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Gravitational nucleation of vacuum phase transitions by compact objects
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The possibility of gravitationally condensed material objects (such as neutron stars, monopoles,
etc.) acting as nucleation sites for the decay of the false vacuum is examined, The Einstein equa-
tions are solved to determine the classical motion of thin-wall bubbles of the true vacuum which
form in or around spherically symmetric bodies of uniform-density perfect Quid. Certain decays of
negative-energy-density false-vacuum states, which were previously considered to be forbidden, are
shown to be locally possible in the neighborhood of a star. In these solutions, bubbles of the true
vacuum form inside the star and then oscillate between two radii. The Euclidean action for bubbles
which form at R =3M around a uniform-density star is calculated and compared to the action for
O(4)-symmetric decay and for decay nucleated by a black hole. The action in the presence of a star
is found to be significantly smaller than the other cases. It thus appears that gravitationally con-
densed material objects in the appropriate mass and radius range can act as nucleation centers for
bubbles of the true vacuum, greatly hastening the phase transition and making supercooling dificult
or even impossible to achieve.

I. INTRODUCTION

The vacuum phase transitions associated with spon-
taneous symmetry breaking are central features of
modern unified theories of elementary-particle interac-
tions, from the electroweak unification in the standard
model to grand unified theories (GUT's) and beyond.
These phase transitions involve a downward change in
the value of the vacuum energy density as the symmetries
of the fundamental gauge group are spontaneously bro-
ken. It is now common to assume that the Universe, in
the course of its expansion and cooling, has undergone a
number of vacuum phase transitions. It is also possible
that additional phase transitions will occur in the future:
we may be living today in the "fool's paradise" of a long-
lived metastable false-vacuum state.

The basic theory of the decay of the false vacuum was
first developed by Voloshin, Kobzarev, and Okun, ' and
Coleman. The role of gravitation in the decay process
was first studied by Coleman and De Luccia for the spe-
cial cases of decay to or from zero vacuum energy densi-
ty,' Parke then extended the analysis to arbitrary vacuum
energy densities. All of these early analyses assumed O(4)
symmetry for the Euclidean instanton. Since the
discovery of the inAationary universe scenario, it has
been realized that the gravitational effects associated with
vacuum decay might have important cosmological and
astrophysical consequences. As a result, these simple
O(4)-symmetric decays have now been thoroughly stud-
ied.

More recently, Lake and Wevrick, Hiscock, ' Blau,
Guendelman and Guth, "and Berezin, Kuzmin, and Tka-
chev' have studied possible O(3)-symmetric motions of
bubble walls in the context of general-relativity theory.
In particular, Hiscock' considered the possibility that
the curved spacetime of a Schwarzschild black hole could
act as a nucleation center for the vacuum phase transi-

tion. A calculation of the Euclidean action for a spheri-
cally symmetric bubble forming around a black hole
showed that the presence of a black hole would greatly
enhance the vacuum decay rate. It thus appears to be
much more diScult to achieve supercooling in the pres-
ence of appropriate mass black holes than it is in their ab-
sence.

In this paper, the study of gravitational nucleation of
vacuum phase transitions is extended to consider gravita-
tionally compact material objects as nucleation centers.
The set of such objects includes neutron stars and white
dwarfs, and in principle any material object which is
significantly gravitationally bound [so that the spacetime
differs significantly from (Euclidean) O(4) symmetry].
This could include objects such as main-sequence stars
and planets, although here we will mainly be concerned
with those objects which are significantly gravitationally
bound. The discussion could also apply to the gravita-
tional fields of heavy elementary particles, such as mag-
netic monopoles, acting as nucleation centers. A 10'-
GeV monopole, with an effective radius given by its
Compton wavelength, has m/R —10, a degree of grav-
itational binding comparable to that of the Sun. For
brevity, we will hereafter refer to all of these objects as
"stars" or "stellar models, " whether they are actually
stars, planets, rocks, or elementary particles. We restrict
our attention in this paper to studying the nucleation of
spherically symmetric bubbles of true vacuum in and
around uniform-density stellar models.

In general, the bulk equation of state of the matter in
the star can be expected to undergo large changes when
the vacuum undergoes a phase transition (e.g., massless
particles may become massive). The star may then gross-
ly change its structure, collapse to a black hole, or even
evaporate, as a result of the phase transition. The change
in the equation of state will depend strongly on the de-
tails of the particular particle-physics model being exarn-

39 1537 QC19&9 The American Physical Society



1538 GREGORY MENDELL AND WILLIAM A. HISCOCK 39

ined. In order to avoid being tied to a particular model,
in this paper we examine the simplest possible case: we
assume that the bulk equation of state is unchanged by
the vacuum phase transition, i.e., that the Quid of which
the star is composed is of the same uniform density,
p=p0, both before and after the phase transition. We
also assume that the radius of the uniform-density star,
R *, is unchanged in the phase transition, so that the total
Quid mass is unchanged by the phase transition. Whether
there are any current particle-physics models for which
our assumption is reasonable will be brieAy discussed in
Sec. V.

