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The decay ~~v,mm. m provides a potentially powerful means of observing the axial-vector isovec-
tor state expected in the region of 1.2 GeV. Extraction of the properties of this resonance is, howev-
er, complicated by its broad width. We examine the problems of studying such a resonance, espe-
cially the model dependence of its deduced mass and width. Within a clearly defined and well-tested
model we find m, = 1220+15 MeV and I, =420+40 MeV.
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I. INTRODUCTION

Twenty-five years after the birth of the quark model,
light-meson spectroscopy is in a deplorable state. In par-
ticular, aside from the tensor mesons, our knowledge of
the simple I. =1 orbitally excited states is extremely

PC„poor. Qf the 12 states of the P, (J " = 1++),
PC„ 3 tl —++'P, (J "=1+ ), and Po(J "=0++) nonets, one can

reasonably argue' that only six [the f, (1285), b&(1235),
h, (1190), K, (1280), K, (1400), and Ko (1350)] are satis-
factorily understood, and even these six states are not
without their problems.

This paper is concerned with new information on the
axial-vector isovector (a, ) state obtained from recent
measurements of the decay ~—+v,mew. The structure of
the three-pion final states in this reaction is a potentially
powerful tool for studying the a, . Indeed, were the a, a
reasonably narrow resonance, the extraction of its prop-
erties from this reaction would be almost trivial: the
~~v mam. transition scans in m3 from 3m to m, with
a known probe, the axial-vector current. Problems arise,
however, from ambiguities which are present in the treat-
ment of what is actually a broad resonance. One
reAection of these problems is the wide range of masses

and widths which have been extracted from such data
(see Table I).

The properties of the a, were first studied in hadronic
reactions. These studies ' were complicated not only by
the broad width of the a &, but also by the presence of
strong backgrounds, especially the diffractive "Deck
effect." The standard values of the a, parameters quot-
ed by the Particle Data Group are based mainly on these
analyses (see Table I). The discrepancy between the
properties of the a

&
deduced from r decay and the ha-

dronic reactions is obviously another cause for concern.
This discrepancy has been studied recently by Bowler'
who, based on an observation in Ref. 3, found that (1) the
different results quoted by Refs. 2, 3, and 4 (Ref. 5 was
published later) were due primarily to their differing
treatments of off-shell effects (which are important given
the large a& width) and not to differences in their data
and (2) that a fit to the data allowing for unknown mass
dependence of the decay amplitudes off resonance gave
an a, mass, but perhaps not a width, from ~ decay con-
sistent with that from the hadronic experiments. He also
showed that a similar mass dependence was indicated by
fits to the p-dominated processes e+e ~m+m and
~—+v,mm . The result is a very strong phenomenological

Source

DELCO (~ decay)'
Mark II (z decay)
Argus (~ decay)'
MAC (z decay)

p~& 7T 7T p
p~& & 77 n

PDG~
Bowler"

TABLE I. Masses and widths of the 01.

Mass (MeV)

1056+20+15
1194+14+10
1046+11
1166+18+11
1280+30
1240+80
1275+28
1235+40

Width (MeV)

476 120+54
462+56+30
521+27
405+75+25
300+50
380+100
316+45
400+100

This work

'Reference 2.
Reference 3.

'Reference 4.
Reference S.

1220+15

'Reference 6.
Reference 7.

IReference 9.
"Reference 10.

420+40
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case that there is no major discrepancy between the v. and
hadronic data.

Following the observation made in Ref. 3 of the crucial
role mass dependence plays in extracting the properties
of the a

&
from ~ decay, we began this work with the aim

of deducing this mass dependence from theory. Our re-
sults and their interpretation are roughly consistent with
Bowler's. Thus, in one sense, this work may be con-
sidered a justification for the spirit of his parametrization
of the ~~v~, mass dependence. However, we also
determine, within the context of the assumptions we
make, the full mass dependences of the ~~v,m.~a ampli-
tude and their physical origins. To the extent that our
assumptions can be trusted (a subject we address below),
this eliminates a large part of the uncertainty in deducing
the a &'s parameters. We also expose several minor errors
that have been made in previous analyses of the
~—+v,~+~ process. One of these errors concerns the
treatment of the two possible (on-shell) a, ~par cou-
plings. We find no good reason for the usual neglect of
one of these two couplings and, on adding it with the
strength predicted by the flux-tobe-breaking model we
find an improvement in the description of the Dalitz-plot
projections. Another is related to the treatment of off-
mass-shell propagators and vertices which can lead in
general to nonresonant amplitudes, including ones with
new J quantum numbers. In addition we study effects
in ~~v,mme due to the radial excitation of the pion.

II. MODELS AND METHODS

A. Time-ordered perturbation theory

If hadrons were pointlike particles, there would be no
problem (at least in principle) in treating the decay
~~v m.~~ with arbitrary precision in terms of the ha-
dronic fields. Since hadrons are instead composite ob-
jects, one encounters difhculties in using them as efFective
degrees of freedom. Perhaps foremost among these prob-
lems are those which emerge when one tries to perform
covariant perturbation theory.

