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Evolution of superconducting cosmic loops

Piotr Amsterdamski
Center for Relativity, Department ofPhysics, University of Texas at Austin, Austin, Texas 787I2

(Received 4 August 1988)

The evolution of superconducting cosmic loops is studied numerically. The back reaction of the
electromagnetic radiation on the string and the current is considered. It is shown that the infinitely
thin string does not lead to a "renormalizable" back reaction, contrary to the case of a pointlike
charge. However, a tentative formula for the electromagnetic back reaction is derived and several
arguments are given to justify it. The full set of equations of motion for the string and the current is
solved, both with and without the back reaction of the radiation. I discuss the stability of the
current, the electromagnetic radiation, and the rate of particle production near the string. The
main result is that the high-frequency modes of the current are very rapidly excited and the further
evolution seems to be chaotic. This conclusion is based on the study of the Fourier spectrum of the
current and an approximate computation of the largest Liapunov exponent, which turned out to be
positive. For the current j=0.005j,„particle production is the main mechanism of the dissipation
of energy for small loops of size I ~ 10' cm.

I. INTRODUCTION

Superconducting cosmic strings have attracted the at-
tention of many physicists and astronomers since their
very conception. This is not surprising since their pecu-
liar properties and very rich phenomenology can be used
to explain, or to try to explain, many phenomena. How-
ever, despite the growing popularity of superconducting
strings very little is known about their motion. This is a
rather strange state of affairs —since the time of Newton
it has been commonly accepted that knowledge of any
physical system starts from the study of its evolution. On
the other hand, it is not very surprising because the dy-
namics of superconducting strings is rather complicated.
However, this fact should not be used to explain away the
call for action. This paper is conceived as a preliminary
report of the investigation of the dynamics of supercon-
ducting loops.

It is of course worthwhile to maintain good tradition in
physics but there are also other good reasons to study the
behavior of the superconducting loops.

(1) Solutions obtained for ordinary strings display some
pathological features such as cusps and kinks. These
pathologies should be cured by the inertia of the charge
carriers, reduction of the string tension caused by the
current, and, last but not least, the efFects of the back re-
action of the radiation.

(2) Superconducting loops may exist as stable rings
with the string tension balanced by the current. If such a
state is the generic end point of the evolution of a generic
loop then it seems that their existence is ruled out by the
experimental evidence.

(3) Superconducting loops may be unstable against the
exponential growth of the current.

(4) It is necessary to know reasonably well the elec-
tromagnetic field around the loop in order to compute
the rate. of particle production due to the vacuum insta-
bility.

(5) Astrophysical applications of superconducting
loops usually require a good knowledge of the angular
and spectral distribution of their electromagnetic radia-
tion.

The most fundamental approach to the problem of
motion is to solve the full set of field equations describing
the "thick" superconducting vortex. Several authors
have used this approach to study the internal structure of
static super conducting strings; also Matzner and
Laguna used this method to study the intercommutation
of the strings. Unfortunately, this approach is too
dificult in general. The more modest approach is to re-
place the fundamental action of the superconducting vor-
tex by the effective Nambu action of the infinitely thin
string with a current defined on its world sheet. This
method significantly simplifies the dynamics but one
should stress that the problem of deriving the Nambu ac-
tion from the underlying fundamental action expressed in
terms of the microphysical fields has not been completely
solved yet. '

The Nambu action for an ordinary cosmic string leads
to the simple wave equation for the world-sheet vector
Z"(w, cr). However, since the solution must satisfy two
constraints it is not all that easy to find some analytic
solutions. Despite these di%culties, several families of
solutions ' are known. The similar problem for a super-
conducting loop is much harder since Z~(~, tr ) is coupled
to the scalar field P describing the current and to the elec-
tromagnetic field. It is clear that the analytic approach is
either hopeless or reserved for a mathematical genius;
here I shall use purely numerical means.

As I have already said, this is a preliminary report. In
Sec. II I derive the equations of motion for Z"(~, cr ) and
P(w, o ). These equations are known from the work of
other authors" but I include their derivation for the com-
pleteness of the paper and to fix the notation and the nor-
malization. In Sec. III I give the derivation of the formu-
la describing the back reaction of the electromagnetic ra-
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diation on the loop. Section IV is devoted to the numer-
ics: I describe the numerical methods and the results ob-
tained. In this section I also discuss the validity of the
mechanical approach and compare the results of this
work with the recent work of Spergel, Press, and Scherr-
er. ' Finally, in Sec. V I compute the rate of particle
creation from the vacuum in the vicinity of the loop.

II. EQUATIONS OF MOTION

The basic variables for the infinitely thin superconduct-
ing string are the string world-sheet vector Z~(g) and the
scalar field P(g). P are coordinates on the world sheet of
the string. Usually I shall use ~ for the time coordinate

and 0 for the spatial coordinate g'. Therefore—~ + ~~ + ~ and 0 + o ~I.. The two-dimensional
metric induced on the world sheet of the string is

h, b
= a, z"(g) abz„(g) . (2.1)

The determinant of h, b will be denoted by h. The scalar
field P(g) is related to the two-dimensional current densi-
ty j':

J (k) =qe "abctp(k» (2.2)

where q is the charge and e' is the antisymmetric tensor,
ab

ab
—h

e' is the antisymmetric symbol (e ' = 1).
The Nambu action written in terms of these variables

is

s = d' —h —T+-,'h'B. , —j'a.z~~„,
(2.3)

where T is the string tension and 2„ is the electromag-
netic potential. The derivation of the equations of
motion is a simple exercise in the variation calculus. The
equation of motion for Z"(g) is

a. I&—h [h "(T ,'a—,y—a y)+a ya"y]a, z~I

qe' —a, pabz F "=0. (2.4)

and for the scalar field

1
a, (&—hh'"abp)+ 'qe' a—,Z"abZ'F„, =0 .