One of the interesting results of the earlier work of
Coleman and De Luccia' and Parke was their finding
that an O(4)-symmetric decay of the false vacuum was
not possible if the false-vacuum energy density was zero
or negative and the difference in energy between the two
vacua was small. Lake and Wevrick and Hiscock' have
shown that these "forbidden decays" remain forbidden in
the presence of a black hole: although it is possible to nu-
cleate a bubble of the true vacuum around a black hole
for some decays which were forbidden in the O(4)-
symmetric case, those bubbles always collapse into the
black hole rather than expanding to infinity. In this
study, we find that certain of the previously "forbidden"
decays can occur by nucleating a bubble of the true vacu-
um inside a uniform-density star. As in the black-hole
case, these bubbles cannot expand to infinity, but, unlike
the black-hole case, they persist indefinitely into the fu-
ture, oscillating in radius between a turning point inside
the star and a turning point outside the star. It is also
possible to adjust the Quid density and total mass so that
such a bubble forms at the surface of the star, and is sub-
sequently static. Thus it is possible, in the presence of a
uniform-density stellar model, to form spherically sym-
metric, static (or radially oscillating) regions of the true
vacuum, when the universal conversion of the false vacu-
um to the true is energetically forbidden. The solutions
we find are, of course, classical, and hence may not be
adequate to describe the behavior of the quantum fields
near the radius at which the bubble forms; we feel, how-
ever, that the existence of these stationary points in the
action will play an important role in the full quantum
theory. In particular, such local condensations of the
true vaccum may have important consequences in super-
symmetric theories, where gravity breaks the degeneracy
of the supersymmetric vacua. '

In the more globally interesting case where the bubble
of true vacuum can expand without bound, we have cal-
culated the Euclidean action for bubbles of true vacuum
forming around uniform density stars. As in the black-
hole case, we find that the decay rate is substantially
greater than in the O(4)-symmetric case; the stars thus
act as impurities in the false vacuum around which bub-
bles of the true vacuum are likely to nucleate. Stars seem
to be considerably more effective than black holes at
hastening the phase transition.

The paper is organized as follows. In Sec.II the exten-
sion of the interior Schwarzschild (uniform-density Quid)
stellar model to the case of nonzero vacuum energy densi-
ty is given, and its basic properties quickly reviewed. In

Sec. III the solutions of the Einstein equations corre-
sponding to a thin-wall bubble forming in or around a
uniform-density stellar model are discussed. New solu-
tions describing the (previously forbidden) local decay of
one negative-energy-density vacuum state into another by
the formation of an oscillating radius region of true vacu-
um are also described. In Sec. IV, the Euclidean action
for a particularly simple set of stellar-nucleated bubble
solutions is calculated. The bubble is assumed to form at
R =3M (where M is the mass of the stellar model, not in-
cluding the vacuum energy contribution) in the
Schwarzschild (possibly de Sitter or anti —de Sitter) exte-
rior of the star (this was the minimum-action solution for
the Schwarzschild black-hole case previously exam-
ined' ). The Euclidean action is then calculated for a set
of models, with stellar radius ranging from R'=3M
downward, and for vacuum energies corresponding to de-
cay to or from zero vacuum energy density. Finally, the
possible application of these results to vacuum phase
transitions in the real Universe is discussed in Sec. V.

Natural units (6 =c =A'= I) are used throughout the
paper. Sign conventions follow those of Misner, Thorne,
and Wheeler. '"

II. UNIFORM-DENSITY STELLAR MODELS
KITH NONZKRO VACUUM ENERGY DENSITY

2 2v(r)d 2+ 1
2m (r)

r
dt, 2+ p 2d g2

where d 0 is the metric of a two-sphere, then the metric
functions v(r) and m (r) are defined by'

m (r)=47r(p0+p„)r l3,

The spherically symmetric static metric representing
the interior of a star of uniform density is the well-known
interior Schwarzschild metric. ' ' Most treatments of
the interior Schwarzschild metric, however, assume that
the interior is joined (at the radius at which the pressure
is zero) to an exterior metric which has vanishing vacu-
um energy density: namely, the exterior Schwarzschild
metric. In the present circumstance, it is necessary to
consider the case in which the uniform-density stellar
model is immersed in an exterior universe which has non-
vanishing vacuum energy density. In this case the ap-
propriate exterior metric is either the Schwarzschild —de
Sitter or Schwarzschild —anti —de Sitter metric, depending
on whether the vacuum energy density is positive or neg-
ative, respectively. The interior and exterior metrics are
joined in this case at the radius at which the pressure in
the interior solution is equal to the negative of the exteri-
or vacuum energy density (which is the exterior vacuum
pressure). If the spacetime metric is put into the stan-
dard static, spherically symmetric form
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3[1 —2m (R *)!R*]' —(1—2p, /po)[1 —2m (r)/r]'~

2( 1+p„ /po )
(3)

where po is the (uniform) fiuid density, p„ is the vacuum energy density, and R is the radius of the stellar model. The
pressure as a function of radius is

(1—2p„/po)[1 —2m (r)/r]'~ —[1—2m (R *)/R *]'
p (r) =(po+p, )

3[1—2m (R *)/R "]' —(1 —2p, /po)[1 —2m (r)/r]'

At the surface of the stellar model, r=R* and the
pressure is equal to the exterior vacuum pressure —p,
(i.e., the fiuid component of the pressure is zero there).
Equation (4) may be used to relate the radius of the stel-
lar model to the central pressure p, of the fluid sphere:

