form

u*=(u(T7),ut(T") (4.6)
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and that W[u] given by Eq. (4.5) has the form of a
D’Alembert solution to the wave equation OW =0.

The null conformal Killing vectors u, ., parallel to the
counterclockwise (clockwise) propagating null rays e,

4.7)

form two subalgebras, L ,C, of LC. The elements of
L yC commute with those of L _,C,[u)u_,]=0,
and LC is a direct product of the L ,,C subalgebras,
LC=L,,C®L(_,C. The vector fields u (T ,T")
must satisfy the matching conditions
u (T +7T—m)= uy (T —=w,T+m) which imply that
the uX(T*) are periodic functions of T*. Therefore, if
we know these function in the interval T*€[ —7, 7], we
know the fields u ., everywhere. The composition law of
the elements of L, ,C,

[U(i),v(i)]:[ui(T(i))ai,Ui(Ti)ai] N (48)

is the same as the composition law of two elements of
L DiffS!. Each of the two algebras L ,C is thus iso-
morphic with L DiffS’.

An arbitrary vector field N(x) on a spacelike hyper-
surface can be written in a unique way as a sum of two
conformal Killing vector fields u 4, restricted to that hy-
persurface. This follows from the geometric fact that
each null line intersects a spacelike hypersurface once
and only once; we can thus put u S(TH)=N*(x(T1)).

The periodic functions u *(T*) which characterize the
fields uy, can be decomposed into the Fourier com-
ponents u * nt

W)= 2 uinLhL)n ’ (4.9)
n=-—o0
where
L) i=¢ Ty (4.10)

S L A R
ut = [T AT u T e (4.11)

One can think about u, as an element of L .,C
~L DiffS! and about u* , as its components in the basis

L'®, in L, ,C. The commutators of the basis vectors
L™, close according to the Virasoro algebra

[L*, L 1=i(m —n)L'™), . (4.12)
and they commute:

[L'*,, L7, 1=0. (4.13)

B. Canonical relatizations of L DiffM

We shall now let the spacetime diffeomorphisms act in
the extended phase space of our parametrized system by
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canonical transformations. We have previously intro-
duced two such actions and discussed their geometric
meaning.> Let us briefly summarize these results and
connect them with the Schrodinger and Heisenberg pic-
tures of the parametrized field dynamics.

The basis idea behind canonical realizations of the Lie
algebra L DiffM is to map each generator U€ L DiffM
into a dynamical variable on the extended phase space by
using the generator as a smearing function of the embed-
ding momenta. This can be done either with the
Schrodinger or with the Heisenberg momenta. Also, the
resulting dynamical variables can be alternatively con-
sidered as functionals either of the Schrodinger or of the
Heisenberg fundamental variables. We are thus led to
consider the dynamical variables

P(U)[X,P]:= fzdxlU"‘(X(x))Pla(x) 4.14)

and

P(U)[X,P,¢,7]:= fzdxlU“(X(x))Pla(x;X,P,¢,1T]
(4.15)

in the Schrédinger picture and their counterparts

P(U)[X,P,$,7]:= fzdxlu“(X(x))Pla(x;X,P,¢,1r]
(4.16)

and

P(U)[X,P]:= fzdx‘U“(X(x))Pm(x) 4.17)

in the Heisenberg picture. The dynamical variable P(U)
acts in the Schrodinger kinematical sector X, P of the ex-
tended phase space and P(U) acts in the Heisenberg

kinematical sector X,P. From the fundamental Poisson
brackets (3.55) and (3.37) it follows that

{P(U),P(V)}=P(—[U,V]) (4.18)
and

{P(U),P(V)}=P(—[U,V]) . (4.19)
The mappings U—P(U) and U—P(U) are thus

homomorphisms from L DiffM into the Poisson-brackets
algebra of the dynamical variables.