(2.5)

Equations (2.4) and (2.5) are invariant under the
change of coordinates on the world sheet. To solve them
one has to fix the coordinates. A convenient choice is the
so-called conformal gauge. In this gauge the induced
metric h, b is proportional everywhere to the two-
dimensional fiat metric with the signature (+, —). The
conformal gauge is specified by two conditions:

Z "Z„' =0, Z "Z„+Z'"Z„' =0,
where the overdot denotes derivative with respect to ~
and the prime derivative with respect to o.. In the con-
formal gauge the equations of motion for Z"(~,cr) and
P(~) take the form

j 2+y' aZ~(~, ~) jy aZ~(r, ~)
z "z ar z ~z ao'

j '+y' az~(~, ~) jy az~(r, ~)
Z Z. ~& Z Z.

qe"a.ya,—Z.(~, ~ )F,~ =0, (2.6)

and c~(r, ~)=& hJ'(~, ~)a.Z—~(r, ~), (2.9)

a2 a2 + ,'qe' a, Z"(r, ~)—a„Z(r, ~)F =O.
a acT

(2.7) so the electromagnetic potential of the current in the
string can be written as

It is worth stressing that in the absence of any interac-
tions both equations reduce to the simple two-dimen-
sional wave equation. This point will be important later.

The electromagnetic tensor F„ is the sum of any exter-
nal field present and the electromagnetic field of the loop.
The latter can be divided into two parts: at every point
on the loop there are contributions to the electromagnetic
field from all other points and also the field due to self-
interaction at this point. The first part can be readily cal-
culated using the retarded Green's function. The deriva-
tion follows closely the standard reasoning for a moving
charge. ' The four-dimensional current density is related
to the current density on the world sheet by

Ji'(x) = f d2gv' hJ'(g)a. Z~(g—)fi"'(xI" Zi'(g)) . (2.S—)

It is convenient to introduce an abbreviation

3"(x)= Idr do c"(~,cT)0(x —Z (r, o ) )
1

2m'

X 5([x" Z(r, o )] ) —. (2.10)

F„( )
1 der 1

2m. n.Z R(r, cr)

1

R (r, cr)

[P,n vl + [I n vl
+ . n Z

n.Z (n.Z)
c[pZ vl

n Z

cn ZZ[p v)

(n.Z)
(2.1 1)

Now it is straightforward to compute the derivatives with
respect to x and obtain the electromagnetic tensor
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where n is a null vector of the form ( l, n) and

x "—Z "(~, o. ) = n R ( ~, o. ) .

The subscript ret means that the integrand should be
evaluated at the retarded time ~„,such that

t„—Z (r„„cr)=(x—Z(~„„cr)) . (2.12)

farad cu 2
g/yg g /ce

dc@ dQ
(2.13)

This result will be used later. Now let me discuss the
back reaction of the radiation on the loop.

The expression (2.11) is independent of the choice of
coordinates on the world sheet. It also displays clearly
the separation of the "velocity" and "acceleration" fields
in the same manner as it is usually done for the pointlike
charge. The only problem with the formula (2.11) is that
the integrand becomes singular if the point x is on the
world sheet of the string. This singularity has an obvious
source —it is due to the self-interaction of the charges
circulating around the loop. The standard solution of
this problem is to impose a cutofF so that the singularity
is avoided. This may be right from the practical point of
view provided that one is not interested in the long time
evolution of the string. Otherwise one has to consider
carefully the limit as the cutoff goes to zero and to extract
the finite part that describes the back reaction of the elec-
tromagnetic radiation on the loop. I shall discuss this
problem in the next section.

Expression (2.11) can be used to calculate the angular
distribution and the spectrum of the emitted radiation.
To this end one has to make the Fourier transformation
with respect to the time t:

F" (cu, n)= f dt e "F" (t„n) .