4'(po+p, )R /3, R (R*,
M+4vrp, R /3, R )R*,
4n(po+p. ~)R /3, R (R*,
M+4 R /3 R &R* (9)

III. BUBBLE-WALL MOTIONS

In the thin-wall approximation, the motion of the bub-
ble wall is treated using the general-relativistic equations
of motion for thin shells of matter. ' Spherically sym-
metric bubbles can form inside the star, at its surface, and
in the exterior of the star. The motion of a spherically
symmetric thin-wall bubble moving in a spherically sym-
metric fashion in or around a star can be determined in
the usual fashion by first matching the intrinsic metrics
induced on the bubble wall, and then relating the discon-
tinuity in the extrinsic curvature tensor to the surface
stress energy of the wall. The resulting form of the Ein-
stein equation is quite similar to results previously ob-
tained in the black-hole case:

2m, (R) +
R d7"

2 I /2

2m2(R)1— +
R d7

2 1/2

=4mo. R,

where R is the radius of the bubble, ~ is the proper time
along the bubble wall, o. is the surface energy density of
the bubble wall (which will be taken to be constant), and

m, (R) and m2(R) are the masses inside and outside the
bubble wall, respectively:

R*2=
t 1 —(1—2p„/po) [(p+p, )/(p+3p, )] I, (5)42—

8mp

where p=p, +po. Given values of po and p„a specific
stellar model is singled out by choosing a value for p, ; R *

is then found from Eq. (5). Alternatively, one could
choose a value for R, however, although there exist stel-
lar models for all values of p, & —p„, there do not exist
stellar models for all values of R*, since for some values
of R*, the pressure will diverge at a nonzero value of r
inside the star (e.g. , for any R * (9M/4 when p, =0). Fi-
nally, the total mass of the fluid, irrespective of the vacu-
um energy density, is

M=4vrpoR* /3 . (6)

where p, is the true-vacuum energy density (inside the
bubble) and p2 is the false-vacuum energy density (outside
the bubble).

The solution represented by Eqs. (7)—(9) is not com-
pletely general. First, the matching conditions on the
timelike bubble-wall hypersurface do not require that the
mass parameter M in Eq. (8) equal the mass parameter M
in Eq. (9). Exterior solutions in which they are not equal
have been studied previously in Refs. 9, 11, and 12. In
this paper, we will restrict our attention to what we con-
sider to be the simplest possible case consistent with our
assumptions that po and R" are constant through the
phase transition: namely, that the masses M in Eqs. (8)
and (9) are equal in magnitude. Second, the choice of the
signs of the two square-root terms on the left-hand side of
Eq. (7) is somewhat arbitrary. The signs of the square
roots are determined by the metric matching condi-
tions the sign of each square root depends on whether
the radial coordinate (defined in terms of the area of the
invariant two-spheres) increases or decreases as one
moves away from the bubble wall. The choice of signs we
have made in Eq. (7) corresponds to having the area of
two-spheres decrease as one moves away from the bubble
wall into the interior true-vacuum (p, ) region and in-
crease as one moves away from the wall into the false-
vacuum exterior region (p2). While this is the simplest as-
sumption to make, it is not the only possible choice, at
least in the case where at least one of p, and p~ are posi-
tive. For instance, in the case where M=0, since the
spatial topology of de Sitter space is S, it is possible to
consider more exotic matchings such as one where, on a
spacelike slice through the bubble wall at the stationary
point where dR /d~=O, the radius of two-spheres initial-
ly increases in the true-vacuum interior, yet the three-
volume of the interior is finite (this corresponds to plac-
ing the bubble wall at a polar angle )~/2 on the interior
de Sitter spatial three-sphere, so that more than half of
the three-sphere is joined to the exterior).

Although Eq. (7) describes the classical motion of the
bubble wall for all times, only a portion of the classical
solution is relevant to the problem of vacuum decay. In a
first-order phase transition, bubbles of new phase appear
via quantum tunneling at a turning-point radius of the
classical solution. Their late time expansion is asymptoti-
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cally described by the classical equation of motion.
Whether the more "exotic" matchings [involving other
choices of signs in Eq. (7) or di6'ering values of M in the
interior and exterior] can occur in nature is at present un-
resolved: while they are perfectly acceptable solutions of
the Einstein equations for the timelike evolution of the
bubble wall, the question of their relevance to actual vac-
uum decay hinges on understanding in detail the forma-
tion (via quantum tunneling) of such a bubble, which is
intrinsically quantum in nature and probably not amen-
able to a treatment within classical general relativity. It
should perhaps be emphasized that our choices are not
known to be any more physical than the other possibili-
ties (so long as the details of the quantum tunneling pro-
cess which forms the bubble remain unknown); we have
simply chosen what we feel are the simplest and most
conservative assumptions: that the mass parameters M in
Eqs. (8) and (9) are the same, and that the signs of the
square roots are as given in Eq. (7), so that the sense of
increasing radius would be the same before and after the
phase transitions,

Equation (7) may now be squared twice in order to
solve for (dR /dr) . The result is

=P R —1+ (10)
d~ R

outside the star and
2

dR z=aR —I
d~

inside the star, where
2'2

Pz
—P )

—6mo. 8mPz

3
+

3

a =P +8mpo/3 .

