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Double-cascade scheme for QCD jets in e e annihilation
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We propose a new scheme for a QCD cascade model in the lightlike axial gauge. In this new
scheme the valence antiquark can evolve as well as the valence quark, while in the conventional
scheme with the lightlike axial gauge only the valence quark evolves. Since the proposed scheme is
formulated in terms of well-defined variables, we can apply this scheme to the next-to-leading-
logarithmic model in e+e annihilation. We show that new and conventional schemes give us the
same results for energy distributions of the quark and for emission probabilities for gluons.

I. INTRODUCTION

In previous papers' we developed the QCD cascade
model that includes the full next-to-leading-logarithmic
(NLL} correction in e+e annihilation. Since in this
model we use the lightlike axial gauge where the gauge
vector is parallel to the momentum of the valence anti-
quark, it does not emit any collinear gluons. Because of
asymmetric treatments for quarks and antiquarks, there
were slight differences between energy or transverse-
momentum distributions for the valence quark and anti-
quark. In order to correct this unfavorable characteristic
of the model we propose a new scheme where the valence
antiquarks can evolve as well as the valence quark. We
call the new scheme a double-cascade scheme while the
old one is called a single-cascade scheme. In this double-
cascade scheme it is possible to treat cascades of quarks
and antiquarks symmetrically.

In e+e annihilation the consistent treatment of quark
and antiquark jets has been a difficult problem. In the
lightlike axial gauge an asymmetric treatment is re-
quired though it is consistent kinematically. On the oth-
er hand, in the timelike axial gauge kinematical con-
straints for energy fraction depend strongly on detailed
description of models so that consistency for two jets is
not clear. Another model was presented by Marchesini
and Webber, who adopted angular variables instead of
the virtual mass. Because of this variable it is possible to
separate two jets in kinematically consistent manner.
The angular variable, however, introduces another prob-
lem; since it is not manifestly Lorentz invariant, the total
energy of the system cannot be determined until all cas-
cades finish completely. This fact is not favorable from a
practical point of view. In addition, it is difficult to ex-
tend the model with the angular variable to the NLL ap-
proximation because virtual masses must be given
definitely in this approximation. To keep the virtual
masses throughout the cascade we adopted the lightlike
axial gauge in the construction of the NLL model. '

In the single-cascade scheme the reason for no cascade

of the valence antiquark is simple. In the cross section
for three jets qqG only two variables are left after in-
tegrating the cross section over angles around the beam
axis. The remaining variables are energy fractions for the
quark and antiquark in the center-of-mass system. In the
cascade model we have two variables, the virtual mass
and the light-cone variable, at one branching, so that if
they are given in the first branching, the energy of the an-
tiquark is determined as well as that of the quark. There-
fore it is impossible for both quark and antiquark to
evolve independently.

If the gauge vector is taken to be parallel to the
momentum of the valence antiquark, energy distributions
of the valence quark are correctly given by the single-
cascade scheme. An essential point of the double-cascade
scheme is that the quark distributions will be obtained
correctly even if one restricts the kinematical region of
the variables in the cascade. By this restriction we can
make the quark and the antiquark evolve independently.
In other words the models in the single- and double-
cascade schemes give the same distributions for the
valence quark. This equivalence will be discussed
theoretically and be shown by Monte Carlo data.

Since the double-cascade scheme is formulated in terms
of the well-defined variables, it is easy to include the NLL
corrections in this scheme. In this point our scheme
should be distinguished from the other methods that have
been presented.

In the next section we will present discussions which
lead to the double-cascade scheme and a detailed descrip-
tion for it. Also we will show that the single-cascade and
double-cascade schemes give us the same results for prob-
abilities that gluons are emitted from the valence quark
and antiquark. This equivalence will be also discussed in
Appendix A for moments of the inclusive cross section
for valence quark. In Sec. III we will discuss the applica-
tion of the double-cascade scheme to the NLL model.
Here we would like to point out an improvement on a
treatment of hard scattering in the NLL model. Also
some results of our model will be given. The last section
is devoted to a discussion and conclusion.
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II. DOUBLE-CASCAPE SCHEME

xt &@=
2
0 x&1 and t(1.