A Feynman diagram is a sum of time-ordered graphs,
some of which involve particles, and others antiparticles,
propagating forward in time. A crucial requirement for
the graphs of time-ordered perturbation theory to com-.
bine into a covariant graph is that the elementary vertices
be pointlike so that, for example, e —+e y and
e+e —+y have the same strength. Hadrons do not pos-
sess this property. Figure 1 illustrates this point in the
context of the problem at hand. The a& ~pm vertex of
Fig. 1(a) is something that can be measured on shell; it
can also be computed with a modest degree of reliability
in various models since it involves the creation of only a
single quark-antiquark pair. The creation of a

& pm by the
strong interaction from the vacuum, the amplitude at the
heart of the Z graph of Fig. 1(b), is not easily measurable
nor is it an amplitude one expects to match in strength
the a, ~p~ decay amplitude since it involves the creation
from the vacuum of three qq pairs. In fact, there are
cases, such as yp~p versus y —+pp at low energy, where
one knows from direct measurements that the Z-graph

(b)

FICr. 1. Two time-ordered graphs which would combine to
form a covariant Feynman graph for pointlike particles: (a)
strong decay following the weak creation of a

&
and (b) an a&pm.

"vacuum Auctuation" followed by annihilation of a &+.

vertex is suppressed.
This observation creates a dilemma —one can either

have a manifestly covariant calculation containing a
piece of manifestly incorrect physics or one can have a
calculation which uses the correct vertices but is not
manifestly covariant. For narrow resonances, this dilern-
rna is not a serious one because each second-order Z
graph such as Fig. 1(b), representing a fraction
~(E M)/2E~ of—the total Feynman graph for pointlike
coupling, is already unimportant since in the resonance
peak ~(E M)/2E~=I /2M—((1. However, the a, pop-
ulates the 3m. mass spectrum over essentially its entire ki-
nematic range. Thus, ~(E M)/2E~ can—be substantial
and the standard use of covariant perturbation theory is
probably unjustified.

As a consequence of this, and given our more or less
complete ignorance of everything about the Z-graph ver-
tices except that they seem likely to be suppressed, " we
ideally would like to keep in our analysis only the naively
time-ordered graphs, i.e., the non-Z graphs such as Fig.
1(a). They are the graphs which resonate while the Z
graphs provide a smooth nonresonant "background. "
RealistE'cally, however, the convenience of the covariant
approach is dificult to sacrifice, especially when dealing
with four-body phase space. We describe our alternative
method of decoupling the suspect Z-graph "back-
grounds" from the resonance below.

B. Mass dependence of amplitudes

The conceptual separation of the resonant (and
presumably dominant) time-ordered graphs from non-
resonant efFects, in addition to being important for the
reasons just given, has other advantages. One is that
their off-shell behavior is (more or less) completely calcul-
able. This eliminates one of the most serious uncertain-
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ties in studying the a, in ~ decay. Another is that all of
the allowed a& ~per and p —+em couplings for the reso-
nant graphs can be treated. This contrasts with the co-
variant graph procedure in which most of the allowed

couplings are eliminated without full justification.
Consider the Feynman graphs of Fig. 2. The most gen-

eral a, —+pm. vertex factor that may appear in such a
graph is

r" (a, pn) f,g" +f2(p p—)"(p, +p ) +f, (p +p )"(p, +p )'+f4(p —p )"(p, —p

+fs(p +p )"(p, p

where p, =p +p and the f, 's are fo. rm factors which
1

can depend on p, and p . In the usual treatment, only
1

f, and f2 are allowed to be nonzero. ' '6 In general,
this is correct only if all of the participants in the decay
a, ~p~ are on-mass shell since then e .p =e p =0

al al ~ p

where e, and e are polarization vectors. Similarly, the
1

general p —+me vertex factor may be written

I "(p ~i~2) g i(p., p., )"+—g ~(p., +p., )" (2)

We thus see that the unknown off-shell behavior of these
graphs can be problematical. Not only does one not
know the dependence of f, on p, (the dependence asso-

1 1

ciated with Bowler's parametrization' of the off-shell be-
havior), but one also knows neither the off-shell depen-
dence of f„f2, and g, nor the functions f3, f4, f5, and

g2 which can play a role off shell.
There is a closely related problem in taking the vector

propagators for either the a, or p off shell (see Appendix
A). This propagator is sometimes taken to be (ignoring
decay channels for illustrative purposes)

and the usual neglect of g2 is valid only when the p is on-
mass shell. Finally, one must also allow for mass depen-
dence in the weak %~a, vertex:

I" ( &~a, )= if, (p,—)g"

instead of

g" +k"k'/k
k —m +i@

—g" +k"k /m

k —pl +lE

(4)

(p(0, s ) ~
j", (0)~0) cc f e*" (6)

These two propagators only differ significantly far off
shell so that the choice between them corresponds to yet
another difficulty that does not arise for narrow reso-
nances. For hadrons treated as elementary fields, the
latter propagator should be used although it often is not.
Note, for example, that if P were used for the 8'boson,
~~pv would be forbidden.

Given all of these problems, one might despair of com-
puting the correct mass dependence in ~~v,~+~. How-

ever, almost all of the ambiguities we have just discussed
are associated with the nonresonant background which
according to the discussion of time-ordered perturbation
theory made above is an unknown common to all analy-
ses anyway. To see this in a simplified context, consider
the production of ~+a via the p in e+e ~~+~ . To
compute the amplitude for the graph analogous to Fig.
1(a) in the e+e center-of-momentum frame one need
only know for physical states the two matrix elements:

( m+(p) ~ ( —p) IH,„(0)Ip(0, s, ) ) ~ g, e, p, (7)

7r2 7r

p l

a,

FIG. 2. Some covariant graphs contributing to v —+v,~~+&m3

via the a, and p intermediate states. The blobs represent gen-
eral vertex functions.

where j", is the electromagnetic current and H,b(0) is

the Hamiltonian density responsible for meson decay.
We see that here f is simply a constant (independent of
p) even when the p has internal structure and that the
strong decay involves only the single form factor g&

