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The perturbative @CD correction to the semihadronic decay rate of a heavy lepton is expressed
as an expansion in a, . In the case of the ~ lepton, the ratio of the semihadronic and electronic decay
rates is R =3[1+a,/sr+5. 20(ct, /~) + 104.0(a, /n. )3]. The use of R to give a precise determination
of a, is advocated.

A naive estimate of R is obtained by approximating the
numerator by the decay rate into quark-antiquark pairs.
Including du and su, we obtain'

R =N, (cos He+sin Oc)=3 .

The corrections to this naive prediction can be classified
into three categories: (1) perturbative QCD; (2) nonper-
turbative QCD; and (3) electroweak corrections, and they
are all reviewed in Ref. 2. The electroweak corrections
are enhanced by a large logarithm but are still relatively
small, increasing the prediction by about 2.4%%uo. Al-
though the decay is a timelike process, the nonperturba-
tive QCD corrections can be treated systematically using
the operator-product expansion. These corrections are
also estimated to be small, decreasing R by a few percent.
The largest corrections by far are the perturbative QCD
corrections. The purpose of this paper is to express these
corrections as a simple power series in the strong cou-
pling constant n, .

The ratio R can be expressed as an integral over the in-
variant mass of the hadrons:

2 ~ ds sR=— 1—
M' M' 1+2 ImIIT(s+ie)

M

—
ImIIL (s +i e) (3)

The inclusive semihadronic decay rate of the ~ lepton
is conveniently expressed in terms of the ratio

I (r —+v, +hadrons)R=
1(r ~ve v )

where M is the mass of the heavy lepton. The functions
IIT(s) and III (s) are the transverse and longitudinal com-
ponents of the hadronic part of the 8'-boson self-energy
function, with an overall factor of e /96~ sin 0~ re-
moved for convenience. Perturbative QCD can be used
to approximate IIT(s) and IIt (s) for large spacelike s, but
it is not applicable in (3) as it stands, because s is timelike
and the integral extends down to small s. However, as
shown by Lam and Yan, the analytic properties of the
IIT and III allow R to be expressed as a contour integral
in the complex s plane:

1 dS S

c M

2

1+2 IIr(s) —IIL(s)
M

where the contour C runs clockwise around the circle of
radius ~s~=M . This contour avoids the small-s region,
and furthermore, as pointed out in Ref. 5, the factor
(1—s/M ) suppresses the contribution from the time-
like region. Thus, provided M is sufficiently large, the
functions IIT and HL can be reliably approximated using
perturbative QCD.

In the case of the ~ lepton, the mass M is sufficiently
small that one must consider the possibility of large non-
perturbative QCD corrections. Because the timelike re-
gion of the s contour is suppressed, the operator-product
expansion can be used to expand IIT(s) and III (s) in
powers of 1/s. This expansion systematically organizes
all nonperturbative effects into matrix elements of local
operators, and makes reliable estimates of the nonpertur-
bative corrections to R possible. The best available esti-
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mates place them between —1% and —3%. While
there is a large uncertainty in the magnitude of the
corrections, there is no uncertainty in the sign because all
the operators of dimensions 6 or less contribute with the
same negative sign.

We now proceed to calculate the perturbative QCD
corrections to R. Because R can be expressed as an in-
tegral along the contour IsI =M as in (4), it is clear that
the appropriate expansion parameter will be a, (M). Us-
ing integration by parts, (4) can be rewritten in the form

a, (M ) 1——p80

r '2
a, (M )

In the case of three ffavors, these coefficients are po= —,'
and Pi =8. To order a„we find

a, (Me') a, (M ) g+i P(a, (M ))2'
g2

P(a, (M ))P'(a, (M ))+
8~

R = 1 —2 +2 — s II (s)
1 ds s s s d

M M M

d g( 1+2e 's —2e "e—e 4'e)
277

+ — p8 ———p 0l 22
1 4 0

3
a, (M ) + ~ ~ ~

Xs 11 (s= —M e'e) .2 iO

ds
(5)

We have dropped the HL term since the perturbative
corrections do not contribute to the longitudinal self-
energy function. The logarithmic derivative s(d /ds ) II&
can be extracted from the recent calculation of the ratio
R for e+e annihilation to order o, It is equal to the
function D (s) calculated in Ref. 8, except that 3 g Qf
should be replaced by 3 g I Vff I

and (g Qf ) should be
set to 0. Here, Vff. is a Kobayashi-Maskawa matrix ele-
ment and the sum is over pairs of quarks which couple to
the 8' and are light enough to be produced in the decay
of the heavy lepton. In the case of the ~ lepton, the sum
is