Also we use the transverse momentum squared as the ar-
gument of cz, so that

a, =a, (xtQ )

for small x and t. Therefore we can see that the most
singular part (1) is unchanged if t and x are interchanged.

A next observation is that for the three jets (qqG) ener-

gy fractions x,x for quark and antiquark in the center-q7 q
of-mass system are

x =1—t, xq =1—x +tx —1 —x
q

For small x and t, x (t) corresponds to the energy fraction
of the quark (antiquark). Therefore in the single-cascade
scheme, t and x play roles of the fractions of the light
cone and the virtual mass squared for the antiquark, re-
spectively. From this argument it is clearly understood
that in the single-cascade model the energy distribution
for the valence antiquark can show correct behavior as
the energy fraction goes to one.

To understand the roles of t and x in the lightlike axial
gauge it is useful to calculate a one-loop diagram (Fig. 1)
in this gauge. In Fig. 1 the gauge vector n equals the
momentum of the antiquark p . This diagra~ does not

We make several discussions for the double-cascade
scheme in e+e annihilation. The first observation is
that the most singular part of the probability for gluon
emission from the quark in the order of e, is symmetric
on the fraction of the virtual mass squared and the light-
cone variable. It is

«. dt dx
3~ t x

Here t is a fraction of virtual mass squared, E /Q,
where Q is the total energy squared and x is a fraction of
the light-cone variable for the gluon. ' In the lightlike ax-
ial gauge there is a simple constraint between t and x. If
Qo is a minimum virtual mass squared of partons and
small enough compared with Q, the constraint is

contain any singular contribution with t, but does contain
contributions of dx Ix, where t =2p~ k/Q and

2p k (p +k)
n Q 2p Q 2p. Q

Although it is usually said that dx /x is infrared singular-
ity, this is not true in this case. Because the infrared
singularity implies that both x and t become zero as the
gluon momentum k becomes zero, but the singularity of
Fig. 1 occurs for finite t. Therefore one should consider
this singularity as the collinear one.

In the single-cascade scheme one sums all order of
[a,ln(1/t)]" terms using the renormalization-group equa-
tion. More precisely the contribution is of the form

4 a
ln

3
1

ln —+finite x
x

n

Here c =—', po with po= 11—2NF/3. NF is the number of
fiavors. This behavior is obtained only if the transverse
momentum squared is used as the argument of a, .
Furthermore if one wants to sum collinear singularities
for the valence antiquark, one must include all order of
[a,ln(1/x)(finite t )]"terms.

Summarizing the above arguments, if one uses
a, dt dx/tx in the full kinematical region, a single cas-
cade for a quark or antiquark is enough to give the
correct energy distribution for both the quark and anti-
quark at least in xq(x )~1. We would like to divide this

q
behavior into contributions by the quark and antiquark
cascades. For this purpose we present a trivial identity:
that is,

One should note that even in the single-cascade scheme
we have a precise energy distribution for the antiquark as
x ~1. The energy of the valence antiquark is deter-
mined by a virtual mass squared in the first branching of
the valence quark; that is, x =1—t. Then it is easy to

q
calculate the branching probability Hz for small t:

1 do.
=11~(t =1—x ),0 dx

q

—1+cIlnIln(Q /A )/ln(QO/A )jI
oc t

FIG. 1. A Feynman diagram for qqG. The gauge vector is
parallel to the momentum of the antiquark. Momenta of quark,
antiquark, and gluon are p~, p, and k, respectively.

(1)= 8(x t)+ —0(t —x) . (2)
3m t x 3m t x

The first term with Wx t) is used for the casc—ade of the
valence quark while the second one with 0(t —x) is for
the cascade of the valence antiquark. This separation is
well understood if one considers the Dalitz plane with the
energy of the quark and the antiquark for the qqG event
(Fig. 2). For E )E~ the event is generated by the quark
cascade, while for E &F. the event is generated by the

q
antiquark cascade. Therefore this treatment is theoreti-
cally consistent for qqG, i.e., for events with one branch-
ing.