[compare to Eq. (2)]. The full Feynman amplitude, in
contrast, would in general involve gz and an f depen-
dent on p =(—,'s —m )' . Moreover, the two matrix ele-

ments (6) and (7) can be readily computed in various
models. The electromagnetic decay constant f in the
quark model involves only g (0), where g (r) is the spa-
tial wave function of the created qq pair in the p meson.
The form factor g &

can, for example, be computed in the
flux-tube breaking (see Ref. 17) or quark-pair creation
(see Ref. 18) model. Thus, the physics, and therefore the
mass dependence, of the non-Z diagrams for
e+e —+p —+~+a is, while model dependent, relatively
straightforward. An analogous situation holds for the
more complicated process ~—+v,m.m~.
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C. The rate for r~v mm. m

With these observations in mind, it would be natural to
calculate r~v m~m. via the non-Z graphs corresponding
to sequential processes such as r~ v~ &, a

&

—+p~, puma,
and r~v, ~', m' —+p~, p~~m. For several reasons, one
of which is the desire to represent the effects of Z graphs,
one would then add to these resonant graphs a
parametrized nonresonant amplitude.

Given that the nonresonant background amplitude is
unknown, it is much more convenient computationally
(as opposed to conceptually) to proceed by another route.
We restore covariance to the amplitude, but we do so tak-
ing care that (1) the resonant portion of the amplitude is
exactly the time-ordered one analogous to the one we
have analyzed and understood above and (2) the parame-
trization of the nonresonant background amplitude is
suSciently rich that it can cancel the spurious effects of
the Z graphs induced by making the resonant amplitude
part of a covariant amplitude.

There is no unique implementation of this procedure,
as one might suspect from, e.g. , the fact that Eq. (1) has
five amplitudes while the on-shell vertex has only two.
However, it is obviously convenient to choose an im-
plementation which, in some sense, keeps unwanted Z
graphs associated with the resonant graph to a minimum.
One might, ' ' for instance, take f3

=f4
=f5

=0 in Eq.
(1). While certainly an acceptable alternative, this choice
produces a vertex I " (a, ~p~) which can annihilate
pseudoscalar components of an off-shell a& and create
scalar components in an off-shell p. This means that the
nonresonant parts of the covariant amplitudes would ap-
pear even in channels with the "wrong" quantum num-
bers with respect to our resonant time-ordered amplitude.
We therefore choose the route of constraining the vertex
factors I"""(at +per) and —I "(p~rr, mz) so that they may
produce only transversely polarized vector particles even
o+ shell by demanding p" I „=p," I „=p"I„=0. This

1

choice has the additional advantage that its vertices an-
nihilate the k"k part of the vector propagators which
are relatively complicated for broad, off-shell particles.
The results of applying these constraints to the vertices
we need are presented in Appendix A, as are the full vec-
tor propagators and a brief derivation of the r~v, m.m~
rate. A quark-model calculation of all necessary cou-
plings is described in Appendix B.

III. RESULTS

As the discussion of Sec. II emphasizes, we must allow,
in addition to the a, and m' resonances expected in this
region, a general nonresonant background amplitude.
However, an initial fit to the data without such back-
ground indicates that the resonant terms are dominant.
As a result we need not be very sophisticated in our pa-
rametrization of the background amplitude —any scheme
that can represent small, smooth effects will suf5ce. We
proceed on two fronts.

(1) We modify the suspect Z-graph terms present in the
covariant (but now by choice transverse) a& amplitude.
Given the quality of the initial resonant fit, we are

=P„,(s)+P„,„„,(s), (8)

where m, (s) is the covariant running mass of Eq. (A8),
1

m, is the a, on-resonance mass defined below Eq. (A8),
1

and

P„,(s) =
t 2m, [&s —m, (s)]+im, I, (s) j (9)

is the purely resonant time-ordered piece of the propaga-
tor P (s) in the rest frame of the a &, with m, (s) the mass

1

function due to coupling with only those states involved
in the resonant propagator (see Appendix A). We then
study the effect on the deduced a& parameters from the
replacement

P (s)~P (s;a) —=P„,(s)+aP„«„,(s) (10)

in the rate formula (A10) of Appendix A, with 0 ~ a ~ 1.
(2) We add an incoherent polynomial background rate

term defined by

dI b

dS

(m, —s)
g c„(s—9m )",

where the c„'s are fitting parameters. Such a term allows
us to take into account many possible small effects, in-
cluding transverse Z-graph effects that cannot be de-
scribed simply by a&1, nontransverse Z-graph efFects,
contributions from other channels (e.g. , the low-mass
tails of radial excitations of the a, and p and the high-
mass tail of the pion) and residual experimental back-
grounds.

With some prejudices based on the discussions in Sec.
II, various fits to the data led us to define a "preferred fit"
shown in Fig. 3 with the following ingredients.

(1) An a, with properties as described in the Appen-
dixes but with a=0 in its propagator [see Eq. (10)] and
with the mass shift given in (A31) ignored. The choice
a =0 is suggested but not required by the fits (see below);
we prefer it since Z-graph suppression is expected on the
grounds discussed above. (It should be noted that a=O
corresponds to Z-graph suppression in the a, rest frame
and cannot strictly be interpreted as effecting such a
suppression in general. ) The decision to neglect the s
dependence of the mass shift arises from our inability to
calculate it with confidence; see the discussion in Sec. IV.
We also ignore the mass shift in the p-meson propagator.

