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We study the cosmological consequences of spontaneous breaking of an approximate discrete
symmetry. The breaking leads to the formation of protodomains of false and true vacuums separat-
ed by domain walls of thicknesses determined by the mass scale of the model. The cosmological
evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are
possible, depending on the interplay between the surface tension on the walls and the volume pres-
sure from the biasing. Walls may disappear almost immediately after they form, or may live long
enough to dominate the energy density of the Universe and cause power-law inflation. We obtain
limits on the biasing that characterize each possible scenario.

I. INTRODUCTION

It has been known for some time that spontaneous
breaking of a discrete symmetry leads to the formation of
surfacelike topological defects called domain walls. '

These two-dimensional structures are stable if the vacu-
um manifold determined by the interaction potential is
topologically nontrivial in the sense that it is defined by
disconnected points related to discrete, degenerate
ground states of the theory. Once the field settles into
one of the possible ground states of the theory (i.e., a
point in the vacuum manifold) it cannot continuously be
transformed into another point in the vacuum manifold.
The transition region between degenerate ground states is
the domain wall. In the rest of this section we very
briefly review these ideas.

The appearance of walls in a theory with discrete sym-
metry breaking can be very easily understood with a sim-
ple model. Consider a real scalar field a with Lagrangian
density

,'(B„cr ) ——(o c—ro)—2

The Z2 symmetry of the Lagrangian is broken when cr

obtains a vacuum expectation value cr =+o.o or —o.o.
The transition region between the two possible vacuum
values for cr defines the domain wall.

Domain walls can be described by the solutions to the
equation of motion obtained from the Lagrangian of Eq.
(l):

g" cr „+A.cr(o —oo) =O.

Imagine an infinite wall in the y-z plane at x=0. The
solution with boundary conditions o.= —o.

o at x = —~,
and o.= +o.

o at x = + ~, is simply

cr(x) =o.otanh(x/b, )

with 6—= (A/2)'r , cro ' defined as the "thickness" of the
wall. Balance between the potential energy that tends to
make the wall thinner, and the gradient term that tends
to make the wail thicker, gives rise to the finite thickness
of the wail separating regions of different vacua.

The stress tensor for the wall, T„=—
B&o B o

is

T" =—o.ocosh (x/6)diag(l, o, l, l) .4 4

From T" we can define the surface tension of the wall,
i.e., the energy per unit area in the rest frame of the wall,

l"—f T odx = f —,'(Vo ) + (o —cro) —dx,2 ~ 2 22

which is given by

g1/2 32~2
P — Oo

Since Lee's model for CP violation of the early 1970s,
there have been many models where the presence of a
real scalar field with quartic self-interaction leads to the
spontaneous breaking of a discrete symmetry. For exam-
ple, axion models which have been proposed as a solution
to the strong CP problem in QCD have a spontaneously
broken Z& that generates discrete degenerate vacua.
We mention these two models because they were particu-
larly important to the development of research on the
role of topological defects in cosmology.

The first effort to understand the cosmological effects
of spontaneous breaking of a discrete symmetry was the
work by Zel'dovich, Kobzarev, and Okun. " They out-
lined most of the details for the cosmological evolution of
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a universe filled with walls in the case of degenerate va-
cua. Their conclusions were quite dramatic: The wall
contribution to the energy density of the Universe will
quickly overpower the radiation contribution, causing a
period of power-law infiation (of course, their work pre-
dated the proposal of infiation) with the scale factor go-
ing as R (t)-t . An expansion rate that fast would leave
less time for galaxy formation and change the production
rates during nucleosynthesis. Also, the presence of a wall
in the observable Universe would cause distortions in the
cosmic microwave background that would violate the
present limits on its homogeneity and isotropy, unless the
wall's gravitational red-shift is safely below the detectable
limit of 6T/T ~ 10 . These limits imply an upper
bound on the surface tension p ~ 10 '

g cm or
A,

'~ o0510 GeV (Ref. 4). Thus, unless these limits
could be satisfied (or somehow walls disappear early
enough in the cosmological expansion), models with
discrete symmetry breaking are ruled out by cosmology.

As the above limit on the scale for symmetry breaking
seems very restrictive from the particle-physics side, at-
tention turned to the other way to accommodate walls;
namely, to have them exist for only a brief period. In
fact, Zel'dovich, Kobzarev, and Okun suggested that if
the discrete symmetry was not exact, the energy
difference between the two vacua would cause the false-
vacuum regions to disappear, possibly before the walls
could dominate the energy density of the Universe. This
same idea was mentioned in the works of Kibble, Vilen-
kin, and Sikivie. A small bias favoring one vacuum
over the other (or others) can indeed make the walls go
away. In Refs. 6 and 7 a lower bound for the asymmetry
was obtained based upon the requirement that the walls
should disappear before they dominate the cosmological
evolution. Nevertheless, as we will point out in this
work, the dynamics of the walls subject to both the usual
tension force due to curvature and to the volume pressure
due to the biasing is much richer than it has formerly
been appreciated. The two forces will clearly compete
with each other, with the resulting wall dynamics ex-
tremely sensitive to the magnitude of the bias. We will
study in detail the cosmological consequences of the
breaking of an approximate discrete symmetry (a
"quasisymmetry").