We apply the constraint the constraint 8(x —t) in any
branching of the quark. By using this constraint the anti-
quark also evolves independently. In the double-cascade
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2a, (tx(1 —x)Q ) dt 1+(1—x)
dx 0(x t—),3' X

(3)

in the leading-logarithmic (LL) approximation. Also we
show the argument of n, explicitly. The difference be-
tween probabilities in single-cascade and double-cascade

I

scheme the branching probability for the quark and the
antiquark cascades is

schemes is of order n, so that this can be included in a
consistent way in the NLL approximation using the
scheme dependence. This point will be discussed in Ap-
pendix B.

Next, we will show that the single-cascade and the
double-cascade schemes give us the same probability P„
for emission of n gluons from the quark and the anti-
quark in the LL approximation. For simplicity a, is
fixed. In the single-cascade scheme,

n

n —t 1 1f dt, —f dx, 0(x, t, —e) . J dt„ f dx„0(x„t„E)
377 1 n Xn

4a,
377

n

1 1 1 1 1f dt f—dx 0(x—t —e)
nt t X

n

Here the Altarelli-Parisi function

1+(1—x)px=
is approximated by 2/x. Then we use the trivial identity (2):

Pn=
n m

f dt f dx —0(xt e—)0(t ——x)
X

m

dt, — dx, 0(x, t, —e)0(x) t, )—
1 Xl

4~ n 1 1 1 1f dt f dx—0(xt——e)0(x t)—
3qr o m!(n —m)! t x

(n —mj

4a,
X 3'

n —m

tn —I

X f dt f dx 0(x t —e)0(x t )—
t X

1

dx, dt, —0(x, t, —e)0(t) —x, )
1 1

xf"
Xn —m

f 'dt„ 1 0(x„ t„e)0(t„——x„). (5)

The first factor is realized in the quark cascade while the latter is in the antiquark cascade. As a result the probability
for n-gluon emission ip the single-cascade scheme is equal to the sum of the products of probabilities, P' ' and P„' ' for
quark jet and antiquark jet, where the total number of emitted gluons is n:

p y p(q)p(q)
m =0

This equation shows that the correct Sudakov form factors in the double-cascade scheme can be obtained. The Su-
dakov form factor is the nonemission probability for the one jet. In the single-cascade scheme it should be the product
of form factors for the double-cascade scheme. In the former approach it is

single p
2 dtf fdxa, (tx(1 —x)Q )

2 1+(1—x) 0(xt —e)
3m t X

while the form factor in the double-cascade scheme is given by

Sd,„b„=exp — f fdxa, (tx(1 —x)Q } 0(xt —E)0(x —t)2 dt z 1+(1—x)

It is easily shown that the leading term of S,.;„„is equal to that of [Sd,„b„]. In Appendix A we will show that mo-
ments of the inclusive cross section for quark are the same in the single- and double-cascade schemes.

III. NLL MODEL

When we apply the double-cascade scheme to the NLL model we can solve a problem on the infrared singularity for
the hard cross section. First we will explain this problem. In the NLL model we use the fixed-order cross section of a,
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order for generation of clean three jets. This cross section is

1 der''' 2o 1 1+(1—x) x (1 —x) —1 2 1+x+2t +t2
o-~0) dx dt 3' t X X X

(10)

where r =pT/x (1—x)Q . For a definition of clean three jets, pT is larger than x (1 —x)5Q, i.e., t )5. However this
cross section has the infrared singularity as x goes to zero. Then total cross sections for the clean three jets is

1 do'" 2~. 1 Q 2 1 3 1
dt dx = 2ln — —2(1 —5)+ —,'(1 —5 ) ln —ln — ——In — +3+0(5) . .o'0' dx dr 3m 5 g02 5 2 5

This shows that we could not choose a small Qo at a very
high energy. This di%culty forced us to tune parameter 6
for various g in Ref. 1.