In examining solutions of Eqs. (10) and (11), one must
be cautious to check that the solutions satisfy the original
Eq. (7), since additional roots are introduced by squaring.
Some of these additional roots corrrespond to the alterna-
tive sign choices in front of the two square roots on the
left-hand side of Eq. (7), which we will not consider fur-
ther here. Others correspond to bubble-wall motions for
which the proper energy density of the bubble is negative
(and hence, unphysical, as will be discussed below) and
still others to odd solutions in which the area of two-
spheres locally increase in all (or decrease in all) spacelike
directions o6' the bubble wall. These additional solutions
will not be further studied here.

The free parameters that may be varied to describe dis-
tinct bubble solu)ious are po, p„pz, R*, and o (with po
and R * determining M). However, not all values of these
par'ameters will yield acceptable physical solutions to
Eqs. (10) and (ll) [for the given assumptions in Eqs.
(7)—(9)]. The necessary restrictions on these parameters
are discussed in the next four paragraphs. A description
of the nature of the acceptable solutions then follows.

Standard models of spontaneous symmetry breaking

require that 0, the bubble-wall energy density, be posi-
tive, as it arises from the derivative terms in the Higgs
field's stress energy, which have definite sign. Further-
more, since the radial coordinate of the bubble wall is re-
stricted to non-negative values, it is clear that not all
values of p, and pz will be compatible with real solutions
for dR/d~ in Eq. (7). In fact, examination of Eqs. (7),
(10), and (11) shows that there are no solutions with
oR ~0 unless

Pz —P &+6~o. (14)

p& &p2 —6~a —(
—24m.o pz)' (16)

Next, possible bubble solution parameters are limited
by two physical constraints on the stellar structure. The
first is the requirement that the pressure of the Quid
monotonically decrease outward from the center of the
star. Using the Tolman-Oppenheimer-Volkoff equation it
can be shown' that this implies po) 2p„(assuming that
po) 0, i.e., that there is a star present). As po~2p„ the
Quid component of the pressure vanishes, and the "star"
becomes a portion of the Einstein universe, in which
pressureless dust is held in (unstable) equilibrium by the
opposing forces of gravitational attraction and the repul-
sion caused by the nonzero vacuum energy density. A
uniform density Quid sphere with po & 2p, and non-
negative Quid pressures would lack sufhcient mass to hold
itself together against the repulsive force associated with
the vacuum energy density. Since pz) p„ taking p„as pz
gives the greater lower bound and so solutions in the
present study must be restricted to

Po- 2Pz (17)

Since realistic stars (particles, etc.) have a positive energy
density this bound is of no consequence if pz~0. The
second physical constraint is that the central pressure of
the Auid must be finite. For a uniform-density Quid
sphere, Eq. (4) can be used to show that this imposes a
limit on M/R given by

M/R * & 2(2po —p, )/9po . (18)

In the case p, =0 this reduces to the familiar M/R *(—',
limit of the interior Schwarzschild solution. ' The bound
in Eq. . (18) is always smaller than the horizon limit for the
Quid sphere. Replacing p, with pz gives the least upper
bound in Eq. (18); rewriting Eq. (18) as a bound on R*,

exactly as in the black-hole case. '

Equation (11) requires a )0 for any bubble solution
which has support inside the star, since (dR/dr) must
be non-negative. This constraint may be rewritten as an
inequality bounding p, :

p, & p2 6vrcr [——24~a—(po+p~)]' (15)

for po+ pz
~ 0. For the case po+pz & 0, n is always posi-

tive. The motion of the bubble wall outside the star is
governed by Eq. (10); acceptable solutions can exist for ei-
ther positive or nonpositive values of P, with the details
of each case given below. For now it is useful to note
that when pz & 0, the condition /3 )0 corresponds to
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we restrict consideration to solutions which satisfy'

R (R,„=[(2po —P2)/67rpoj'i (19)

Unless Ro ~R,„, the solution given by Eq. (20) is obvi-
ously not physically realizable. Combining Eq. (19) for
R,„and Eq. (20) for Ro gives the following constraint
on the energy densities:

pl p2 6're' [6'pro (po 2p2) /(2po p2) ~ (21)

The value of Po is restricted by Eq. (17) such that the
square-root term in Eq. (21) is always real. For a given
choice of energy densities, if Eq. (21) is satisfied it is then
impossible for bubbles to form in stars with radii ranging
from Ro (the bubble forms at the surface of the star) to
just less than R,„. If Eq. (21) is violated for given values

of pQ, p&, and p2, it is then impossible to nucleate a bubble
inside a star since its radius would be required to exceed
the limit imposed by Eq. (19); however, it should be noted
that violation of Eq. (21) does not preclude the possibility
of bubbles appearing outside a star with R & R

The diff'erent classes of solutions to Eqs. (10) and (11)
are now discussed, subject to the constraints of Eqs.

I

-6
l

-4
t

-2

FIG. 1. Possible false-vacuum decays by the formation of
thin-wall bubbles in or around uniform-density Quid spheres.
The horizontal and vertical axes are the true- and false-vacuum
energy densities, respectively, rendered dimensionless by divid-

ing by 6m.o . The dashed curves are functions of the value of pp,
the Quid density. For the case shown, pp=24~o . The solid
curves represent decay constraints which are independent of the
value of pp (these are the same as in the black-hole or OI,'4)-

symmetric cases). In regions I and II bubbles can form and ex-
pand to complete the phase transition. In region III bubbles
can form and oscillate between two radii; decay of the false vac-
uum is locally possible in this region, although it appeared to be
forbidden in previous studies. In region IV decay of the false
vacuum is still impossible.