(2) A n' with the properties predicted in the Appen-
dixes. The addition of a m' is not required by our fits, but
we include it in our ' preferred fit" because it is unequivo-
cably expected with properties we are convinced cannot
be too far from those we use. The total width appearing
in the m' propagator contains, in addition to the partial
width for n' +(mm ) m, a constant allowi—ng for the decay
vr'~(mn), vr via the broad em. S wave; the value of this
constant is taken to be 150 MeV.

satisfied to do this by considering simple modifications to
the covariant a

&
propagator. Our procedure is to decom-

pose

P(s)—= [s —m, (s)+im, I, (s)]
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300—

L~ 800—

(a)
(3) The polynomial background of Eq. (11) used to ab-

sorb various small residual effects described above which
might otherwise distort the deduced a, properties.

While we prefer this fit, we use it mainly as the starting
point for an exploration of uncertainties; i.e., we do not
allow our preferences to have much inAuence on our con-
clusions about the ranges in which the true a

&
parameters

lie. The delineation of these ranges is one of the main to-
pics of the next section.

100—
IV. DISCUSSION AND CONCLUSIONS

0
0 1.0

~ ~ ~ 0 ~ ~

s (t:ev')
8.0 8.0

110

70—
P.

'U

30—

—10
0.6 1.0

m (Gev)

1.8

30

10

0
0.6

.L II

1.0
m (GeV)

1.4 1.8

FIG. 3. Fits to experimental three-pion mass spectra (Refs.
2—4) from ~~v,mew. The solid curves are the "preferred fits"
described in the text. The dashed curves show the fitted back-
ground polynomials of Eq. (11) and the dotted curves the pre-
dicted e8'ect of the n'. The theoretical curves have been convo-
luted with a detector resolution function via Eq. (A32) with A,
B as indicated: (a) ARGUS (Ref. 4); A =0.0 GeV, B=0.030;
(b) Mark II (Ref. 3); A =0.0 GeV, B =0.065; (c) DELCO (Ref.
2); A =0.0 GeV, B =0.065. The values of A and B for the
DELCO results are taken from Ref. 2; those for ARGUS and
Mark II were not available and are estimates.

The discussion of the reliability of our results is not a
simple matter since many of the uncertainties in our con-
clusions arise from theory, not experiment. An impor-
tant ingredient of our analysis, as emphasized in Secs. II
and III, is the isolation of the time-ordered resonant piece
of the usual Feynman graph and our subsequent analysis
of its off-mass-shell behavior. One consequence of this is
that the weak decay constant f, for the resonant part of

1

the Feynman graph is expected to be approximately in-
dependent of m& (see Appendix B for a discussion of
possible deviations from constancy). Bowler's analysis'
shows that this conclusion can be reached (within errors)
on phenomenological grounds by fitting the data; our ar-
guments provide a rationale for considering the mass
dependence of f, to be known and hence reduce this

1

source of error on the fitted a
&

mass and width.
However, a significant number of other uncertainties

remain. The situation is summarized in Table II where
we show the results and qualities of various fits.

(1) "Preferred": This is the fit described above. It al-
ways gives acceptable confidence levels and no other fits
we try ever provide any significant improvements.

(2) a~ 1: This fit explores the importance of the
suppression of Z graphs due to setting +=0 in the pre-
ferred fit [see Eq. (10)]. We note that y is a very fiat
function of a. (The a=O value is preferred by the
ARGUS data by about one standard deviation. ) The
fitted a& parameters are, however, insensitive to this
change, the effect being absorbed into the background
constants c„ofEq. (11),

(3) m, ~rn, (s): This fit includes the mass function
1 I

m, (s) appearing in the resonant a, propagator of Eq. (9).
1

We consider our computed m, (s) to be considerably less
1

reliable than, e.g. , our I, (s) [see point (7) belowj. This is
1

simply because such a mass function depends on the cou-
pling of the resonance to all other channels, whereas our
formulas include only the coupling to pm and
K K+K *K. When only the pm channel is considered,
this mass function increases rather dramatically through
the resonance. The coupling to K*K+K K consider-
ably lessens this effect and we expect higher channels to
further flatten this function near the a, resonance. These
uncertainties lead us to exclude this effect from our "pre-
ferred" fit, but as fit 3 shows, the data alone cannot ex-
clude the possibility that such effects are important.
[Note that for simplicity we have ignored SU(3)-
symmetry-breaking effects on the relative strength of the
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TABLE II. Various fits to the ARGUS (Ref. 4), Mark II (Ref. 3), and DELCO (Ref. 2) three-pion mass spectra. "Preferred" refers
to the fit described in Sec. III. Each of the subsequent fits differs from fit 1 only by the change indicated in the first column. "Best es-
timate" values are based on the distinct fits 1, 2, 3, 4, and 7 weighted by both the statistical confidence levels (C.L.) of the fits and to
some extent our confidence in the physics of the fits. The numbers quoted are therefore somewhat subjective.

ARGUS
m, (GeV) I", {GeV)

Mark II DELCO
C.L. m, {GeV) I, (GeV) C.L. m, (GeV) I, (GeV) C.L.

(1) "Preferred"
(2) ~
(3) m, -+m, (s)

1

(4) e„ 0
(5) f ~ ~0
(6) f,D ~0
(7) P~0.3 GeV
(8) No K*K+K *K
Best estimate

1.213+.011
1.219+.010
1.236+.012

1.242+.011
1.215+.011
1.212+.011
1.203+.008
1.207+.009
1.220+.015

0.487+.025
0.434+.029
0.436+.029
0.376+.022
0.421+.026
0.400+.045

0.04
0.54
0.56
0.15
0.53

0.434+.030 0.54
0.396+.024 0.37
0.349+.019 0.36

1.25+.05
1.24+.03
1.26+.04

1.25+.02
1.25+.04
1.25+.04
1.22+.02
1.21+.03
1.24+.04

0.58+.10
0.49+.07
0.41+.05

0.51+.06
0.57+.09
0.58+.10
0.47+.06
0.49+.08
0.49+.09

0.51
0.56
0.36

0.24
0.50
0.48
0.63
0.27

1.18+.06
1.19+.06
1.22+.07

1.22+.04
1.18+.06
1.18+.06
1.19+.05
1.17+.05
1.20+.06

0.43+.19
0.42+. 15
0.37+.12

0.57+.13
0.43+.18
0.43+.19
0.48+. 14
0.37+.17
0.46+. 16

0.12
0.14
0.16

0.18
0.12
0.11
0.18
0.10

K*K and pm couplings. ] Our inability to reliably predict
m, (s) represents, in our opinion, the greatest source of

1

uncertainty in extracting the a
&

mass and width from the
data.