For a distant observer t =r+n. Z, where r is the fixed
distance from the observer to the center of the loop and n

does not depend on time. Consequently,

FI (cu n)= drdcr c "n~]e inn z(r, a)—i cue

2~r

. Now one can easily derive the formula for the angular
and spectral distribution of the radiated energy

turn of the electron and the momentum carried away by
radiation. To this end he considers the integral of the
T". over the volume of spacetime around the world tra-
jectory of the particle. The chosen volume is limited by a
timelike tube of a very small radius e that surrounds the
trajectory, a second timelike tube of a very large radius R
and the two "caps"—spacelike surfaces orthogonal to
the trajectory at times ~ and ~+d ~. Using the Gauss
theorem one can replace the volume integral by the in-
tegral over the limiting surfaces. Because of the energy
conservation T". =0 the integral must vanish and one
gets

f T" u do —f T" u do.
o.(w+ dr) a(~)

= —f T" n, d cr —f T" n d o . (3.1)
X(R) - X(e)

In the limit d~ —+0 the surface integrals over timelike sur-
faces are replaced by two integrals over spheres with the
radii R and e, and one gets

dP" = —f T"'n„d cr —f T"'n, d cr,
d ~ r(~) '

x(~)
(3.2)

where P" is the momentum of the electromagnetic field
bound to the particle. Next one wants to take the limits
R —+ ~ and @~0. It is possible to show that the integral
over the large circle vanishes if the motion of the particle
was uniform in the far past. ' The integral over the small
circle is harder. To compute it one should expand the re-
tarded electromagnetic field in the neighborhood of the
particle's trajectory in the powers of the separation and
compute the corresponding expansion of the stress-
energy tensor. After integration one gets

dP"
G7

eU" e+ ( —'U" ——'u Uu")
8~@ 4~

(3.3)

P" is to be interpreted as the electromagnetic contribu-
tion to the momentum of the particle. To obtain the
equation of motion for the particle one should add to P"
the bare momentum of the particle mou". Then the
divergent term can be absorbed in the renormalized mass
of the particle m h, =mo+e /8~e. The resulting equa-
tion of motion is

2

(3.4)

III. BACK REACTION OF THE RADIATION
ON THE LOOP

The problem of the back reaction of the electromagnet-
ic radiation on its source belongs to the small class of
problems that are never solved definitely but only more
or less so. For the pointlike particle this problem was
more or less solved by Dirac' in the classic paper of
1938. Subsequent papers by others dealt mainly with the
interpretation and the validity of the resulting equation
of motion. Here I cannot review the entire history of this
discussion' but I would like to recall very briefly the
derivation ofFered by Dirac.

The basic idea of Dirac is to use the energy-momentum
conservation and make the balance between the momen-

This equation is generally considered as the correct one
for a classical pointlike particle though there are still
differences of opinions whether it should be considered as
the exact equation or merely as an approximation. ' I
should like to stress several points that will be important
later.

(1) The theory of pointlike charges is "classically renor-
malizable, " that is all infinities are absorbed into the
physical parameters.

(2) The result is not invariant with respect to the
change of the parameter along the trajectory. Of course,
for a single particle the proper time is the "right" choice
of the parameter but since for an extended object the
proper time is not well defined it is a useful exercise to
derive Dirac-Lorentz equation in an arbitrary gauge.
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The computation is considerably more tedious since in an
arbitrary gauge the velocity is no longer orthogonal to
the acceleration nor is it normalized to one. In the end
one gets

+—' lulv' — u
V V (3.5)

where u"=(8/Bg)Z"(g') and Iu I
=(u u")' O. ne can

easily see that if g is set to be the proper time s then the
Dirac-Lorentz equation is recovered.

(3) As Teitelboim' pointed out, the same equation can
be derived with the help of an "averaged retarded field. "
The averaging is performed over a small sphere X(e) cen-
tered on the particle at z

1F"„,(z)= lim d o. FI,",t(z+eu ),
e 0 4~g X(e)

(3.6)

where u is a unit vector from z toward the surface of the
sphere. One can check that this definition leads to the
equation of motion written above. The same singular
term appears as before and is absorbed into the physical
mass of the particle.

Now let me turn to the real problem of calculating the
back reaction of the radiation on the string. There are
several important points to discuss, the first one being
where to start. The most fundamental and obvious ap-
proach to this problem is to consider the back reaction
on each of the discreet charges separately and then sum

up their contribution. This approach shows that the fun-
damental theory of superconducting strings is certainly
renormalizable in the same way as the theory of pointlike
charges is. However, it is equally clear that this ap-
proach cannot be implemented until we learn more about
the derivation of the Nambu action from the real one-
at present it is not known how to sum up or average the
contributions of all charges in the way that is consistent
with the transition from the fundamental action to the
effective one. Therefore the starting point must be the
Nambu action. This choice has one serious drawback:
the classical renormalizability is no longer assured. This
is rather obvious. While deriving the effective action
from the action expressed in terms of the microphysical
terms one throws away many terms, which are judged to
be irrelevant by some dimensional arguments. However,
these terms may turn out necessary to absorb infinities, so
without them the theory may become nonrenormalizable.
The question now is whether one should worry. The
answer seems to be no. The same dimensional arguments
that were used to throw away these bare terms should ap-

l ~oi 8 c( (x —Z)")F" (x) =
2~ (x —Z) Z ~& (x —Z) Z

(3.7)

The next step is to expand the integrand in powers of the
separation x —Z. The expansion is considerably more
tedious than in the case of the pointlike particle because ~
is not the proper time and the time derivatives act both
on the velocity and the charge density. Then one has to
integrate over the sphere around the point Z"(r, cr ) in or-
der to compute the averaged retarded field as defined by
Eq. (3.6). The finite part of the result is

ply to them upon renormalization. In other words, one
should not care about the renormalization of the terms
that are neglected anyway. If any infinities should appear
that cannot be absorbed they should be simply discarded
since they only contribute to the renormalization of the
not essential terms.