When we construct the NLL model in the double-
cascade scheme, the above problem does not exist. In the
double-cascade scheme the singularity for x ~0 is includ-
ed in the cascade of the valence antiquark. Therefore x
should be larger than 5. As a result the total cross sec-
tion for clean three jets is given by

IV. CGNCI. USIGN

In this paper we proposed the double-cascade scheme
for QCD jets in the lightlike gauge, then applied it to the
NLL model in e+e annihilation. In this scheme the
valence antiquark evolves as well as the valence quark.

xE Distribution (Valence Quark and Antiquark)

1 do'" 2~s 1dt dx 2ln ——3lno'0' dx dt 3w 6

5 I I I

(
I I I I

[

I I I I
)

I I I I

[

I f 1 i

2

+—+O(5) . (11)
3 2

Since the cross section is finite for any Qo and g, we do
not need to worry about the tuning.

In Fig. 3 we present results of our new Monte Carlo
model including the NLL correction, based on the
double-cascade scheme for e+e annihilation. One can
find almost perfectly symmetric distributions for quarks
and antiquarks. It is interesting to make a comparison
between energy distributions of the valence quark in the
single-cascade and the double-cascade schemes. Figure 4
shows almost the same results for them, which shows the
equivalence between two schemes for quark distributions.

0.2 0.4 0.6 0.8

1.00 I I I l

I

I I I I

I

t

pT Distribution ( Quark and Antiquark )

0.50

0.10

0.01
0 2.5 5 7.5

pT (GeV)
10 12.5 15

FIG. 2. The Dalitz plane for qqG events. Events in hatched
area are generated by the branching of the quark, while events
in another area are done by the branching of the antiquark.
Here we assume that three partons are massless.

=2E /+Q, x =2E /v Q . E (E~) is the energy of the
quark (antiquark) in the c.m. frame.

FICz. 3. The quark (solid line) and the antiquark (diamond)
distributions. Results of the Monte Carlo simulation are ob-
tained by the following parameters: Q =(100 GeV), A M0s. 2
CieV (MS denotes the modified minimal-subtraction scheme),
Qo= 1 GeV', NF=4, and 5=0.05. (a) Energy distributions.
Here xE =2E/t Q'. Here E is the energy of the valence quark
or antiquark in the c.m. frame. (b) Distributions of transverse
momentum. It is defined with respect to the thrust axis.
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This scheme enables us to separate the quark and anti-
quark jets and to treat them symmetrically. We show the
equivalence between the new scheme and the old one for
the moment of the inclusive cross section and the proba-
bility of gluon emission from the valence quark and the
valence antiquark. By the double-cascade scheme in the
NLL model we solved the infrared problem in the hard
cross section, which required us to tune a parameter in a
previous work. '

5
XE Distribution (Valence Quark )
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APPENDIX A

In this appendix we will show equivalence between the
single-cascade and double-cascade schemes for the mo-
ment of the inclusive cross section for the valence quark.
Here we confine ourselves to the leading behavior and
neglect K dependence of a, . In the single-cascade
scheme the moment is an exponential function of
I(NQ ):

0
0 0.2

xE
0.6 0.8

N —1

I(N, Q )-I, (N, Q )= —ln — g —+O(e)
x=& +

(A6)

FICi. 4. Energy distributions for the valence quark in the
single-cascade and double-cascade schemes. In the former
scheme data are the same as that of Fig. 12 in Ref. 1, which is
denoted by a dashed line. Data for the double-cascade scheme
is shown by a line. Monte Carlo data are obtained by the fol-
lowing parameters: g =(100 GeV}', AMs=0. 2 CseV, Q„'=4
GeV, and N~-=4. 6=0.05 for the double-cascade scheme,
while 6 =0.25 for the single-cascade scheme. Also
xg =2E/+g .