The importance of the mass function m, (s) (and the

K "K+K *K channel) has also been considered recently
by Tornqvist (see Ref. 19). He found that the inclusion of
these two effects markedly increases both the fitted a,
mass and width. [Note that in Table I of that reference,
the values in parentheses correspond to the "usual"
Breit-Wigner in which m, (s) is taken to be constant and

1

the K*K+K *Echannel is neglected. ] However, we find
that the fitted a

&
width would decrease on including the

running mass and the E*E+E 'E channel. This
discrepancy arises mainly from our use of hadronic form
factors rather than the pointlike couplings employed in
Ref. 19. The form factors generate a mass-dependent a,
width which falls off at high mass in contrast with the
indefinitely increasing width of Ref. 19. The effect of in-
cluding a running mass which rises through the reso-
nance is to increase the fitted resonance mass and de-
crease the width, whereas the result of introducing the
E*E+E*E channel in the total mass-dependent width
is an increase in both the a] mass and width. Thus, con-
sidering both the running mass and the K*E+E*E
channel increases the fitted value of the mass regardless
of the choice of couplings. The effect on the width, in
contrast, is not model independent: for pointlike cou-
plings, the effect of the large width at high mass dom-
inates and leads to an increased width on resonance as
found by Tornqvist, while in our model the width would
decrease slightly.

(4) c„=O: Here we see that some sort of nonresonant
amplitude is required by the data as the confidence level
of the fit with the c„ofEq. (11) set to zero drops dramati-
cally. This is to be expected, but fortunately the a& pa-
rameters do not shift very much despite this large de-
crease in the quality of the fit. Note that the main efFect
of the c„ terms is to reduce the sensitivity of our con-
clusions to the tails of the distributions.

(5) f =0: The absence of the radial excitation of the
pion with the properties predicted in Appendix B has
essentially no effect on our conclusions concerning the
parameters of the a&. However, if we were to allow a
large vr'(1300) contribution, our conclusions might be
affected. This possibility could be ruled out experimen-
tally by studying the 3' Dalitz plot.

(6) f, =0: Our model predicts the ratio of the
D and S--wave amplitudes in a, ~(mn)~ to. be

P
A [a& +(per)D]/A—[a& +(pn)s]= ——0. 15. Since the ad-
dition of the predicted D wave produces theoretical ~m

projections of the 3m Dalitz plot in better agreement with
experiment, as indicated in Fig. 4, we have little reason to
worry that this model dependence is adversely affecting
our conclusions. We also have the known success of the
model for the analogous D/S ratio in 6, ~co~ to support
our confidence. This fit shows that our conclusions on
the aI mass and width are in any event insensitive to this
ratio. The value of D/S extracted from a fit to the exper-
imental Dalitz-plot projections is given in Table III and
agrees well with our model's prediction.

(7) P~O. 3 GeV: The mass dependence of the hadronic
form factors derived in Appendix B is already well tested
by studies of strong decay processes. For example, the
~sr partial widths of the natural-parity sequence p(770),
f2(1270), p3(1690), f4(2030), . . . , are well described by
our model even though they contain relative phase-space
factors (p/po) +' which are very sensitive to the intrin-
sic scale po of the transition. ' Also, the model actually
predicts with surprising accuracy the absolute width of
the a]. There are, nevertheless, reasons to be
skeptical —the apparently similar electromagnetic form
factors computed with the same wave functions are too
hard; i.e., they drop too slowly with q . %"e have accord-
ingly considered the efFects of varying the form-factor
slope parameter P (see Appendix B) from 0.4 GeV to 0.3
GeV in this fit. The g change indicates that, as in the
global fit, smaller /3 values are not preferred.

(8) No K*K+K *E: Not only does the K*K+K *K
channel have a dramatic effect on the mass shift function,
but also, as this fit shows, its inclusion in the total mass-



39 THE a& IN v DECAY 1363

dependent a, width has an effect on the deduced reso-
nance parameters.

On considering the uncertainties discussed here and in
Sec. III, we are led to the conclusions listed in Table III.
In addition to noting the consistency of our mass and
width (see Ref. 20) for the a& with the standard values
based on hadronic reactions, ' we would like to make a
few comments on some of the implications of these and

Bo

(a}

m. (Me V)
1

I, (Me V)

f, (GeV')

D/S
m„
I

1220+15

420+40
0.25+0.02

—0. 14+0.03
No significant constraint
No significant constraint

TABLE III. Parameters extracted from ~~v,~~~. The
quoted mass and width come from a weighted average of the
values in the last row of Table II. The value of f is derived

a&

from the absolute rate for v~v, ~me. The D/S ratio is extract-
ed from fits to the Dalitz-plot projections of Fig. 4.

60—

4o—

ZO—

0
0 0.2 0.4

sl or sz (Gev )
0.6

the other parameters of Table III. Our comments are
very incomplete: we focus mainly on interpreting the re-
sults listed there within the constituent-quark model.