Different scenarios we consider may also be of
relevance in the case of hybrid topological structures
such as walls bounded by strings, ' or in the recently
developed scenario for formation of nontopological soli-
tons (NTS's). The case of NTS's is particularly interest-
ing; the real scalar field that gives rise to the walls cou-
ples to a complex scalar field (or a fermion field) that car-
ries a conserved global charge in such a way as possibly
to allow for a small violation of the discrete symmetry (in
fact it is demanded in the model of Ref. 8). In the false
vacuum (the NTS interior) the complex scalar field is
massless while in the true vacuum it is massive. The two
regions are separated by a domain wall of thickness set by
the mass of the real scalar field.

Because of the many possible situations of interest, we
will not analyze any particular model. We will try, in-
stead, to keep our results as general as possible. In Fig. 1

0
—3

FIG. 1. The zero-temperature potential for nondegenerate
vacua. e, the asymmetry parameter, is in general a function of
temperature and of different couplings in the model.

we show the general shape of the potential that we will
consider. More details about the general model are given
in Sec. III.

The paper is organized as follows. In Sec. II we devel-
op the kinematics of walls by considering a perfect gas of
walls moving with an average velocity w in a box of
volume V. We will obtain a velocity-dependent equation
of state for the wall gas. Next, by assuming that the ener-
gy density of the Universe is dominated by the wall gas,
we will obtain the velocity-dependent law of cosmological
expansion. In particular, we will show that the max-
imum wall velocity that results in power-law inAation is
w = I /V 3, the sound speed in a relativistic gas. This sec-
tion can be read quite independently from the rest of the
paper. In Sec. III we will describe the formation of walls
in a primordial phase transition in the presence of bias-
ing. The dynamics of walls will be studied in Secs. IV
and V assuming, in Sec. IV, that the volume pressure acts
before the tension force can stretch the walls to the hor-
izon scale, and, in Sec. V, assuming the biasing is small
enough to allow the tension force to straighten walls to
the horizon scale. In the second case, walls may dom-
inate the energy density of the Universe, and cause a
power-law inAation. Finally, in Sec. VI we will review
our results and discuss possible future directions for fur-
ther work.

II. KINEMATICS OF WALLS AND EVOLUTION
OF A WALL-DOMINATED UNIVERSE

In this section we obtain the equation of state for a per-
fect gas of walls moving with average velocity w inside a
box of volume V &)6, where 6 was defined in the Intro-
duction as the wall's thickness. The perfect-gas assump-
tion means that we will neglect possible dissipative effects
that may come from interactions between walls.

Consider N walls in the y-z plane, moving in the x
direction with average velocity w. Each wall's position is



1560 GELMINI, GLEISER, AND KOLB 39

The tensor S„can be understood as the average energy-
momentum surface density of the walls. For example,
Soo =p, where p is the surface tension of the walls defined
in Eq. (5). It should not be confused with the spacetime
index p. Thus, the wall energy-density is given by
p = &T &=—p, /&L&.

The walls will be moving with average velocity w in the
+x direction with respect to an observer at rest with the
box. Accordingly, the tangential components of S„(i.e.,
Sz2 and S33) will not be affected by the wall's motion.
The same cannot be said of the other components. Upon
Lorentz transformation, S„ for an observer at rest is

0yp ypw 0

ypw ypw 0
0 0
0 0

0
—p 0
0 —p

where y—= (1—w )
'~ as usual. Of course, there will be

walls moving in the —x direction as well. Once we aver-
age the two directions, the off-diagonal terms disappear.
In the most general case, the same procedure must be re-
peated for the +y and for the +z directions. The final re-
sult for the average energy-momentum tensor for a gas of
walls moving with velocity w with respect to an observer
at rest is then

3y 0
0 (u) y —2)

3(L) 0 0
0 0

0
((o'y' —2)

0

0
0

(u) y —2)

(10)

Defining the energy density as p~:—( Too) and the pres-
sure as p)1,—:( T,, ), the equation of state for the wall gas
becomes

w y 2
pw 2 pw

3y

We point out three cases of interest. For w relativistic
(w —1, y ))1), p)3, =p11,/3, and the walls behave like a
relativistic gas; for w nonrelativistic (w -0, y —1),
pw= —2pw/3, which is the well-known result for static

described by the point x, with the index i running from I
to N. If there are many walls inside the box such that the
average wall separation is much smaller than the linear
dimensions of the box, we can write an average energy-
momentum tensor for the N walls as

f dx f (x)T„(x)
( T„.) f dx f(x)

where f (x) is the distribution function for the walls,jf (x)dx =¹If (L ) is the average wall separation, we
can approximate ( T„)as

(g)

walls; and finally, for w =0.82 (u) y =2), p~ =0, and the
walls behave as pressureless matter. Thus, for w ~0.82
the gas of waHs will contribute positive pressure to the
energy-momentum tensor.