I V„d I
+

I V„, I
= 1. The resulting expansion for

s(d/ds)II@ is

a, (M )R=3g IVff I' I+ +(z, + —,",p, )

T

2 2
a, (M )

+ K~+ —,",pii/t, + —,",p,

265 —24m

288

3
a, (M )

+ ~ ~ ~ (9)

In the case of three Aavors, it reduces to

This expansion must be inserted into (6), which in turn
must be inserted into (5). The integrals over (9 can be
evaluated analytically. The result is

a, ( —s)
s II =3+I Vff I

1+ +K,
ds

a, ( —s) R =3 1+ +5.20

'2

+ 104.0
2

+ ~ ~ ~

3
a, ( —s) + ~ ~ ~

t a, (t)= —,'p(a, (t)) .
dt

The expansion of the p function is needed to order a, :
2 3

1 o's—p(a, ) = —po + ~ ~ ~

33 2f 306—38f—
24

K, = 1.986—0. 115f,
K2 =95.87 —4.22f +0.086f

In the case of f = 3 ffavors, the coefficients are
K, =1.641 and K2 =83.98. The coupling constant a, is
the MS (modified minimal-subtraction scheme) coupling
constant evaluated at the renormalization scale p = —s.

To evaluate the integral, we expand the coupling con-
stant a, ( —s) around the point s = —M on the integra-
tion contour s= —M e', —m &0&m.. The behavior of
a, (t) as a function of complex t is governed by the p
function:

This result is consistent with that of Ref. 6, where it is
given in the less convenient form of an expansion in
powers of 1/ln(M /A ).

The coefficient of a, in (10) is large, even larger than in
the ratio R for e+e annihilation which for five flavors
is

2
a, (s) a, (s)

R (s)= 1+ + 1.41
3 7T

2
a, (s)

+64.8
77

The order-a, correction is significant, which gives us
reason to worry that the uncalculated order-a, correction
might also be significant. However, in the absence of any
understanding of the large coefficient, it is reasonable to
accept the correction at face value. In the case of e+e
annihilation, the global fit to R over the energy range
2.6& Vs & 52 GeV is improved by including the order-a,
correction. ' This fit yields a precise determination of the
strong coupling constant: a (33 GeV) =0.135+0.016. If
this coupling constant is evolved down to M„ it becomes
a, (M, ) =0.33+0.08. The prediction (10) for the ratio R
for ~ decay is then R =3.9+0.5. The error has been
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1 —1.973B,
B,

(12)

The direct measurement" of B, yields the ratio
R =3.71+0.13 while an indirect determination of B,
from measuring the lifetime" of the ~ yields the value
R =3.32+0. 16. Using (10) and taking into account the
estimated electroweak and nonperturbative QCD correc-

magnified by the evolution of a, from 30 GeV down to
M and is significantly larger than the present experimen-
tal uncertainty in R.

It is clear that the accuracy of current measurements
of o., will not permit a precise theoretical prediction of
the ratio R for ~ decay. However, as ponted out in Refs.
3 and 6, this procedure can be inverted to determine a, .
In fact, ~ decay is probably the lowest-energy process
from which the running coupling constant can be extract-
ed cleanly without hopeless complications from nonper-
turbative effects. The ratio R is determined experimen-
tally by measuring the branching fraction B, of the w into
electrons, and inserting it into the formula

tions, we obtain the values

a, (M, ) =0.30+0.03 (13)

from the direct measurement of B, and

a, (M, ) =0.19+0.06

from the indirect measurement. The errors are due to the
uncertainty in the experimental measurement only. A
rough estimate of the uncertainty due to higher-order
corrections is the size of the order-n, correction, which is
0.07 for (13) and 0.03 for (14). While this correction in-
troduces a significant uncertainty into this determination
of a„ there is no reason to expect it to be less severe for
other processes where the calculation of the order-n,
correction is prohibitively difficult. Even including this
uncertainty, the ratio R for ~ decay remains competitive
with other methods of determining cx, . If the reason for
the large order-n, correction can be understood, then
high-precision measurements of the ~ lifetime would pro-
vide by far the most accurate determinations of a, .

(14)
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