We begin with the mass. In the quark model it is sensi-
tive to an interplay of spin-orbit and hyperfine interac-
tions. A mass in the range we have extracted points to a
nonzero contact interaction in the P-wave mesons as ex-
pected in relativistic quark models (see, e.g. , Ref. 21).
This is because

150
—,'(Sm, +3m, +m, ) —mb =32+19 MeV

2 1
(12)

100

0

50

0
0

80

Cq

40

0
0

I

0.2

~ 4.
1

'~

I

0.4
I

0.0

0.4
sf or sZ (GeV~)

I

0.6 0.8

1.2

would be zero with only spin-orbit and tensor interac-
tions. [We have used m, =1.15+0.15 GeV in this rela-

0

tion since although the Po ao probably cannot be associ-
ated with the ao(980), it is still expected in the 1.0—1.3-
GeV mass range. ] Its sign is as expected (the same as the
p-m. splitting), as is its magnitude.

In addition to the nonzero combination of masses
given in (12), the observation that f, &0 also reveals the

1

failure of the "wave function at the origin" approxima-
tion. Since the weak current creates the ud pair in the a

~

at a point, f, is also proportional to g(0) and vanishes in
1

the L, =1 states in the nonrelativistic limit. It has been
appreciated for some time that nonleading terms in p/I
give a substantial value to the a& weak decay constant
(see Ref. 22). The value we extract in Table III is con-
sistent with such expectations (see Appendix B). It is also
roughly consistent with expectations from current-
algebra sum rules (see Ref. 23).

The a& width of Table III and the D/S ratio provide
rather stringent tests of models of hadronic decay. In the
context of the quark model they provide important tests
of the connection between the spin-singlet decay b

&
~con

and the spin-triplet decays such as a, ~pm. Indeed, both
the simplistic elementary-pion-emission model (see Ref.
21) and the Aux-tube-breaking model' ' give

sI or s8 (GeV)

FIG. 4. Comparison to experimental (Ref. 4) two-pion mass

projections of the three-pion Dalitz plot for various three-pion-
mass bins. The solid curves correspond to the "preferred fit"
described in the text and the dotted curves to the fit with the

a& ~pm D-wave amplitude arbitrarily set to zero (fit 6 of Table
II). (a) 0.81 GeV' m 3 1.1025 GeV, (b) 1.1025
G V m 1.44Gev 7 (c) 1.44Gev m3~ «1.96Gev .

A(a, ~(p~)s) =&32S, ,

A (b, ~(con. )s )= —&8 S, ,

A (a
& (pm)D ) = D&-

A (b, ~(co~)D ) = D, , —

(13)

(14)

(15)

where S, and D& are (in general, momentum-dependent)
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S- and D-wave amplitudes. The Aux-tube-breaking model
predicts D, /S, independent of any free parameters,
while in the elementary pion emission model this ratio is
determined by fits to other decays. Both models give the
observed D/S ratio in b, ~con and are consistent with
both the D/S ratio in a& ~per extracted here as well as
the total a& —+p~ decay rate. In addition to the impor-
tance of this result in its own right, it lends further
credence to the observation' based on these models that
the S-wave decays of the known scalar mesons fo(975)
and ao(980) are inconsistent with those of the Po quark-
model partners of the az, a &, and b &.

It is unfortunate that ~~v,m~m provides no evidence
at this time for the radially excited pion. The observation
of the m', or its nonobservation at the level expected, has
important implications in the search for pseudoscalar
glueballs. The radially excited isoscalar pseudoscalars
should be produced in yy collisions by a mechanism
similar to that which makes the m' in ~ decay. The
present lack of evidence for these states is hampering the
study of possible glueballs with J =0 +; information
on the m' could be the key to understanding this whole
sector. It is possible tQat such considerations alone
would justify a higher-statistics study of the ~—+v,mme

Dalitz plot for pseudoscalar contributions. The experi-
mental determination of the J =0 + background in
this Dalitz plot would also allow a more accurate deter-
mination of the a

&
parameters.

A higher-statistics study of ~~v,m.~m could improve
our understanding of the a& in other ways. It would, first
of all, directly reduce the errors in the a& parameters, al-
though with a reduction in experimental errors by a fac-
tor of 2 these would become dominated by theoretical un-
certainties. The availability of meaningful data at
higher-3m. mass would indirectly reduce theoretical un-
certainties by providing a measurement of backgrounds
(both axial-vector and pseudoscalar) off resonance which
could be extrapolated under the resonance. Very-high-
quality data might also see or limit the e6'ect of the open-
ing of the K*E+K *E channel for a

&
decay, thereby el-

iminating a further theoretical uncertainty. There are
also, unquestionably, improvements that can be made in
our theoretical understanding of these decays including
careful study of the presumed small residual mass depen-
dence of f, , direct calculation of the Z-graph suppres-

sions, consideration of higher mass virtual channels, the
study of theoretical and phenomenological constraints on
the momentum dependence of strong form factors, etc.
We believe that such experimental and theoretical e6'orts
are well justified and could lead to a substantial improve-
ment in our knowledge of the a& and m'. However, we
must also acknowledge that the large width of the a&

presents a barrier to a precise determination of its proper-
ties that, at least for now, remains.

leted. We are particularly indebted to M. G. Bowler for
conversations. This work was supported in part by a
grant from the Natural Sciences and Engineering
Research Council of Canada.