The next point is that it is no good to compute the Aow
of energy and momentum through two timelike surfaces
on the both sides of the string world sheet. Such a com-
putation would give at best the change of the total energy
and momentum of the string, but would not tell anything
about the local forces of the back reaction acting at any
particular point of the string. Therefore one has to define
somehow the local sources of radiation. This can be done
by dividing the string into small segments Ao. and draw-
ing the timelike tube around each of the segments sepa-
rately. Next one can try to repeat Dirac's reasoning and
compute the forces acting on each segment separately.
The resulting equation of motion would have the form of
the coarse-grained equation. More pictorially, for the
computation of the back reaction the string is being re-
placed by a necklace of pointlike charged beads and the
conducting string. The string that connects the beads
must be conducting to allow for the fIow of charge from
one bead to the other, so the current density at a given
point is due to the motion of the charge carriers and to
the change of their density.

The third point is that the original reasoning of Dirac
cannot be directly applied here: even if I computed the
Aow of energy and momentum through the tube around
any given segment I would not know how to distribute
the change of momentum between the string and the
charge carriers. This problem can be solved with the
help of the method proposed by Teitelboim. ' Instead of
calculating the energy flow I compute the averaged re-
tarded field and add it to the field due to all other points
on the string.

Therefore, the starting point of the calculation is the
expression for the retarded field in the vicinity of the seg-
ment Ao.;:

+P~=
ret

. z 27(u. u) 9(u v)—V V V

4lul 4lvl 2
c(~u )+

6 (l

(2+9lul )c "v )+ (c "u )+c "0'+ —,'c "v )
4lvl' I vl

(3.8)
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and the divergent part is

ho,F P~ — (U Pc )+ & v Pc~ )

The separation of the divergent and finite parts is equivalent to choosing a "subtraction scheme. " Here I use the
same scheme as used in the case of a pointlike particle. In fact one can replace the current c"by eu" (that means fixing
the charge density) and check that the correct equation is recovered. The divergent terms cannot be absorbed into
terms already present in the equations of motion derived from the Nambu action. At this point one may either con-
clude that the Nambu action cannot be used to compute the long time behavior of the loop or accept the arguments
sketched above and discard the divergent terms altogether. In this case the question arises whether it is consistent to
retain the finite terms given above while discarding other corrections to the Narnbu action. The one possible argument
is that the other corrections should lead to the equation of motion that conserves energy while the effects of the back re-
action are dissipative and therefore should build up in time.

IV. NUMERICAL SOLUTIONS

The set of Eqs. (2.6) and (2.7) is too complicated for the analytic approach so one has to use a computer (and a big
one). To prepare these equations for the machine it is convenient to introduce dimensionless variables. There are two
length scales to play with, &T and L, where L is the length of the loop. It is natural to define dimensionless coordi-
nates o =0/L, r=r/L, and to rescale the fields Z "(r,o)=z"(~,cr)/L, p=pl&TL, and F" =(L/v'T )F" . The
equations of motion become

a
' j'+y' '

az~(r, ~)1+
ar' Z Z

+P' az"(r, o) 'PP' az"(w, cr )

Bo Z Z O'T
q~"a.—ya, z (7, 0 )F "=0, (4.1)

/2k ()2rA + —,'qe' a,z"( or)abZ (r, cr )F„=O, (4.2)

where all tildes have been dropped. These equations in-
volve dimensionless quantities only. To get some feeling
for the numbers one should realize that for the string that
was formed at the grand unification energy scale
&T =A, oUT = 10 cm ' and L, being the length of the
loop, is also rather large.

The numerical integration of the equations of motion is
not particularly easy. On the top of all common prob-
lems with nonlinear partial differential equations one has
to deal with the cusp s. At the cusps the product
Z Z ~0 so the equation for Z"(r, cr ) becomes singular.
It is true that the presence of the current should inhibit
the occurrence of the true cusps, but from the numerical
point of view Z Z can become small enough to be
called singularity. Moreover, as I shall show later, at the
cusps the electromagnetic field becomes very strong so
the source term in the wave equation for the scalar field
becomes very large. To integrate successfully through
the cusp one has to adjust carefully the time step of the
code. The choice of the algorithm required some exper-
imentation; in the end I used the explicit interlaced leap-
frog method for the string equation and the implicit
Richtrnyer scheme for the scalar field. Both algorithms
require the knowledge of all variables at n and n —1 time
levels and the retarded electromagnetic field at the nth
level to find the fields at the n +1 level. I used 256 points
in the spatial direction cr, so the spatial step was

DS=L/256. The generic time step was DT= ,'DS Be-—.
fore making the next time step the largest electric and
magnetic fields on the nth level are computed and the
time step is adjusted according to the experimentally es-
tablished rules. After every time step I check that Z Z
is positive at all points around the loop. If not, the code
goes back to the previous time level and tries again with a
smaller time step. The accuracy of the integration can be
checked by looking at the constraints that define the con-
formal gauge. Generally both constraints are satisfied
with the accuracy 10;at some isolated points the errors
jump to 10 . I also checked that no constant current is
generated during the evolution.