4cz,
M(N, Q )=exp I(N, Q )

37'
and

I2(N, Q }=O(e) . (A7)

I(N, Q )=f f [(1—x) ' —l]8(xt e), —
t x

(A2)

For large N,

I(N, Q2)- —lnN ln
1

e&N
(A8)

where e=Qo/Q2. We would like to study its correspon-
dence in the double-cascade scheme. First we will
present two functions I, (N, Q ) and Iz(N, Q ):

On the other hand there are two cases for (A3) and (A4).
In the first case (N & I /Ve),

I, (N, Q )-—lnN ln
1

eN
(A9)

I (N, Q')= f ' f [(1—x) ' —1]8(xt —e)8(x t), —
t x

I2(N, Q }——
—,'ln N . (A 10)

I2(N, Q') =f f [(1—x) ' —1]B(xt e)8(t —x) . —
t x

(A4)

In this case Iz has no Q dependence, so that it does not
contribute to the moment. In the second case
(N ) I /&e),

Of course,
I, (N, Q )- ——'In] 7 4 (A 1 1)

I(N, Q )=It(N, Q )+I2(N, Q ) . (A5) I~(N, Q )- —lnN ln
1

e&N
+-,'ln (A12)

Next we will present explicit expressions of these func-
tions, (A2), (A3), and (A4). For N not large, If in the double-cascade scheme the moment for the
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quark is given only by I, (N, Q ), we could not obtain a
correct one for large X. For this case one has to include
effects due to the virtual mass squared K of the anti-
quark that first decayed. From simple kinematical con-
sideration the energy fraction x for the quark has
changed into x (1 —K /Q ). Then the moment

2
q

M (N, Q ) is the product of the following parts:

This moment should correspond to exp[I2(N, Q )]. Ac-
tually, if one notices that (1—t) can be approximated by
8(1/N —t) for large N, it is easy to check this correspon-
dence.

As a result we show the equivalence between the
single-cascade and the double-cascade schemes for the
moment of valence quarks.

M (N, Q )=Mi(N, Q )M2(N, Q ), (A13)

4a,
M, (N, Q )=exp I, (N, Q )

M, (N, Q')= f 'dt(1 —t) -'11,(t), (A15)

where M2 (N, Q ) is calculated from the branching proba-
bility IIti(t):

APPENDIX 8

In this appendix we will give a difference between P
functions in single-cascade and double-cascade schemes.
First we present it in the LL order.

In the single-cascade scheme the cross section for three
jets is given by

d II~ti(t)
11,(t) =

dt

II~ti(t)
(A16) J„„„=Cf f [1+(1 x) ]8—(xt —e ), (81)

o t o x

=exp
4&

& dt' dx'
, Ox't' —e 0 x' —t'

371 f t x

where C =2a, /3n. . While in the double-cascade scheme
we use

J~,„b„=Cf f [1+(1 x) ]8(xt e)—8(x ——t)+C f f [1+(1 t) ]8(xt —e—)8(t —x) .
o t o x o x o t

Then

(82)

b,J =J„„s„—J~,„b„=—C f dx
1

(2 —x)ln
x

3 x+2——
2x 2

(83)

This is the NLL correction.
In the NLL model' using the double-cascade scheme we use a fixed-order cross section (9) for x and t that is larger

than 5; that is,

1 I+(1—x) x (1—x)—1 ~ 1+x+2t +t2
s s i x x x

(84)

On the other hand the cross section of the erst cascade is

J',„„=Cf f [1+(1—x) ]8(xt —e)8(x t)+C f f —[1+(1—t) ]8(xt e)8(t —x) .—~dt & dx 2 5dx I dt 2

o t o x o x o t
(85)

Then the cross section for three jets is given by the sum of J3 and Jz,„&&,. Therefore the difference between J„„~,in
(Bl) and this sum is presented here:

b J'=J„„),—(J3+Jq,„b(, ) .

As a result we change hC in (A21) of Ref. 1 by

(86)

(87)

where

dhJ' 3
Qx 2x

3x 1 5 1—2+ +26 1 —x ——+ — —+x
2 x 2 x

8(x —5)+ ( —2+x)ln —+ —2+ —8(5—x) .
1 3 x
x 2x 2
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