According to Eqgs. (3.50) and (3.53) the statistical distri-
bution function p and the Schrddinger field variables
¢(x), 7 (x) satisfy the requirements

{p,P(U)} =0 (4.20)

and

{$(x),P(U)} =0={m,(x),P(U)} . @.21)

The dynamical variable P(U) expressed in terms of the
Schrodinger data, Eq. (4.15), generates by Eq. (4.20) the
evolution of the state p[X,#,7] under an infinitesimal
diffeomorphism U which displaces the embedding X (x)
into X (x)+U(X (x)). Similarly, the dynamical variable
P(U) expressed in terms of the Heisenberg data, Eq.
(4.16), generates by Egs. (4.21) the evolution of the field
variables ¢(x) and m(x) under an infinitesimal
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diffeomorphism which displaces the embedding X(x) into
X(x)+U(X(x)). The representation equations (4.18) and
(4.19) guarantee the consistency of these two alternative
evolutions.

One can restrict the canonical realizations (4.18) and
(4.19) of the spacetime diffeomorphism algebra L DiffM

to one of its subalgebras LC or L4,C. We have already

noticed that the action UE L DiffM at any given embed-
ding can be composed from the actions u.,EL4,C.
These remarks, however, do not capture the full impor-
tance of the subalgebras L . ,C for the dynamics of the
scalar field in a two-dimensional spacetime M. The group
of conformal isometries C and the related algebras L,C
is not important as the dynamical group according to
which the system is evolved, but rather as a symmetry
group of diffeomorphism Hamiltonians. We shall explore
this aspect of C in the following section.

C. Conformal isometries and constants of motion

We have seen that any dynamical variable F which has
vanishing Poisson brackets with the constraints, Eq.
(3.45), is a constant of motion, i.e., has the same value on
any embedding. It is well known that any covariantly
conserved symmetric trace-free tensor T4 yields a con-
served current when multiplied by a conformal Killing
vector field u ¢, i.e., that

Vp(uTh)=0. (4.22)
As a consequence of Eq. (4.22), the integral
[ Ldx'u T gnf (4.23)

has the same value on any embedding X:=—M. When
expressed in terms of the canonical variables, this integral
is nothing other than the smeared Hamiltonian flux:

hw:= [ dx'u (Xx)Dhyg(x (4.24)

One thus expects that the Poisson brackets of 4 (u) with
the constraints P, ,(x) will vanish

{h(u),P,(x)}=0. (4.25)

This can be corroborated in many different ways, e.g.,
from Egs. (3.84) and (4.4). The most explicit method,
however, is to express 4 (u) directly in terms of the initial
data. By Egs. (3.8), (3.17), and (4.6),

h(u)= fzdx‘[T*,,(x)T++(T+<x))u+(T+(x))

—T™ ,()T— (T (x)u (T (x))]
= [Tdr T, (Tt (T*)
+ [T AT T (T (). (4.26)

The dependence of T 4 (T*) on T is fixed by Egs. (3.8),
(3.5), and (3.6); the last version of Eq. (4.26) then makes
it clear that A (u) depends only on q,p and a;,a*,, but
not on the embedding.
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We thus see that each conformal Killing vector field
u€ LC yields a dynamical variable 4 (u) which is a con-
stant of motion. The Poisson bracket of two such
dynamical variables, /4 (u) and 4 (v), must again be a con-
stant of motion. Indeed, by smearing Eq. (3.83), we learn
that it is a constant of motion generated by the conformal
Killing vector field [u,v]:

{h(u),h(v)}=h([u,v]) (4.27)
The constants of motion 4 (u) thus form a Poisson alge-
bra which is antihomomorphic to the Lie algebra LC.