The most tedious part of the computation is the evalu-
ation of the retarded electromagnetic field. To calculate
it, one has to find the intersections of the past light cones
of all points around the loop with the world sheet of the
string and then compute the integral (2.11). If one stores
the entire computed history of the string and the current
in the memory of the computer one is likely to exhaust
the core memory of the machine very quickly. Moreover,
it is not convenient to look for the intersections of the
light cones with the world sheet if the latter is given at
the grid points only. The better way is to use the fact
that both Z"(~,cr) and P satisfy simple wave equations,
provided that the interactions are neglected. Conse-
quently, one can decompose the exact solution in the
modes of the free equation at an arbitrary time ~o and the
amplitudes should vary slowly with time. Therefore, the
Fourier series with the amplitudes computed at ~0 should
accurately represent the exact solution over some time in-
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terval centered at ~o. After this time the Fourier trans-
formation should be repeated to update the amplitudes.
This way one has to store only the several sets of the
Fourier amplitudes and one has a correct representation
of string history between the grid points.

I shall always deal with the functions given at a
discreet set of points on a circle so I should use the
discreet Fourier transformation

L 2mk~RG„(r)= ReH„— ImHk cos
2+k L

L . 2mk~Ima + ReII, sin
2mk L

L 2m.k~
IGk (r ) = IrnHk + ReHk cos

2~k L
N/2

f(o )=— g F„exp
n = —N/2

27Tln 0 L - . 2mk~+ ReHk — ImHk sin
2m.k L

Consider the scalar field p. I assume that p=f(u )

+g(v), where u =o r, —v =o +r, and f and g are some
periodic functions. Denote by Hk(r) the kth Fourier am-
plitude of the scalar field P at the time r. Obviously

2nikrlL+ G
—2mikr/L'

F = H + H e
—2+ikr/L

G 0 ~ +2m'ik v/L1 L
(4.3)

for k&0. The zero-frequency amplitudes have to be eval-
uated separately. Since the field P is real one should use
this fact in the Fourier decomposition. Standard manipu-
lations lead to the expansion

N/2 2~ku$(o', 7)—H0(10)+ g RFk(r0) cos
k=1

2~ku+IFk(10) slil

2mkU
+RGk(r0) cos

2m.kv
+IGk(r0) sin (4.4)

where

2mk~
RFk (r) = ReHk + ImHk cos

2mk L

L - . 2~k~+ ImHk — ReHk sin
2+k L

L 2~k~
IFk(r) = ImHk — ReHk cos

2+k L

, 2~k~
ReHk + ImHk sin

2~k L

Similarly I can consider the decomposition of the ~
derivative of P. Let me denote the Fourier amplitudes of
p by Hk(r). Now one can readily find the amplitudes Fk
and Gk.

Similar expansion can be easily written for each com-
ponent of the string world-sheet vector Z"(r, o ). In prac-
tice I used 60 Fourier modes and the Fourier decomposi-
tion was done every —,

' of the period of the free string
motion, so every period of the evolution is described by
the eight sets of 60 Fourier amplitudes. To check this
scheme I compared the exact solution with the one
recovered from the Fourier decomposition at the end of
the time interval for which a given set of Fourier ampli-
tudes was computed. The agreement was always very
good. I also made one short test run with the Fourier
decomposition done every —,', of the period; the results
were in a very good agreement with the results obtained
with the smaller set of Fourier amplitudes.

The Fourier decomposition gives the explicit represen-
tation for all fields at arbitrary point (cr, r). Therefore
one can use Newton method to find the intersections of
the past light cones with the world sheet; However, even
this procedure is very slow since it requires several itera-
tions and the summation of the Fourier series is rather
time consuming. For this reason I restricted the series to
the first 60 modes. Including more modes is also prob-
lematic because of the limited resolution in o.. Since the
whole process is only approximate I decided to smooth
the resulting retarded electromagnetic Geld by averaging
over the five closest neighbors.

The next thing is to choose the initial conditions for
the string and the scalar field P. The initial configuration
should be compatible with the equations of motion, but
that is hard since no explicit solution is known. The pos-
sible approach is to use one of the known analytical solu-
tions for the ordinary cosmic string to specify the initial
shape of the superconducting loop with no current. The
current can be generated later with the help of an exter-
nal electromagnetic field. Alternatively, one can start
with the initial scalar field represented by a superposition
of a few free running waves with small amplitudes. If the
amplitudes are suSciently small the resulting perturba-
tion of the string in the initial state can be safely neglect-
ed. This is the approach that I use here. In all runs the
initial configuration of the scalar Geld was a superposition
of two waves with the amplitude 0.0005 and the frequen-
cies co=2m/L and 4m/L. The initial state of the string
was either represented by the Burden solution with
m =n = 1 and 8=m /4, or by the Chen solution with
8=~/10, il=p=m. /3. For each set of initial data the
computations was performed twice: with and without
the back reaction of the electromagnetic radiation. In
the following I shall refer to the first set of initial condi-
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I I I I TABLE I. The parameters of the best fit
log, o! A (k)!= A +8k to the norm of the Fourier amplitudes of
the string and the scalar field, for the initial data B or C,
without the back reaction.