Once we have the equation of state for the wall gas, it
is natural to ask how the evolution of a Universe filled
with walls scales with the velocity of the walls. For sim-
plicity we take the Aat Robertson-Walker metric as the
spacetirne metric, ds = dt —+R (t) (dx +dy +dz )

With this metric, and the equation of state given by Eq.
(11), the energy-momentum-conservation equation,
d(p)1 R )= —p)1,d(R ), can be integrated to give

w 2
(R ) R

—3(1+ )
pw 7

3y 2
(12)

The equation that governs cosmological evolution,
(R /R) =(SING/3)p)1, , can be integrated using Eq. (12) to
give

R (t) t2/3(a+1) (13)

The three cases of interest. mentioned above will clearly
correspond to the well-known solutions R —t ' for
(x

3
R —t for a = ——'„and R —t for a =0

Notice that for walls moving slowly enough, there may
be a power-law inAation whenever the scale factor ex-
pands faster than t. It is easy to verify from Eq. (13) that
the upper limit for the wall speed in order to have
infiation is u) = I/3/3, the speed of sound for a relativistic
gas.

Before we move on to discuss the formation of walls,
we would like to comment on the motion of walls in the
presence of two fluids that may have (and do in most
cases of interest) different "chemistry. " In this case only
the vacuum contributes- to the energy density of the
Universe, the volume pressure accelerates the walls to c
(c is the velocity of light in Uacuo). The important point
is that walls that are accelerated due to the difference in
vacuum energy between the two sides may achieve a ter-
minal velocity smaller than c in case there is radiation or
nonrelativistic particles on both sides. As discussed in
the work of Steinhardt, this velocity is, however, larger
than I/3/3 in most cases.

Steinhardt has considered the motion of accelerated
plane walls in the presence of two Auids, relativistic or
not, at different temperatures on both sides of the wall.
Only when the temperature of the Auid in the false vacu-
um is zero will the walls be accelerated to c. Using the
language of "detonation waves, " the wall can be under-
stood as a wave front separating the burnt Auid, i.e., the
true vacuum at the back of the wall, and the unburnt
Auid, i.e., the false vacuum in front of the wall. The
equivalent of the chemical energy stored in the unburnt
Auid in a usual detonation is then the vacuum energy
stored in the false vacuum. As the wave front propa-
gates, it converts the false vacuum into a true vacuum,
with the energy difference being used to further ac-
celerate the wall and to heat up the Auid left behind. The
wall drags with it the Auid just burnt, which will not be at
rest with respect to the Universe, contrary to the
thermalized Auid further away from the wall. Because
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the velocity of the wall with respect to the Auid immedi-
ately in front of it turns out to be larger than the speed of
sound in the unburnt Auid, a point in the unburnt Auid
cannot be perturbed by the wall until the wali passes by
it. Thus, the unburnt Auid is at rest with respect to the
cosmic rest frame.

Steinhardt gives the velocity of the wall with respect to
the unburnt Auid in contact with it, which is precisely the
wall velocity cu that appeared in the equations above.
The terminal velocity of the wall is in general larger or
equal to 1/&3; this is the smaller possible velocity in the
case that both fluids are relativistic. When the burnt
Auid is relativistic and the unburnt Auid is nonrelativistic
the minimum terminal velocity is even larger, co=/3/2.
In the opposite case of a nonrelativistic burnt, Auid and a
relativistic unburnt Auid the walls may move in the oppo-
site direction, towards the true minimum side, if the vac-
uum energy cannot compensate the thermal pressure of
the relativistic Auid in the false vacuum. This possibility
has been raised in Ref. 8, where it was shown that for
reasonable values of the couplings the thermal pressure is
dominated by the vacuum pressure, causing the wall to
move towards the false vacuum. Recall also that as the
Universe expands the thermal pressure becomes progres-
sively weaker, with the walls eventually reaching relativ-
istic speeds.

III. FORMATION OF WALLS

We now study the spontaneous breaking of an approxi-
mate discrete symmetry in the early Universe. First,
some comments about the potential shown in Fig. 1. For
the purpose of this paper, the exact way in which the
asymmetry appears is immaterial, so long as the energy
diC'erence between the two vacua can be written as
A =Eo 0 where e can be a function of coupling constants
and temperature. One example was given in Ref. 8. In
the limit e~O we recover the exact degeneracy of Eq. (1).
The parameter e is the dirnensionless asymmetry parame-
ter.