APPENDIX A: VERTICES, PROPAGATORS,
AND THE DIFFERENTIAL DECAY RATE

kI'k " k ~

(q2 k2) gPv+ + q q q qPkv
apm k q q

2 I 2 2

+g (q, k ) q& —k& q
q

(Al)

(A2)

k qI (m.'~p~)=if (q, k ) q' — k (A3)

where the form factors are all real. They are calculated
in Appendix B in the Aux-tube-breaking model.

The propagator 6""(k) of the interacting a, or p is
given by the self-energy diagrams of Fig. 6. With the
"bare" propagator G~o given by

—g""+k "k "/m
iG~O (k)—=

k Pl o+EE
(A4)

where mo is the "bare" mass, and the one-particle-
irreducible bubble co„ofthe general form

p k, &

7l s

a&

q,p k, v

~"(~,-+pm ) r"(p-+~ n. ) I'"(m ' -+~n.)

To construct the covariant amplitude corresponding to
Fig. 2 (and the analogous m. ' graphs) one needs the ap-
propriate vertices and propagators. As discussed in the
text we choose our vertices to be transverse. Thus, with
the labeling of Fig. 5 and with the pions all on-mass shell,
the vertex factors may be written

I" (a, ~pa)

ACKNOWLEDGMENTS
(b) (c)

We gratefully acknowledge the hospitality of the
Department of Theoretical Physics and the Department
of Nuclear Physics, Oxford, where this work was comp-

FIG. 5. (a) The a
&
~pm vertex, (b) the p~m2m. 3 vertex, (c) the

m'~pm vertex; in all cases the momentUm flow of the lines is
from the bottom to the top of the diagram so q =k +p and
k =p2+p3.
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With our use of transverse vertices, the k"k term con-
veniently never enters. For the ~', the foll propagator is
of course analogous, with the numerator in (A6) equal to
unity. As usual we write

co(k )=m (k ) —mo —imzIz(k ),
so that the denominators are in the Breit-Wigner form

k2 —m (k )+impel(k ) . (A8)

FIG. 6. The propagator G~ (k)=GO (k)+Go (k)co„„(k)GO
+ . . - as a sum over one-particle-irreducible (1PI) bubbles.

We define the mass mz of the resonance to be the value
of m(k ) when m (k )=k and the on-resonance width
to be I z(mz).

If only the non-Z time-ordered graphs contained in
Fig. 6 are summed, one obtains a noncovariant "reso-
nant" propagator whose denominator is given by

co (k)= —i [co,(k )( g„+k—„k /k )

—co2(k )k„k /k ],
one finds, since G '= Go ' —co, that

(A5)

~g(E)2E„E E. 5E—~(E—)+i (A9)

iG„(—k)

k —coi(k )+co2(k )
k„k /k

mo+cgi(k )

k —mzo a)~(k—)+is
(A6)

where Ez=+k +m~, E=~k +k, I z(E) is the
mass-dependent width related to the covariant width by
I z(E)=(m~/Ez)I ~(k ) and 5E&(E) is the (renormal-
ized) level shift satisfying 5Ez(ER ) =0.

%'ith these factors in hand, it is straightforward to
proceed to the rate. One finds by standard methods that

I~ ~3~ G cosg 1—
ds ds&d$2

2
2$1+ p, (s,s»s2)+ p~(s, s', si)
m~

(A10)

where p, and p are axial-vector and pseudosc alar
spectral densities, s=(p&+pz+p3) s] (pi+p3), sz
=(p, +p3), and s3=(p, +p2) . For the a, resonance
alone one has

p, (s, s&,s2) =f, P, (s)F, (s„sz), a,

while for the m' alone one has

pz(s, s„s2)=sf P .(s)F (s„si), (A12)

where the f„are the weak decay constants discussed in

Appendix Q (see Fig. '7), the covariant propagators are
given by

P'"(W"a,) I (W-+sr')

P„(s)= j [s —m„(s)] +m„I „(s)[ (A13)
(b)

[note that for the a, propagator in our fits we use P(s;a)
given in Eq. (10)]and FIG. 7. (a) The 8'~a

&
vertex and (b) the W~m' vertex.
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F„(s„sz) =2(8') [P (s, )D„(s„sz )

+Pp(sz)D„(sz, s, )

+25,(s„sz)I„(s„sz)], (A14)

in which

and the width of the p meson is given by

m fp „(s;)
I (s, )=I (mp)

3/2
s,. —4m

m —4m

(A16)

6(S1,sz ) =Pp(s1 )&p(sz)[(s1 —m
p )(sz —m p )

+m I (s, )I (sz)] (A15)
The direct (D) and interference (I) factors are most easily
evaluated in the rest frame of n. For the a

&
we have

D~ (» 2 [~1(» 2)»+rz(» 2)pz+ r1(» 2) 2(» 2)»'Pz]~ (A17)

(sl~sz) [rl(sl~sz)rz(sz~sl )P1+rl(sz~sl )'rz(sl~sz)P2+[rl(sl~ 2)rl(sz~sl )+rz(sl~sz)rz(sz~sl )]Pl Pz] ~3S ~

while, for the radially excited pion,

D ($1,sz ) r3(s1 ysz )/s t

I~ (S1,$2 ) —T3($1($2 )73(S2,$1 )Is

where the functions appearing above are defined by

1(S1,S2)=fp (Sl )[f,p (S,S, )

(A19)

(A20)

m, I, (s)= Jds, ds F, (s„s )+m, I (s), (A27)

m I (s)= f ds, dszF (s1,sz), (A28)

with the width for the a, to decay to K*K+K *K given
by

(
2 )1/2

m~ I ~ (s) = f (2g+yz)+ fgy(yz —g)

2gap7r( ~ 1 )( 3 2 )]

2(» 2) fp~~ 1)f~p~

r3(s»sz ) ——,'f (s, s1 )f (S1 )(s3 —sz )