B, string
B,P
C, string
C,

—3.65
—4.49
—4.02
—4.39

—0.045
—0.031
—0.041
—0.028

—15—

eP 20 40 60

FICx. 4. The norm A (k) of the Fourier modes of the scalar
field for several times. The curves a, b, and c correspond to
7 =

)~ P, )~ P (~ P, and the others were taken every —', P later. In-

itial data B.

The largest Liapunov exponent is approximately given by

d(rp )N
A= lim g ln

N m r~ q t d(rl, , )

where ~& are times when the subsequent "measurements"

The hypothesis of the chaotic evolution can be further
tested by the approximate computation of the largest
Liapunov exponent. The equation of motion for the sca-
lar field can be considered as the equation for the pertur-
bation of P around /=0. The norm of the trajectory can
be defined as

' 1/2

(4.5)

of d(r) are taken. I evaluated A using the interval
v.

I, +,—~1, =8DT. The result is plotted in the Fig. 6 as the
function of time ~N. The length of the evolution was not
long enough to permit the definite statement but A clear-
ly approaches a positive value A=0.04. This means that
the system is either chaotic or unstable against the ex-
ponential growth of the alternating current. In the Fig. 7
I plotted the P(cr) at the times r=0 12P an.d 3.12P. One
can see the correlations between the two curves but the
second curve is rather messy. The peaks seem to corre-
spond more to a little bit more constructive interference
of many Fourier modes than to any smoothly growing in-
stability. The largest peak in the final state is only 3
times larger than the amplitude of P in the initial time
and is not appreciably bigger than the peaks of P at any
time after the high-frequency modes were excited, that is
after the first cusp.

This computation of the Liapunov exponent should be
considered with a grain of salt for two reasons. First,
Liapunov exponent should be evaluated studying the per-
turbations along many difFerent trajectories not just one.
Second, the perturbations of the string motion should be
included. However, in the present context the approxi-
mation made above makes sense it corresponds to the
most interesting physical situation: the stability of the

I I I I

05—

0—

—10—
—.05—

0 20 40 60 0
I I I I I

4
I I I I I I I I

6 8 10

FICr. 5. The norm A (k) of the Fourier modes of the string
world-sheet vector for several times. The curves a, b, and c cor-
respond to r= —,'6P, —,'6P, —,'6P, and the others were taken every
—', P later. Initial data B.

FIG. 6. The largest Liapunov exponent of the scalar field as a
function of time. Initial data B.
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TABLE II. The energy radiated at the given frequency co„=2mn /L by the string that was initially in
the configuration B or in the C. E„, is the total energy, E~„k the energy emitted within a narrow peak.

1

2
5

10
30
50

B,E...
0. 159X 10
0. 103X 10-'
0.396 X 1O-"
0.789 X 10-'
0.791 X 10-'
0. 154X 10-'

B,Ep„k

0.210X 10
O. 154X 1O-"
0. 151 X 10
0, 265 X 10-"
0. 123 X10-'
0.216X 10

C,E...
0. 111X 10
0. 189X10-'
0.147X 10-'
0. 189X 10
0. 139X 10-'
0.247 X 10

C,Ep„k

0. 175 X 10-"
0.396X 10-"
0.366 X 10-"
0.543 X10-"
0.236 X 10-'
0.416X 10-'

evaluate the emitted radiation in 30 X 15 uniformly distri-
buted directions and use the results to compute the total
energy emitted at this frequency. Next I find the direc-
tion where the intensity is the highest and I calculate the
radiation within a narrow cone centered at this direction
using 121 rays within the cone. The angular width of the
cone is 7.75X10 srad. The results are given in Table
III below. The entries in the table should be multiplied
by the factor 0.4X 10 ' (L /10 ) s GeV to obtain the ener-

gy emitted during this time. The energy emitted during
one period is very small in comparison with the energy of
the loop that is 8 X 10 (L/10 ) GeV.

Unfortunately, the angular resolution is not good
enough to draw a decent contour plot covering the whole
sphere. At low frequency the radiation has a broad di-
pole pattern, so only small part of the total energy goes in
the direction of maximal intensity. On the other hand, at
high frequency the pattern of radiation is very irregular
with several very intense peaks so none of them is partic-
ularly strong in comparison with the total energy emitted
at that frequency. These peaks fit well within the narrow
cone used to evaluate them and the intensity of radiation
in the direction of the maximum is from 8 to 15 times
stronger than at the edge of the cone. The isocurves of
intensity are nearly circular inside the cone and become
irregular at the edge. At the frequency 60m/L the
strongest peak subtends the solid angle 0= 3 X 10 srad,
at co = 100 /~L the strongest peak is narrower-
Q=1.5X10 srad (see Table II).

Finally, I would like to discuss the validity of the
mechanical approximation. As I demonstrated above the
string remembers its initial shape during the evolution
and the amplitudes of the high-frequency oscillations are
small. Therefore, it is tempting to use the mechanical ap-
proximation and consider the evolution of the current on
the string described by an analytic solution obtained for
an ordinary string, that is neglecting any inAuence of the
current and electromagnetic field on the string. This ap-
proach was used in Ref. 12. However, it is quite obvious
that the high-frequency oscillations of the string, while ir-
relevant for the low-frequency oscillations of the current
are very important for the high-frequency modes. Conse-
quently, in this approximation the evolution of the
current should be significantly smoother than in the real
case and the amplitudes of the high-frequency modes
should be systematically underestimated. To test this
reasoning I computed the evolution of the same initial
configurations as before using the mechanical approxima-
tion. As expected, the high-frequency modes are

significantly underestimated. A good measure is provid-
ed by the parameter 8 describing the slope of the curve
log, oA(k). This parameter is roughly twice as big as be-
fore: 8 = —0.09 for the initial conditions 8 and
8 = —0.05 for the initial conditions C.