Of course, the potential of Fig. 1 is the zero-
temperature potential. It is only valid for temperatures
safely below the critical temperature for the phase transi-
tion, T„which can be calculated for a particular model.
For the hot big-bang model of the Universe, it is reason-
able to assume that temperatures higher than T, were
achieved su%ciently early in the cosmological expansion.
In this case one must use the temperature-corrected po-
tential. Let us consider the @=0 symmetric potential
written in Eq. (1). For T ))T„ it is well known that the
discrete symmetry will be restored and the potential will
have a minimum at o. =0. The details of the phase transi-
tion for the symmetric case and the consequent formation
of walls have been worked out by Kibble. Here we re-
peat some of his arguments so that we can compare them
to the asymmetric case. Most of the results for an ap-
proximate symmetry have been derived in Ref.8.

First, it is not difBcult to show that for the potential in
Eq. (1) the critical temperature is T, =2o.0. At zero tem-
perature the two possible ground states for cr are given by
o =+o.0. As the temperature approaches T„ thermal

Auctuations in the o. field become large, with regions rap-
idly (compared to the cosmological time scale) intercon-
verting between the two possible zero temperature values
for o. At high temperatures there is enough thermal en-
ergy in the system for the Auctuations to "jump over" the
potential barrier. [At T=O, the height of the potential
barrier is given by UM=(A, /4)oa. ] The typical volume
of a fiuctuation region is given by V&

=g, where g is the
correlation length, given approximately by the inverse
temperature-dependent mass of the o. field,
g( T)

—1 gl/2 ( 1 T2/T2)1/2 At T O g g
—1/2 —1

Below T, the transition rate between the two vacua is
proportional to exp( FM /—T), where FM is the free ener-

gy of the Auctuation, F~ = U~ X V&. As the temperature
decreases, the barrier between the two vacua increases
while the thermal energy that drives the Auctuations in
the o. field decreases. One can define the Ginzburg tem-
perature T& as being the temperature below which Auc-
tuations over the barrier will be exponentially suppressed
and the population in the two vacua will be frozen. If
one ignores the expansion of the Universe (in a more
complete treatment one should obtain TG by comparing
the thermal Auctuation rate I z- to the expansion rate of
the Universe H: I r-H, at T = TG ), the Ginzburg tem-
perature can be estimated to be TG = V&UM (Ref. 5). In
the case under consideration, TG =0 0( A, + 1/4) ' . Be-
cause of the perfect symmetry between the two vacua, the
probability for a Auctuation to end up at +o.0 or —o.0
clearly is 50%. Space will then be divided into cells of
volume approximately given by g, with walls separating
cells of positive and negative vacua. Of course, between
cells of the same vacuum there will not be a domain wall.
What will then be the general structure of space as the
phase transition is completed? This question has been
answered by studies of percolation in large lattices. ' It
has been shown that if the probability for, say a plus cell,
is bigger than a certain value p„an infinite (in an infinite
lattice) plus cluster appears, while if the probability is
smaller than p, only finite plus clusters appear. The
value for p„ the percolation threshold, varies with the
type of lattice considered, but in all three-dimensional
lattices is smaller than 50%. In the perfectly symmetric
case both vacua have probabilities above p, ; space will be
permeated by an infinite wall of very complicated topolo-
gy dividing regions of plus and minus vacuum. There
will also be small clusters but these will be exponentially
suppressed.

The introduction of a small bias will change slightly
the arguments above. For T &) T, the potential will still
have a parabolic shape but its minimum will not be exact-
ly at o.=0. Its location will depend on the details of the
model under consideration. Also, quantities such as p,
T„TG, and g will have corrections proportional to the
asymmetry parameter e. However, we will assume that
such corrections will not be very important due to the
smallness of e, and that it i.s a legitimate approximation
to take for these quantities the same values as in the e =0
case. The same cannot be said about the relative proba-
bility of having a fiuctuation end up in a plus cell (denot-
ed p+ ) or in a minus cell (denoted p ). The values for
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p+ and p are very sensitive to the energy difference be-
tween the two vacua, A=so. ~. As A increases, the false
vacuum, with larger free energy, becomes progressively
more improbable. In fact, for e sufticiently large, the
false vacuum may be below percolation threshold and
only the true vacuum will percolate. This situation was
analyzed previously in the context of the formation of
NTS's (Ref. 8) but will clearly not be of interest here; we
must ensure that both vacua percolate even though they
will have different populations. This will effectively put
an absolute upper bound on e which is obtained below.