Finally, consider the case where a bubble of the true
vacuum forms with an initial radius less than R'. The
radius at which the bubble forms, RQ, is trivially found

by setting (dR /dr) equal to zero in Eq. (11):

(20)

(14)—(21). It can be shown that Eq. (15) is inconsequen-
tial since it is always satisfied if Eq. (21) is. The limit
curves of the different constraints embodied in Eqs.
(14)—(17) and (21) are illustrated in Fig. 1 for a typical
value of pQ. These limit curves divide the p&,p2 plane into
a number of regions. Each region corresponds to a
difFerent class of solutions to Eqs. (10) and (11). First the
manner in which the boundary curves (and hence the re-
gions) depend on the choice of po is explained, followed
by a discussion of the nature of the bubble solutions in
each region, based on Eqs. (10) and (11). The qualitative
nature of the bubble solutions in each region may be easi-
ly determined by sketching (dR/dr) versus R [using
Eqs. (10) and (11)]for each case.

The dashed line boundaries in Fig. 1 depend on the
choice of the free parameter po (=24m.o in the case
shown). If we imagine varying Po continuously, these
dashed curves will move as will their intercepts with the
solid line boundaries, hence, changing the size and shape
of the labeled regions. To understand the results, note
that the intercepts move away from the origin as pQ in-
creases. Thus points above region I (where po is less than

2p2 and thus the chosen density star could not exist in the
false-vacuum state) would lie in regions I and II for larger
values of pQ. Similarly, any point shown in region I
would be found in region II for sufficiently large values of
pQ and, conversely, any point in region II may be moved
into region I by decreasing pQ. In general all points above
the solid curves lie in regions I or II for some choice of
pQ. Any point which can be found in region III for one
value of pQ can be found in region IV for a larger value of
pQ, however, the converse is not true in this case: not all
points in region IV can be moved into region III by de-
creasing pQ. Many points lie in region IV for all values of
pQ. Last, regions II and III disappear as pQ

—+0.
Region I. In this region it is always possible for a bub-

ble to form in the presence of a star and subsequently ex-
pand to complete the phase transition. For p&+6m'
«pz the bubble forms inside or at the surface of the star
and expands. Near the boundary to regions II and III
bubbles which appear within the star will oscillate be-
tween a minimum radius less than R* and a maximum
radius greater than R *; the radius of the star can also be
chosen such that a static bubble in stable equilibrium
forms at the star's surface. In this case there is a second
turning point in the exterior geometry at which a bubble
exterior to both the star and any oscillating or static bub-
ble can form ind then expand.

Region II. In this region bubbles cannot form inside
the star, as Ro, given by Eq. (20), is greater than R
However, it is always possible in this region for a bubble
to form with an initial radius greater than R *, and then
expand to complete the phase transition.

Region III. This is perhaps the most interesting re-
gion, since in the 0(4)-symmetric case (no black hole or
star to nucleate the phase transition) it is impossible to
complete the phase transition for values of p& and pz in
this region. ' ' In the presence of a black hole, while it
is possible to form a bubble of the true vacuum in this
area, ' such bubbles always subsequently collapse into
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the black hole and thus do not persist. In this study,
however, with a star replacing the black hole, it is possi-
ble to form bubbles of the true vacuum which subse-
quently oscillate between turning points in the interior
and exterior of the star. Static bubbles in stable equilibri-
um can also form at the surface of a star, for fortuitous
values of R *. However, unlike region I, in this case no
expanding bubble can form outside the star to complete
the phase transition. Thus, although these bubbles do
not expand to convert the Universe in the large to the
true vacuum, they still represent a new phenomenon: the
possibility of the false vacuum decaying in a local spatial-
ly bounded region, which persists indefinitely into the fu-
ture, for values of the false- and true-vacuum energy den-
sities which previously had been thought to absolutely
prohibit vacuum decay. This still holds on the boundary
between this region and region I. On the boundary be-
tween regions III and IV only the unphysical solution
R0 = '=,„ is possible.

These new solutions which represent previously "for-
bidden" decays occur only for a negative-energy-density
false-vacuum state decaying into another negative-
energy-density false-vacuum state. They are thus not
relevant to modeling the early Universe, nor to consider-
ing the stability of our present vacuum. They may, how-
ever, play a significant role in the analysis of the vacuum
states in supersymmetric theories, for which anti —de Sit-
ter space is the natural vacuum. ' In a more realistic
model, the oscillations in radius of the bubble would be
damped by particle creation effects, through gravitational
coupling if not through some stronger interaction. It
then seems likely that ultimately the bubble would settle
down to a static, motionless state at the surface of the
star, as this is the only location at which there is no radial
acceleration (d R /d~ ) of the bubble wall.

These oscillating solutions are, of course, classical, and
hence may not be appropriate to describe the behavior of
the quantum fields at the distances comparable to the nu-
cleation size of the bubble. However, it seems likely that
the existence of these stationary points in the action will
play an important role in the full quantum theory and
that it is possible to form real (as opposed to virtual) lo-
caHy persistent bubbles of true vacuum in this manner.