The results described here are in clear contradiction
with the results obtained by Spergel, Press, and Sherrer'
who computed a transformation matrix giving the ampli-
tudes of the different Fourier modes of the current after
one period of motion. They used the mechanical approx-
imation and assumed that the current does not change
much during one period of evolution. They found that
high-frequency modes of the current are very strongly
damped for all initial configurations considered and that
certain initial configuration lead to an exponential growth
of the low-frequency modes. I have already showed that,
according to this work, there is no damping of the high-
frequency modes over the time interval of four periods.
This result is in agreement with the very low power of the
electromagnetic radiation.

The question of stability has not been touched yet be-
cause both initial configurations that I have considered so
far are stable according to Ref. 12. To make this corn-
parison I computed the evolution of the string that was
initially described by the Chen solution with I9=m/5,
P=m/9, and g=17n. /18; this is an example of an unsta-
ble configuration according to Ref. 12. Neither in the

L
I

I I I I
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I I t I

I

i I I I
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I t t I
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I I I I

.005—
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0 2 3 4 5

FIG. 10. The time derivative of the scalar jeld as a function
of cr for ~=0.125P and w= 3.125P. Imtial data C.
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mechanical approximation nor solving the full set of
equation I could detect any trace of instability. It also
seems to me that the rates at which the low-frequency os-
cillations are excited and the high-frequency modes are
damped according to the authors of Ref. 12 are not com-
patible with their assumption that the change of the
current during one period is small in comparison of the
current itself and would imply a very large power of the
electromagnetic radiation.

V. PARTICLE PRODUCTION

(es) 0
Im[coshes v'2( ++i g )]

esf + esf
sinhesf+ sinhesf

where

f+ = —(&%+i9+v'9i ' —0) .
1

2

This formula is correct, in general but it requires a careful
treatment of the limit Q~O. In this case it is advanta-
geous to go back to the formula (5.1) and use the relation

W= fdxf e8' o s

2& Re[c sho&es2(%+i 9)]X es
I [cmhoe s&s2(9+i 9)]

(5.1)

where m is the mass of an electron and

9'=
—,'e ~" F F„=E-B,aP pv P 1F FPy l(g2 E2)

4 p& 2

The rate of particle production per unit volume (called
just rate later) is given by the imaginary part of W:

2 Im8"
VT

f e '(es) 0 Re[coshesi/2(9'+i 0)]1 ~ds
4~ o s'

X5(lm[ cohse &s2(V +ig)]) . (5 2)

In the previous chapter I showed that the electromag-
netic field due to the current in the loop may become very
strong. In such case one should expect that the vacuum
becomes unstable with respect to particle production.
The relevant dimensionless scale is m ~/eE. Rescaling
the field as before one gets m ~/eE =(0.6/E)(L/
10" cm), so electron position pairs should be copiously
produced if the rescaled field is larger then one.

The computatiori of the particle production rate due to
the vacuum instability is a rather difficult exercise. In
practice it is hard to go beyond the result obtained by
Schwinger, ' who computed the rate of particle creation
in a static and homogeneous external field. This result
can be used in a general setting provided that the external
field does not change rapidly on scales comparable with
the electron Compton wavelength. This condition should
be satisfied for the field due to the superconducting loop
since its geometry is characterized by the macroscopic
scale L. The problem with this argument is that the field
due to the cusps changes rather rapidly so the field is
hardly static. However, the time variation is still slow in
comparison with the relevant time scale for particle
creation. Also, the time variation of the external field is
likely to enhance the rate of particle production so one
can use the result of Schwinger to obtain a safe lower lim-
it.

According to Schwinger, the one-loop effective action
is

e EBj "
1—cothnm.

4m

1/2r+B —E
r —B2+E2

m 'no.&2
X exp e+r B+E— (5.4)

where r =+(8 —E ) +4(E B) .
These results may be used to compute the rate of parti-

cle production around the loop. It is convenient to re-
scale the electromagnetic field as before. Upon doing
this, one gets a factor T/L in front of the expression for
P and a factor L/&T in the argument of the exponen-
tial. The crucial factor determining the efficiency of par-
ticle production is m mL/&T; for L .= 1.5 X 10' cm this
factor is equal to one, for smaller loops the particle pro-
duction is more effective.

To compute the number of particles created per unit
time I set up a grid of (11) points filling the cube of the
size 2L, compute the rate at all points, and integrate over
the volume of the cube. The calculation was repeated
several times during the evolution of the loop, for several
L. The results are given in Table III. The important
point is that even for the current much smaller than the
critical current for the breakdown of the superconduc-
tivity particle production is very important if the size of
the loop is smaller than 10 cm. Particles are produced
because the electric field of the loop is strongly enhanced
in the vicinity of the cusps. This is the reason why the
rates are much stronger for the initial conditions C: in
this case there are more cusps. We also see that the ener-
gy loss during one period can easily exceed the energy of
the loop. This means that the present estimates become
invalid for the small loop and the back reaction of parti-
cle production on the loop must be taken into account.
The back reaction should limit the velocity of the would
be cusps and make the evolution of the loop smoother.