As long as the system is in equilibrium, the relative
population of the two vacua is given by the Boltzmann
formula, p+ /p =exp( AF/T—), where b,F =AX V& is
the difference in the free energy between the two minima.
As explained above, these populations will be frozen as
the temperature drops below TG. Since TG —V&X UM,
for T (TG we obtain

p+ /p = exp( —A/UM ) =exp( —4e/A, ), (14)

Other values for p, would just change slightly the numer-
ical coeKcient in front of X without changing the linear
behavior of E=e(A, ). With this upper value satisfied, even
though the volume occupied by the true vacuum will be
larger than that occupied by the false vacuum, at the
completion of the phase transition space will be permeat-
ed by an infinite domain wall separating regions of plus
and minus vacua.

We conclude this section by calculating the energy
density in walls at formation, i.e., at T = TG. In the pre-
vious section we obtain the average energy density in
walls to be p ivp/(L ). We here give a more precise
derivation. The wall energy density pz, is proportional to
the surface tension p. The proportionality factor is just
the ratio between the area in walls over the volume:

,»/V. If we divide a space of volume V into X cubic
cells of volume g each, the probability of having a wall
between two cells is given by twice the probability of hav-
ing a plus cell p+ followed by a minus cell 1 —p+ =p
i.e., 2p(l —p). Clearly, this is also the ratio between the
area of the walls in the volume V to the area of all cell
boundaries in V, 2,» /3 „„l. In order to obtain

a»/V we must calculate the ratio A„tal/V, i.e., the ra-
tio between the total area of cell boundaries over the
volume. As we have N cells of volume g each, there
will be N —1 internal boundaries between any two cells
perpendicular to the x axis, each with area N g, the
same happening for the y and z axis. Thus, the total area
in cell boundaries (i.e., boundaries between two cells,

where the last result is obtained by taking A=E'cled and
UM=(A, /4)o. o. Notice that we are using the expression
for UM in the limit where @~0. This approximation is
valid as long as UM ))A, which is reasonable to expect
for small asymmetry. We can now obtain the upper limit
of e that results in percolation of both vacua. If one con-
siders a simple cubic lattice (which we will, as a working
model), p, =0.31 (Ref. 10). Thus, solving Eq. (14) for
p+ )0.31 one obtains

e(0.2A, .

where walls may appear if the vacua on both sides are
different) is A„„,=3(N —1)N g =3N g, where in the
last expression the large-X limit was assumed. The
desired ratio is then A„„i/V=3N g /(N() =3/g.
Thus,

~ wall

V

~ wall ~ total 3=—2p (1 —p) . (16)

Using the value of p obtained in Eq. (6), the approximate
value for the correlation length at TG, g(TG) =(Zoo)
and Eq. (16), we find for the density in walls at formation

p~(T G)=4&2p(1 p—)Acro . (17)

Thus, at TG, the ratio of energy density in walls and radi-
ation is [recall that pz =g, TG -g, o o(k+ 1/4), where

g, is the number of relativistic degrees of freedom at T~]

PR T= TG
p (1 —p)A, (A, + 1/4)

4&x
gg

g3/2
(18)

As is well known (see Refs. 4—7 and 11), the walls do not
dominate the energy density of the Universe at forma-
tion.

IV. DYNAMICS OF WALLS I: CONVOLUTED
STRUCTURES INSIDE THE HORIZON

As the walls are formed at TG, space will be filled by
the complicated wall structure described in the previous
section. Typically, the average wall separation (L ) and
the average curvature radius of the wall R will be of the
same order as the correlation length g(TG)=(A, oo)
The motion of the walls will be determined by two forces.

The first force is from the surface tension. Because of
the curvature the walls will feel a surface pressure that
acts to straighten them. So long as the wall curvature is
smaller than the horizon size, i.e., R ( A,~

Mplg +
' o.0, where Mpl is the Planck mass, this

straightening will be rapid compared to the age of the
Universe at that time. The surface pressure is given by
pT-p/R(t). At formation, pT-k ~ cro. If this was the
only force acting on walls, it would induce oscillations
of frequency v —g ', quickly accelerating the walls to rel-
ativistic speeds. Of course, the motion of walls will be
damped by radiation of particles and by the interactions
of walls with each other and with the medium. As they
evolve, the walls will become progressively Aatter and
slower up to the point where their curvature is of the
same order as the horizon scale. Note that this damping
mechanism is occurring on the scale of microphysics (we
assume that era«Mpi) and that the Ilattening of the
walls will take a negligible time compared to the cosmo-
logical time scale. (For the readers' convenience we in-
clude in Table I a complete list of all time scales used in
this paper. ) It is then easy to estimate the time when the
walls can dominate the energy density of the Universe
causing a power-law inflation (Refs. 4—6 and 11),
p~ g1/20-03/ )pR M2pl /t2 for t ) t f M2plg

—1/2o.
0
—3
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TABLE I. A time table for the different time scales defined in the text.