Let us take those constants of motion #‘*)  which

correspond to the basis elements (4.10) of the Lie algebras
L .,C. By Eq. (4.26),

h(i)m:zh(L(i)m)
= fj dTie'imTiTi (T*;q,p,a5,2% ) .
(4.28)

By using Eqgs. (3.8), (3.5) and (3.6), we express h'*), ex-
plicitly in terms of the Heisenberg data:

o0
(£) — 1,2 *
R o=3p"+ ¥ a* spaqy,

1 m—1
h(i) =i —pa** - 2 a* ka ( k)
m ‘/2 +m 2 - + +(m—
kE Fk+md 51 m>0
1
RE = ) (4.29)

From Egs. (4.12) and (4.27) it follows that these constants
of motion have the Poisson brackets which close accord-
ing to the Virasoro algebra:

{h(i)mvh(i)n}:i(m _n)h(i)m—#-n M (430)

There is a fundamental difference between Egs. (4.18)
and (4.19), and Eq. (4.27). Equations (4.18) and (4.19) are
valid for arbitrary vector fields U, V, and the dynamical
variables P(U) or P(V) thus represent the full
diffeomorphism algebra L DiffM. On the other hand, Eq.
(4.27) is valid only for conformal Killing vector fields u,v
and the dynamical variables 4 (u) thus represent merely
the conformal algebra LC (which is a subalgebra of
L DiffM).

We can connect the representation equations (4.18),
(4.19) and (4.27) with the conservation equation (4.25) by
the following chain of equations which are valid for arbi-
trary vector fields U and V:
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P(—[U,VD—h(—[U,V])=P(—[U,V])={P( U),P(V)—h(V)}
={P(U),P )}+{h(U),h(V)}+({h(U),P(V)}—(U«—»V))
= —[U,V])-i—{h(U),h(V}+({h(U),P(V)]—(U<~>V)).
4.31)
[
As a result, diffeomorphism Hamiltonians P(V): By Eq. (4.34), the
RU, VD= (A (U), AV} +((h (U),P(V)} —(UV) diffeomorphism Hamiltonians are left (conditionally) in-

(4.32)

for arbitrary U, V&€ L DiffM. For conformal Killing
vector fields u and v, A (u) and A (v) are conserved, Eq.
(4.25), and the representation equation (4.27) follows
from Eq. (4.32). On the other hand, for arbitrary vector
fields U and V, A(U) and A (V) are not conserved, and
the relation (4.32) implies that the representation equa-
tion (4.27) is in general violated.

Two dynamical variables F; and F, on the extended
phase space are considered to be equivalent (weakly
equal) to each other, F| =F,, if they coincide on the con-
straint surface P,,(x)=0. The constraints themselves are
equivalent to the zero dynamical variable, P, (x)=0. By
Eq. (3.47), the smeared Hamiltonian flux —h(U),
U€E L DiffM, is equivalent to the smeared Schrodinger
momentum P(U): P(U)=~ —h(U). For u€LC, smeared
Schrodinger momentum is weakly conserved,

{P(u),P(V)}=P(—[u,V])=0
Vu€LC and VE LDiffM . (4.33)
In the Schrodinger picture, this equation,
{P(V)[X,P,¢,7],P(u)} =0 (4.34)

has an alternative interpretation. The dynamical variable
P(u), u€LC, generates a conformal motion in the
Schrodinger kinematical sector X (x), P,,(x) of the phase
space while leaving the Schrodinger field variables
¢(x),7,(x) unchanged. By Eq. (4.33), the smeared con-
straint P(V)[ X, P,¢,7] (which generates the evolution of
the state under an infinitesimal diffeomorphism
VE L DiffM and thus plays the role of the Hamiltonian)
is left weakly invariant under this conformal motion. We
say that this Hamiltonian is conditionally symmetric'’ un-

der a conformal motion generated by P(u),u€LC. One

can also see that the parametrized canonical action func-
tional (3.22)—-(3.24) is left weakly invariant under the con-
formal motion generated by P(u) (Ref. 17). It is thus the
(conditional) symmetry of the dynamical Hamiltonian or
of the corresponding canonical action which leads to the
conservation laws for the generators P(u)=~ —h(u) of
this symmetry.

To summarize, the group of conformal motions plays
the role of the symmetry group, the group of all space-
time diffeomorphisms the role of the dynamical group.
The elements of LC are homomorphically mapped into
the generators P(u) of conformal motions in the phase
space, and the elements of L DiffM are mapped into the

variant by conformal motions and hence the generators
of such motions are (conditionally) conserved in the
dynamical evolution of the system.