When Q~O then f ~0 and the limit can be taken easi-
ly. The rate of particle production becomes

g(E2 g 2)e 2(E2 g 2)

4~
1 m n&X g exp

n e E 8—
(5.3)

In the general case formula (5.2) should be used. After
some tedious algebra one gets
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TABLE III. The rate of particle production inside the cube of the size 2L centered at the center of
the loop for initial conditions B and C. The rates are computed for three values of L=1.5X10,
1.5 X 10, 1.5 X 10 cm. hE is the energy of the particles that would be created at this rate during one
period of motion. The total energy of the loop is 1.2X 10' (L cm/10 ) GeV;

t(P) PX(2L)3(s ') (B) hE (GeV) (B) Px(2L)'(s ') (&) hE (GeV/s) (C)
3.125
3.125
3.125
3.25
3.25
3.25
3.375
3.375

. 3375
3.50
3.50
3.50
3.625
3.625
3.625
3.75
3.75
3.75
3.875
3.875
3.875
4.0
4.0
4.0

4.1X
0
0
3.1 X
2.1 X
0
1.5 X
1.4 X
0
4.2 X
2.1 X
1.0 X
3.5 X
4.3 X
0
6.5 X
5.2 X
0
1.4X
2.8 X
0
6.2X
6.2X
0

10

jp53

1027

54

jp35

1056

1051

jp —10

10'4
jp39

1047

10
—21

1P45

10
—44

jp52
24

3.1 X
0
0
2.3 X
1.5X
0
1.1X
F 1 X
0
3.1 X
1.6 X
7.8 X
2.6X
3.2 X
0
4.9X
3.9 X
0
1.0X
2. 1 X
0
4.7 X
4.7X
0

jp26

1057

1032

jp58
1040

1060

10
10-'
jp58
1P44

jp51

jp —16

jp49

jp —39

10'
1029

3.4X
1.0 X
2.6X
1.6X
3.3 X
1.9 X
1.3 X
2.3 X
8.1 X
3.1 X
9.1 X
3.4 X
7.6 X
1.2 X
3.9 X
4.2 X
5.1 X
0
2.6X
2.6X
0
1.0X
1.5 X
0

1055

1044

jp —80

1056

1048

10 37

1055

104'

10
—95

1057

1P54

1021

1056

1051

jp —16

1054

1039

jp52

10 '

1054

10'4

2.5 X
7.7 X
1.9 X
1.2 X
2.4 X
1 ~ 3X
1.0X
1.7 X
6.px
2.3 X
6.7 X
2.5 X
5.6X
0.9 X
2.9 X
3.1 X
3.8 X
0
2.0 X
2.0X
0
7.7 X
1.1 X
0

1059

10
jp —74

1060
1053
10-"
1059
1047

jp —89

1061

1059

1027

1060
1056

—10

58

10'4

1P56

1026

1057

VI. CDNCLUSK)NS

The main conclusion of this work is that the evolution
of a superconducting cosmic loop is chaotic. The oc-
currence of the near cusps causes the excitation of high-
frequency modes of the string and of the current. The re-
sulting alternating current is very irregular. As the num-
ber of the excited modes grows the amplitude of the
current grows also but as soon as all modes are excited
the growth ceases and only more or less random peaks
occur. The largest Liapunov exponent is positive, as it
should for a chaotic system.

The electromagnetic radiation is not very effective in
dissipating the energy of the loop. At high frequency the
angular distribution of radiation is very irregular with
several intense peaks; the angular width of the peaks in-
creases with the frequency.

Particle production is very efficient in dissipating the
energy of loops smaller than 10 cm. The back reaction
of particle production should smooth out the cusps.

The problem of computing the final state of the loop is
not tractable since it requires evolving the string for a
time many times longer than it is possible. However, the
chaotic behavior seen here most likely precludes the oc-
currence of the stable smooth rings.

The future of the numerical investigations of this kind
is not particularly good. For small loops the interactions
with the environment must be included; this is particular-
ly true for the back reaction of particle production. Since
very high-frequency modes are rapidly excited even if
there were none in the initial state the spatial resolution
must be significantly improved and this is very time con-

suming. Both problems are difficult. The present code
can achieve a better resolution provided that the compu-
tation of the retarded electromagnetic field is significantly
improved.

The formula or the back reaction of the electromagnet-
ic radiation that has been derived here requires further
elaboration. In particular the question of absorbing the
divergent terms should be further studied by including
the corrections to the Nambu action. The work on this
problem is in progress and will be reported later.

Of course, the main problem is the serious disagree-
ment with the results of Spergel, -Press, and Scherrer. It
seems clear that the controversy is due to the different re-
sults obtained for the electromagnetic field at the cusps: I
got a very large electric field, they do not see anything
special there. This controversy is likely to remain un-
resolved until a third code appears.
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