Time scale

tinf

pinch

teq

tend inf

Definition

=Mp1g*'"~o '
P1 OOM2 g

—1/2 —3

( g 1 /2~ )
—1/2 —1oo

(eo.o)

Time when . . .

walls are formed
walls dominate energy-density

of Universe
walls pinch off
walls reach terminal velocity w q

vacuum pressure dominates wall motion
wall-dominated inflation ends

[valid only for e(A, (o.o/Mp~l j

Let us call t;„f the time at which power-law expansion
starts and tG the time of wall formation, for which
T = TG. Thus their ratio is simply t;„r/tG -(g,' /

)(Mp~/oo). This result was the root of the domain-
wall problem; the walls would eventually dominate the
energy density of the Universe, causing a power-law
inflation and conflict with astrophysical observations as
explained in the Introduction. Walls had to disappear be-
fore t;„f or possibly some time not much larger than t;„f
(Ref. 11). In the present scenario though, the walls will
also suffer the influence of the volume pressure due to the
asymmetry. The dynamics will be quite different.

The second force is a volume pressure on the waHs due
to the energy difference between the two vacua, pz-ea. o.
This pressure will accelerate the walls against the false-
vacuum regions, rapidly converting the false vacuum into
a true vacuum. The energy released in the process fuels
the wall motion. The process is very similar to the prop-
agation of relativistic detonation waves analyzed by
Steinhardt. The wall will reach some terminal velocity
w, that will be dependent on the type of matter on both
sides of the wall. (This is the wall velocity discussed in
Sec. II. The subscript "eq" was included now for clarity. )

For example, the wall may be converting regions where a
gauge symmetry is unbroken into a broken symmetry
phase by giving mass to a certain particle, or the wall

may be moving between relativistic fluids with different
chemistry. The dynamics of the walls will be very sensi-
tive to both the pressure and the tension forces; the exact
treatment being out of the scope of this work.

The dynamics of the wall system will be examined in
the various possible regimes that will depend upon when
and which of the two forces dominate.

It is clear that the initial dynamics of the walls will de-
pend on the balance between the two forces at formation.
From the above, the ratio between the two pressures at
t =tG is

(19)
pT

There will be two possible regimes. For pv&pT (i.e.,
g~ g3~2), the volume pressure will dominate the motion
of the walls from the moment they are formed; for
pz(pT (i.e., e(A, ~ ), the tension will dominate the
motion of the walls initially. Let us call these two re-
gimes A and 8, respectively. Case 8 can be further divid-
ed in two subcases, depending on whether the volume
pressure acts on the walls before or after the tension has
straightened them to the horizon scale. We ca11 these
two cases 8.1 and 8.2, respectively. Case 8.2 is quite in-
volved and will be treated separately in the next section.
We proceed here to treat cases A and 8.1, when the wall

TABLE II. A table of scenarios considered in the text. Recall that for formation of infinite walls,
e (0.2A, .

Case

B.1

B.2.1

B.2.2

Scenario

Volume pressure dominates
initially. Walls disappear
very fast (t, « tG).
Tension force dominates
initially but cannot straighten
walls up to horizon scale
(t, & tG).
Walls are curved on a horizon scale
but cannot dominate energy density
(t, & t;„f).
Walls dominate energy-density
causing power-law inflation
before disappearing
(t, ) t;n, ).

Bounds on asymmetry

)e) (A,g )' (pro/Mpl)

6 (A, 6 & (Agg ) (Cro/Mpl )

6) A ( Cr Q /M p1 )

(A3/2. 6 ( (Ag )1/2(o. /M ).
6 (k(o o/Mpl )
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is still convoluted inside the horizon when p~ dominates

pT. In Table II we present a brief summary of the four
cosmological scenarios examined in this paper.

In addition to these conditions determining the initial
behavior of the walls, we must also ensure that both
domains percolate by satisfying the inequality obtained in
Eq. (15). (Otherwise the Universe would consist of a true
vacuum sea with isolated bags of false vacuum that
would, in the absence of stabilizing pressures, quickly
disappear due to the tension force, as explained in Ref. 8.)
In Fig. 2 (that should be interpreted together with Table
II), we show schematically the range for each of the two
regimes with the percolation requirement satis6ed. No-
tice that the two curves cross when A, =0.2A, . The fact
that case A is given by a lower bound for e imposes a
strong constraint on the range of allowed parameter
space; k &0.04 in this case. The walls will be immediate-
ly accelerated against the false-vacuum regions by the
volume pressure. The acceleration is roughly
a~-pv/p=e'oo/k' . As the walls are separated initial-
ly by ( L ) -g( TG ), the time necessary for them to pinch

off

i t~;„',„-(A,' e)' cro. They will disappear before any
noticeable effect can occur on the cosmological time
scale. For example, if X=10 t„g/tg 10 o.p/Mp, .
There is no need to invoke Steinhardt's analysis for de-
tonation waves because the time required for the shock
front to acquire equilibrium, t,q-w, q/a~, making his
analysis applicable, is larger than tp Q by a factor of or-
der E