Region IV. In this region no bubbles can form in the
presence of a star (nor in its absence, except for a limited
part of this region where a collapsing bubble can form
outside a black hole, which is of no lasting consequence).

In summary, it is useful to point out that a solution al-
ways exists in which a bubble nucleates in the presence of
a star and expands to complete the phase transition if ei-
ther of the following two conditions are met: (1) p2 ~ 0
and Eq. (14) is satisfied or (2) p2(0 and Eq. (16) is
satisfied. These conditions are the same as in the black-
hole case. ' lf either condition is violated the decay in
the presence of a star is forbidden except in the limited
area covered by region III (the shape of which changes as
the fiuid density is allowed to vary from zero to infinity).
Even so, in this last case only oscillating or static bubbles
form and, while of interest because they persist
indefinitely, they do not expand without bound, and thus
cannot complete the phase transition.

IV. BUBBLENUCLEATION RATES

In this section we will calculate the vacuum decay rate
in the case where a bubble of true vacuum forms around
a star. In the zero-temperature limit, the rate of formula-
tion of bubbles of the true vacuum has the form

I = A exp( B/—A)[1+0(fi)], (22)

where I is the rate of bubble formation per unit volume
and A is a coe%cient with dimensions of (length) . The
quantity B is the change in the Euclidean action caused
by the presence of the bubble, i.e.,

B =S~(4)—S~(C&+ ), (23)

M =M, =3-'"P-' (24)

From this point on, the mass M will be taken to be equal
to the critical mass M, defined in Eq. (24). Since the star
is assumed to have a radius less than or equal to 3M, a
bubble will form in the exterior Schwarzschild metric and
its subsequent motion will be defined by Eq. (10). When
the Schwarzschild mass is given by Eq. (24), the bubble
forms at R =3M and remains there in unstable equilibri-
um (with this choice of M and with R * (3M, there is
also a second turning point within the star at which a
bubble can form; we will not calculate the action of this
second solution here). While this particular solution does
not expand to infinity, it is the limit of a set of solutions
in which the bubbles form at radii greater than 3M and
then expand to convert the Universe to the true-vacuum
state. We have chosen to focus attention on this special
case because in the case of a central black hole, the

where Sz(@) represents the Euclidean action for a bubble
solution in which the Higgs field N varies between its
true-vacuum value at r =0 and the false-vacuum value
(@+)at infinity, and Sz(N+ ) represents the Euclidean ac-
tion of a purely false-vacuum spacetime.

The determination of A necessarily involves specifying
a particular field theory; we will therefore not consider its
determination further in this paper. The Euclidean ac-
tions involved in the definition of B, however, can be cal-
culated in the thin-wall case once the values of the false-
and true-vacuum energy densities and the bubble-wall en-
ergy density are specified, without any restriction as to
the particle-physics model. In this section we will calcu-
late B for a class of solutions in which a bubble forms
around a star and compare the values of B with the
equivalent values in the absence of the star.

A general solution in which a bubble of the true vacu-
um forms around a star and subsequently expands is de-
scribed by giving the values of the five parameters: po, p&,
p2, o., and R '. Since it is dificult to explore the values of
B over an entire five-dimensional parameter space and
still more difticult to present the results in a coherent
fashion, we will restrict our attention here to a particular
subset of vacuum decays which previous work has indi-
cated might be of special interest. We will only examine
the decays in which the star has a radius R ' less than or
equal to 3M, and in which the star's Auid mass M is equal
to the critical mass defined in Ref. 10:



GRAVITATIONAL NUCLEATION OF VACUUM PHASE. . . 1543

B —Sint( q& ) +Swall Sint(@ (25)

The contributiori of the bubble wall to the Euclidean
action is exactly the same as in the central black-hole
case; thus, '

g»&= l08~2o-M3 (26)

In order to calculate the actions in the interior of the
bubble, which includes the interior of the star, it is neces-
sary to know the form of the action for a perfect-Quid
solution of the Einstein equations. A number of different
variational principles for relativistic perfect Auids have
been proposed; here we shall take the action to be given
by the integral of the Lagrangian density proposed by
Schutz ' (appropriately recast for a Euclidean signature

R =3M solution has the lowest Euclidean action, and
thus yields the fastest decay rate for the false vacuum. In
addition, it is particularly simple to calculate the Euclide-
an action for this solution, since the bubble remains out-
side the star at all times, in either the Lorentzian or Eu-
clidean sectors (in the Euclidean sector the bubble is in
stable equilibrium at R =3M).

As in the case of a central black hole, it is convenient
to divide the Euclidean action calculation up into three
separate pieces: the action for the bubble interior
SF '(@), the action for the bubble wall Sz"', and the ac-
tion for the interior in the false vacuum Sz"'(@+). The
exponential decay coefficient B is then

metric):

Sz= J —p — dV= J t(p —p)dV,R
(27)

where the second equality follows from the identity
R =8m(p —3p) for a perfect-fluid solution of the Einstein
equations. This action has the desirable property that it
reduces to the usual result for a perfect Quid with the
equation of state of the vacuum, p, = —p„[see, e.g. , Eq.
(18) of Ref. 10]. The volume element in (27) is the Eu-
clidean four-volume of the interior of the bubble.