We shall see that the Dirac constraint quantization
leaves the operator version of Egs. (4.18) and (4.19) un-
touched, but the generators P(u),u&LC of conformal
motions no longer keep the diffefomorphism Hamiltonians
P(V), V€ L DiffM conditionally invariant: Eq. (4.34)
breaks down. Quantum mechanically, the diffeo-
morphism Hamiltonians are left conditionally invariant
by a different group (which is a central extension of C).
The symmetry group which leaves the diffeomorphism
Hamiltonians invariant thus develops an anomaly upon
quantization, but the dynamical group of the quantum
diffeomorphism Hamiltonians themselves does not. For-
tunately, it is the commutator algebra of quantum
difftomorphism Hamiltonians, not the algebra of the
symmetry generators, which ensures the consistency of
the Dirac constraint quantization. We shall pursue this
theme in the following paper.
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APPENDIX A: THE MAINARDI EQUATION

The Mainardi equation for a  hypersurface
X*=X%x%,a=1,...,n,a=1,...,n —1, embedded in
an n-dimensional spacetime connects the normal deriva-
tive of the extrinsic curvature K, (x;X] to the
R 015 =Ryqpn"X;n"X £ projection of the spacetime cur-
vature tensor R

n yayKab

pavp’

=(R 1, (1) — KK (%)) . (A1)
In terms of the variational derivatives,®
(8K, (x;X]/8X7(x"))n¥(x";X]
=(R 415(x)—K{(x)K 4 (x))8(x,x")—D,D,8(x,x") .
(A2)

The extrinsic curvature is in its turn given by the normal
variational derivative of the metric:
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(88, (x;X]/8XY(x"Nn¥(x";X]=—2K,, (x)0(x,x") .

(3)

In a flat two-dimensional spacetlme, Eqgs. (A2) and (A3)
reduce to

(8K, (x)/8X%x"))n*x")
=—K(x)K;(x)8;(x,x")—D ;D 8;(x,x") (A4)

and

(8,1 (x)/8X%x")Inx")=—2K,1(x)8;(x,x") . (A5

From them we obtain the form of the Mainardi equation
which is most useful for our purposes: namely,

(8g1(x)K(x)/8X%x"NIn*“x") JAS(x,x")
(A6)

="g1(x

APPENDIX B: SPACETIME
AND SPATIAL 8 FUNCTIONS

The Poisson brackets of the null components of various
spacetime tensors in the Heisenberg picture yield the &
functions 8( T —T™") of the null coordinates or their 3,
derivatives. When projecting these on a spatial embed-
ding we need to express the results in terms of the spatial
6 functions &8(x,x’) and their spatial derivatives. We
give a sequence of identities which help us to deal with
this problem.

First of all,
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81(x,x ) =8(TH(x)—TE(x"NET* ((x")).  (BI)

We can verify this identity by smearmg it by a scalar
functlon N(T*(x')) and changing the x ! 1ntegrat10n into
a TF integration [the =+ sign comes in because
TH(x'=+7)=Txm, but T (x'=+7)=T F 7).

By differentiating Eq. (B1) we obtain

81,1(,x")=8 ((TH(x)—THx")INET* |(x)T* 1(x") .

(B2)

To differentiate further and preserve the spatial covari-
ance of the formulas we must use covariant derivatives.
In case of the 8(T*(x)—T*(x’)) functions it is advanta-
geous to use the D) | derivatives. When applied to a
density (a covector),
(T* ((x)7ID® D) 8,(x,x")

=8 + . (TH(x —T—(x'))(iTi,,(x)Ti,y(x')) . (B3)

The process can easily be continued. Thus, for the third
derivative,

(T* [(x)"AD™F )% ,(x,x")

:&iii(Ti(x)—Ti(x'))(:l:Tiyl(x)Ti,y(x')) .

(B4)

This is the Schwinger term which appears in the commu-
tator of the null components of the energy-momentum
tensor.
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