We can now move on to case B. The conditions on the
asymmetry are e &A, and a&0.2X. Thus, contrary to
case A, only upper bounds are imposed on the asym-
metry; as we will show, interesting scenarios are possible
for small values of e. In case B.1, the volume pressure be-
comes important before tension can straighten walls in a
horizon scale but not immediately after formation, as in
case A. As pz becomes dynamically effective, there will
still be an entangled structure within a horizon size, al-
though the average curvature radius and wall separation

~3/2

FIG. 2. Schematic display of all four possible scenarios for
different values of the asymmetry parameter e. In case A the
walls disappear in a time scale much smaller than the cosmolog-
ical time scale tG. In case B.1 the walls disappear in a time scale
comparable to tG. In case 8.2.1 there can be one straight wall in
a horizon volume but the walls disappear before dominating the
energy density of the Universe. In case B.2.2 the walls dominate
the energy density, causing a power-law inflation until they
disappear.

will now be bigger than at t& by an amount that scales
with e '. The condition that the volume pressure be-
comes effective before the walls are straight on a horizon
scale imposes a lower bound for e: e) A,

' oo 'R(t)
For R(t) =AH, we get

(20)

In Fig. 2 we show graphically the range of parameters
that satisfy the three inequalities for case B.1. The
motion of the walls is initially dominated by the tension
force that will mage them straight on scales up to
R (t, ) =A'~ /coo(XH', when volume pressure dominates
and starts accelerating walls toward the false-vacuum re-
gions. The disappearance of the walls in this case is very
similar to case A, the difference being only on the scales.
At t, the walls will be separated on average by R(t, ).
The walls will disappear after a time t;„',„=A, ' zoo.
Using (20) we obtain that r&' } Mp]g 0'o:O(rG),
where tz is the age of the Universe at formation. So the
pinching occurs before the walls can have any major role
in the cosmological evolution. Steinhardt's analysis is
still not relevant, although now teq is bigger than in case
A' t

q
1 /6'0 o t&' p ~ The walls start pinching as

they reach terminal velocity, with the time scale for both
processes being smaller than the cosmological time scale.

V. DYNAMICS OF WALLS II: STRUCTURES
CURVED ON A HORIZON SCALE

In the preceding section we looked at the dynamics of
walls in the case where the volume pressure coming from
the asymmetry dominates the wall motion before the ten-
sion force can straighten the walls on a horizon scale.
We have seen that the asymmetry causes the disappear-
ance of the walls before they can play any major role in
the cosmological evolution. In this section we will con-
sider the case when the asymmetry is sufficiently small in
order to have walls with average separation and curva-
ture comparable to the horizon size before the volume
pressure starts to become effective.

This situation can still be subdivided into two cases
(which are called cases 8.2.1 and 8.2.2 in Table II and in

Fig. 2). One possibility, case 8.2.1, is to have the volume
pressure accelerating the walls before they can dominate
the energy density of the Universe. This situation is the
one explored earlier in the literature (see, e.g. , Refs. 4—7).
The other possibility, case B.2.2, is to have the walls
dominating the energy density of the Universe before the
volume pressure can act. Although the possibility of a
wall-dominated Universe is perfectly reasonable, '" it, is
not clear to us what the evolution of such a Universe will
be like. We will present a rather naive approach to this
case, being careful to point out the serious difficulties in-
volved.

In order to have walls with curvature of the same order
as the horizon we need simply to invert the inequality in
Eq. (20):

(21)



39 COSMOLOGY OF BIASED DISCRETE SYMMETRY BREAKING 1565

with the other two conditions on e the same as in case
B.l (again, shown in Fig. 2). Once these three conditions
are satisfied, the volume pressure will only become
dynamically effective after the tension has straightened
walls on scales up to A,H. We still need to distinguish be-
tween the two possibilities discussed in the previous para-
graph by imposing suitable bounds on e. For this we sim-

ply compare t„ the time when the vacuum pressure dom-
inates wall motion, to t;„f, the time when the walls dom-
inate the energy density of the Universe. From the re-
sults in the previous section we get

R (t,„d;„t)
R (t;„t)

tend inf

tlnf

~o

MPl

' 4

(23)

evolve slower than the horizon, as shown in Sec. II. As
the walls are accelerated with av-zoo/A, ' it is easy to
show that t,„d;„f,the time when inAation ends, and t, are
of the same order in comparison to the cosmological time
scale. A rough estimate for the maximum (the exact cal-
culation is quite involved since the exponent for the time
evolution of the scale factor is itself a function of time)
amount of inAation is then

MPl

&o

2

(22)
In order to solve the horizon problem and make the walls
disappear, we need R (t,„d;„ )t/R (t;„„))10 (Ref. 12).
Thus, the upper bound on e is