The integration over the Euclidean time coordinate
is limited to one period of oscillation of the bubble
wall; for the R =3M bubble, this period is' to
=6m(3)'~ M, (1 —72vrp„M, )

' . This period is found
by considering solutions with M =M, —e, where e &(M, .
Such solutions will, in the Euclidean sector, oscillate in
radius about r=3M. The period appropriate for the
M=M„R =3M bubble is then found by taking the limit
of the period as @~0.

The integration over r is divided into two pieces: the
interior of the star, for which 0 ~ r ~ R *, where
p=po+p„and p is given by Eq. (4); and the exterior of
the star, R' r 3M, where p=p, and p= —p, . The in-
tegrals to determine Sz"'(4) and Sz"'(@+) may then be
performed using Eqs. (27) and (4): if the total energy den-
sity in the star is positive, p =po+ p, & 0, then the interior
action is

12(3)'~ vr M 3poR *

8~p

' 3/2 1/2
8~pR '

1— arcsin
3

R* . . (28)

3/2—3
+po

8~p

1/2
8vrpR *

3

X arcsinh
1/2

(29)

The exponential decay coefficient B can now be evaluated
by using Eq. (28) with p, =p, to calculate Sz"'(Ct) and
with p, =pz to calculate Sg'(@+ ), and then combining
these results with Eqs. (26) and (25). Note that the vari-
able M (=M, ) in Eq. (28) is a function of pt and p~,
defined by Eq. (24). The resulting expression for B ap-
plies to any decay centered on a uniform-density star
whose radius is less than 3M, and for which the stellar
mass is given by the critical mass of Eq. (24). The
coefticient B can then be calculated for this sort of decay
for any values of pi, p2, o., and for values of R * lying be-
tween 3M and the minimum radius possible' (at which
the central pressure diverges) for the given value of p~.

If the total energy density (p) inside the star is negative,
then the interior action is given by an expression which is
identical to Eq. (28), except that the last term is replaced
by

We now restrict our attention to two special cases:
first, decay of a positive-energy-density false vacuum
(pz) 0) to the zero-energy true vacuum we occupy today

(pi =0); second, decay of the present day zero-energy vac-
uum state (pz=0) to a negative-energy-density true vacu-
um (p, (0). In both cases, we will discuss the value of the
dimensionless ratio B/B&, where B& is the value of the
decay coeKcient for the O(4)-symmetric decay calculated
by Coleman and De Luccia:

2 427~ tr (,=0),
p~(p2+6~tT )

2 427vr tr
(

—
0)

p, (p, +6~o )

(30)

(31)

The ratio B/B, is dimensionless and independent of A;

we take it to be a function of the dimensionless combina-
tions p&/6~o. , p2/6~o. , and R */M, where M is given by
Eq. (24). The value of the fluid density po is then given by
Eq. (6) using the known value of R* and M. Assuming
that the coefficient A is not a strongly varying function of
the spacetime geometry, if B/B, is greater than one, then
the bubble nucleation rate [determined by Eq. (22)] is
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smaller around a star than in empty space. If B/B& is
less than one, then the rate is larger, and in this case the
star acts as an effective nucleation center for the vacuum
phase transition.

In the case of the decay of a positive-energy-density
vacuum state into the present zero-energy vacuum, the
ratio B/B, is plotted as a function of R */M for a variety
of values of p2/6~a in Fig. 2. The central pressure of
the star increases along the curves as R */M is decreased,
until the curves terminate (at differing values of R */M,
dependent on the value of p2/6mo. ) at the radius where
the central pressure diverges. The value of B/B& is seen
to be substantially less than 1 for all values of R */M, in-
dicating that the decay of the vacuum is substantially
hastened by the presence of a compact star with the criti-
cal mass M, . Comparing the values of 8/8& obtained
here with the values where the star is replaced by a cen-
tral black hole, ' we see that B/B& is always less in the
case of a central star, for all allowable values of R*/M.
It thus appears that stars, if they exist in the appropriate
mass and radius range, will hasten the vacuum phase
transition more than the same mass black hole.

The ratio 8/8& is seen to decrease as the central star
becomes more compact and relativistic, i.e., as R */M de-
creases. For fixed values of R'/M, the ratio is also seen
to decrease as pz is decreased. This variation is of the
same sort as the dependence of 8 /8, on p2 in the black-
hole case. '

Remarkably, for large values of the false-vacuum ener-
gy density, and very compact stars, the ratio B/B& is
seen to change sign and become negative. This indicates
that the Euclidean action for the solution with the bubble
present is actually less than the action for the pure false-
vacuum state. While we cannot take the values of B/B&
seriously in this case as quantative indicators of the vacu-
um decay rate, the change in the, sign of B clearly shows
that the presence of an appropriate mass and radius star
will greatly hasten a vacuum phase transition, and will
effectively preclude the possibility of supercooling occur-

ring. In the equivalent tunneling calculation in quantum
mechanics, the diff'erence in the Euclidean actions (B)
vanishes only if the potential barrier vanishes; this sug-
gests that the presence of a star effectively changes the
phase transition from being first order to second order for
a bubble nucleated around the star. Of course, for a
specified model field theory, it may well be that there do
not exist stars (or other gravitationally condensed objects)
possessing the appropriate masses and radii.