Thus, in order to avoid a wall-dominated Universe we
must obey a lower bound for the asymmetry:
e) A.(o o/Mp~ ) . This lower bound has been found before
by Vilenkin. It must, however, be supplemented by the
other two upper bounds on e given in Eqs. (15) and (19)
for this scenario to work. Assuming that we live in the
true vacuum, the walls will be moving away towards the
false vacuum with relativistic speeds that can be calculat-
ed using Steinhardt's analysis. For us, it is important to
note that the terminal velocity will be in Inost cases
1/&3 ~ w, ~ 1, the exact value depending on the "chem-
istry" of the two phases. Of course, as the Universe ex-
pands and the temperature drops, wall velocities will
asymptotically approach the speed of light. Such walls
should not cause any cosmological damage.

The second possibility is to have the walls dominate
the energy density of the Universe before the volume
pressure turns on. From Eq. (22) we can see that this
case obtains for exceedingly small asymmetry (unless, of
course, oo-Mp, ), that is, for almost degenerate vacua.
As has been shown in Ref. 4 such a Universe would have
a power-law inAation with the scale factor evolving like
R (t)-t . We have shown in Sec. II that this is indeed
true in the limit of having a very nonrelativistic gas of
walls in a box. We question, however, if our analysis can
be applied without contradictions to the situation with
one wall per horizon volume. It seems that the more ade-
quate approach to this situation would be to solve Ein-
stein equations for one mall in a Robertson-Walker
universe. To the best of our knowledge, this has not been
attempted so far. The possibility of a wall-dominated
inAation remains an open question. Nevertheless, let us,
for the sake of an argument, naively assume that wall-
dominated inAation is possible once there is one wall per
horizon and see what we can learn about the role of an
approximate discrete symmetry in such a Universe.

Assuming that the upper bound for e(A, (o'0/Mp&) is
satisfied, the walls will be able to dominate the energy
density of the Universe before the volume pressure turns
on. Assuming further that the t behavior for the scale
factor is correct, we can ask how small e has to be in or-
der to have sufticient inAation to solve the horizon and
Aatness problems of standard cosmology. ' In this naive
picture, inAation would end once the walls are accelerat-
ed by the volume pressure to velocities larger than
w, q

= I/&3, since for w, ) 1/&3 the scale factor will

e~ 10
Pl

2

(24)

A successful wall-dominated inAation would require, in
this grossly simplified calculation, an extremely small
asymmetry. Of course, even assuming that this analysis
is qualitatively correct„only through simulations of wall
motion including damping from the medium and the
Hubble Aow could a more explicit picture emerge.

VI. CONCLUDING REMARKS

The role of topological defects in cosmology was first
studied in the work of Zel'dovich, Kobzarev, and Okun.
This work, and the extensive literature that it has in-
spired, has inAuenced the direction of model building in
particle physics, in particular when discrete symmetries
were involved, as, for example, in axion models and CP-
violation models. The dramatic results of Ref. 4, that
particle theories with exact discrete symmetries are ruled
out by cosmology, can be relaxed, as suggested in that
very work, in the case the discrete symmetry is only ap-
proximate. As we hoped to have shown in this work, this
is indeed the case.

We studied in some detail the cosmological conse-
quences of having an approximate discrete symmetry
spontaneously broken in the early Universe. We have
shown that many possible scenarios are possible, depend-
ing on the value of the asymmetry parameter. Basically,
after domain walls are formed in a primordial phase tran-
sition, their dynamics will be determined by the interplay
between the tension force due to the curvature of the
walls and the volume force coming from the volume ener-

gy stored in the false vacuum due to the asymmetry.
We divided the possible cases according to which of

the two forces dominates first. Thus case A has the
volume force dominant from the walls appearance while
case B has the tension force dominating the dynamics ini-
tially. In case A the walls disappear in a time much
smaller than the cosmological time scale. Case B was di-
vided into two subcases, depending on whether the ten-
sion force has acted to straighten the walls up to the scale
of the horizon at the time when the volume pressure
starts acting. In case 8.1 the volume force acts before
this can happen, and the walls disappear as they begin to
be of any cosmological relevance. In case B.2 there will
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be essentially one wall per horizon before the volume
pressure can act. This case can be further divided into
two subcases, according to whether or not the energy
density of the Universe is wall dominated. In the latter
case, case B.2.1, the volume pressure will accelerate the
wall to relativistic speeds and the Universe will be radia-
tion dominated. In the first case, case B.2.2, if one ac-
cepts a naive approach to the problem of a wall-
dominated Universe, we found that there can be an
inflationary epoch that ends as the volume pressure starts
accelerating the walls towards the false-vacuum regions.
Each of these scenarios obtains for certain bounds on the

asymmetry that we evaluated in terms of the parameters
involved in the simple model considered here.
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