In the second case, our present zero-energy vacuum
state is assumed to be a false vacuum, doomed to ulti-
mately decay into a negative-energy density state. The
ratio B/B, is plotted for a number of choices of true-
vacuum energy density, p, /6~a. , in Fig. 3, again as a
function of the size of the star, R */M. In this case, the
curves all extend from R '/M=2. 25 to R */M =3. This
is because it is the false-vacuum energy density which
determines the minimum radius star possible. In this
case, the false energy density is zero for all cases, and
thus the minimum stellar radius, where the central pres-
sure diverges, is given by 9M/4, the classic result of gen-
eral relativity. Again we see that the ratio B/B, is al-
ways substantially less than 1 in magnitude, and, again is
also substantially less than in the case of a central black
hole. ' We thus conclude that compact, relativistic stars
within the correct mass and radius range could act as
very effective nucleation sites for forming bubbles of a
negative-energy-density true vacuum.

In this case, as in the former case, the value of 8/8&
decreases as R'/M decreases. For fixed R*/M, 8/8,
decreases as p, decreases (recall that p, is now negative,
and so decreasing p& increases the difference in the vacu-
um energy densities); this is again the same sense of varia-
tion as the black-hole case exhibits. '

Also as in the former case, for some values of p& and
R */M, the ratio B/B j takes on negative values. Again,
this indicates that the Euclidean action of the bubble
solution is actually less than that of the pure false-
vacuum state. This implies that stars in this mass and ra-
dius range would cause the vacuum to decay immediate-
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FIG. 2. The ratio B/Bl for the decay of a positive-energy-
density false vacuum into a zero-energy-density true vacuum for
the static Ro =3M, bubble as a function of the stellar radius,
R */M, for several values of the false-vacuum energy density.

FIG. 3. The ratio B/B& for the decay of zero-energy-density
false vacuum into a negative-energy-density true vacuum for the
static RO=3M, bubble as a function of the stellar radius,
R */M, for several values of the true-vacuum energy density.
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ly, and again thus preclude the possibility for supercool-
ing occurring.

Finally, let us consider why the decay coefticients B are
smaller (and hence, lead to more rapid decay of the false
vacuum) in the case of a central star than in the case of a
central black hole. There are two differences between the
two cases. First, in the black-hole case, the integral for
the Euclidean action interior to the bubble is cut off at
the radius of the event horizon, while in the case of the
star, the integral extends down to r =0. This increase in
the interior volume of the bubble tends to decrease the
value of the interior action (because the integrand is neg-
ative). Second, in the case of the star, there is the positive
pressure of the Quid which contributes to the action as
described in Eq. (27). This tends to increase the value of
the interior action. Of course, both interior actions
Sz"'(N) and Sz"'(4&+) are aff'ected; however, evidently,
the net effect on B is to substantially decrease it from the
value in the black-hole case.

V. DISCUSSION

There are two potential problems in applying these re-
sults to realistic vacuum phase transitions. First, the
properties of matter are changed in essential ways (e.g. ,
by generating particle masses) in the vacuum phase tran-
sitions whose existence and properties we are most
confident in our knowledge of (such as in the Weinberg-
Salam-Glashow model). The model examined in this pa-
per assumes that the bulk equation of state of the Quid
composing the "star" is unchanged by the vacuum phase
transition. To the best of our knowledge, the only pro-
posed scheme which could make this realizable is the ex-
istence of a "shadow" world, as is proposed in some
superstring theories, in which there exist a set of matter
fields which interact with ordinary matter only via the
gravitational interaction. If such "shadow matter" could
exist, then the situation examined in this paper could
occur either through the existence of "shadow" stars

which nucleate an "ordinary" phase transition, or
through "ordinary" matter nucleating a phase transition
in the "shadow" vacuum state. For other sorts of vacu-
um phase transitions, in which the bulk equation of state
of matter does change significantly, our results can be
taken only as an indication that gravitational nucleation
effects may be very important in determining the course
of the phase transition. Better calculations would neces-
sarily involve restricting attention to the details of a par-
ticular model.

The second problem is that the only gravitationally
condensed objects in the real Universe which we are
currently aware of are immense when compared to mi-
crophysical length scales; e.g., neutron stars have radii of
some tens of kilometers. Smaller objects, such as rocks or
individual nuclei do not possess significant gravitational
fields. Despite their large size, it is conceivable that ob-
jects as large as neutron stars could nucleate very strong-
ly first-order phase transitions, in which, say, the lifetime
of the false vacuum [estimated from the 0(4)-symmetric
decay] is greater than 10X 10 yr. If in fact our own vac-
uum state is false, then our existence tells us that it is ex-
tremely long lived; a bubble of the true vacuum formed in
or around macroscopic objects such as neutron stars
might very well be the avenue by which the false vacuum
would begin its decay.

It is also possible that there exist microscopic topologi-
cally stable field configurations which are significantly
gravitationally bound. The ratio M/R for an elementary
particle is of order M /A; if grand unification occurs near
the Planck mass, then monopoles may be significantly
gravitationally bound (indeed, if too near the Planck mass
the lowest-mass monopole solution will be a black hole).
In this case their gravitational field might serve to nu-
cleate a vacuum phase transition.
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