(A21)

(A22)

(A23)

2p]-p2=s) +s2 s —m +2EIE2,
2&s E; =s+m —s;,

(A24)

(A25)

and p„p2 and p& p2 are expressed in terms of Lorentz in-
variants using

2

(g yz)z
4

(A29)

j
m (s)=m ——P ds'

n n

m„I „(s') m„I „(s')
s s s m~

where (=4sm „y=s —m~+mz+, f=f z~z(s), and

g =g „(s). We have restricted the sum over channels
aK

to pm and K'K+X 'K for practical reasons. The mass
shift functions are calculated from these widths using

p;=E, —m (A26) (A30)

The total mass-dependent widths appearing in (A13) are
given by

0 R ~ 0 I e ~ ~
I

0 ~ I

1.4

0.8—

0.4—

0.8—

1.1 0 1.0 8.0 3.0
0

0 1.0 8.0
s (Gev )

3.0 s (GeV')

FIG. 8. The mass-dependent widths. The solid curve is the
total mass-dependent a& width from Eq. (A27) including the pm
and @*%+K*K channels assuming SU(3)-symmetric coupling
relations. The dotted curve indicates the a& —+(m.m)~m partial
width.

FIG. 9. The running mass functions. The dotted curve is the
covariant mass function m, (s) from Eq. (A30); the solid curve

1

shows the resonant running mass function m, (s) given by Eq.
1

(A31). Both the pm and E'*%+K*K channels are included in
these results.
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1„(m' )
m„(s)=m„— P J dm'

2K mth m s

I„(m' )

m m~

(A31)

The width function of Eq. (A27) and these mass shift
functions are shown in Figs. 8 and 9, respectively. Nu-

merical integrations over the Dalitz-plot variables s, and

s2 can be done at this stage either partially to produce
projections corresponding to s& distributions as a func-
tion of s or fully to produce the three-pion-mass spec-
trurn.

Finally, in order to compare our results with experi-
ment, the theoretical results must be convoluted with a
detector resolution function; e.g. ,

dI ideal
1 +~, m' 1 m —m' 7~ V 3'

dm' exp
m ~—~ v'2~ o (m ') 2 a (m ') ds' (A32)

where m =+s, m'=v's', and o.(m')= A +Bm' with A

and 8 constants.
mediate states and hence the on-mass-shell matrix ele-
ments

APPENDIX B: FORM FACTORS (a, (p„s, )l & "(0)l0)=f, e*"(p„s,) (83)

1. Weak vertices

The a& and ~' weak vertices corresponding to Fig. 7
are (see Ref. 24)

I "(8'~a, )= if, (q )g ",—
I (W~m')= —f (q )q

(81)

(82)

In general, the q dependence of these weak form factors
is unknown. However, as explained in the text we wish
to use the q dependence appropriate to the time-ordered
resonant graphs. In the approximation where only the
direct W~a

&
and W~m' processes contribute, this

dependence is trivial since the time-ordered graphs just
involve the off-energy-shell but otherwise physical inter-

The extracted parameters of the a, can, in principle,
depend on the mass dependence of the couplings which
enter in (Al) and (A2) and in the weak vertex to be dis-
cussed below. They could also depend on the existence of
important contributions to ~~v,~m~ from other reso-
nances. In this appendix we compute the form factors
relevant to these issues in the quark model. The results
provide a "base prediction" from which we explore the
possible sensitivity of our results for the a, on such
model-dependent effects.

We exploit the quark model by using the relativized
mock-meson method (see Refs. 21 and 22). The basic
idea of the method is that, in the weak-binding limit, the
quark model provides a Lorentz-invariant decomposition
of any matrix element which can be put in one-to-one
correspondence with a physical matrix element of in-
terest. One can therefore associate the true Lorentz-
invariant form factors with quark-model formulas valid
in the weak-binding limit. The mock-meson method then
either uses these formulas or some relativized version of
them with physical parameters. One thus assumes that
the formulas, or some relativized version of them, can be
extrapolated from the weak-binding limit (p /m ((1)to
the physical case where in fact p /m is of order unity.

[analogous to Eq. (6)j and

(~'(p. )l ~'"(0)I» = —if.p~. . (84)

4&2~ki '"
)3/2

m

d R ( )fear'
(2 )3/PM &y2 PP

where P«~(p)=( i) R«(p)Y& (—Qz) is the unit normal-
ized momentum-space wave function, m is the constitu-
ent quark mass, and E =(p +m )' . We determine the
wave functions by diagonalizing the nonrelativistic
Coulomb-plus-linear-potential problem

4a,
V(r) = — + br +c

3r

in a harmonic-oscillator basis with the harmonic-
oscillator parameter used as a variational parameter. The
constants of the potential are c = —0.84 GeV, a, =0.5,
and b =0.18 GeV; the quark mass is 0.33 GeV and the
mock-meson masses M are both taken to be 1.3 GeV.
The factors of (m /E) ' in (85) and (86) are inserted to al-

where f, and f ~ are constants and 3"(0) is the axial-

vector current. There are, it should be noted, higher-
order graphs which can give energy dependence to these
form factors. If, for example, we relax the assumption
that the a& is excited directly by the 8 but still maintain
the assumption of resonance dominance (which should be
reliable), then the a, could be excited indirectly via the
process W~a', ~a, . Here, the a

&
is a radial excitation

of the a& and the a'~~a, mixing can occur via common
strong (virtual or real) decay channels. Since such a mix-
ing is unlikely to be strong and given that it would in the
first approximation be energy independent, it should be
safe to ignore corrections to the f, =const approxima-

tion.
The weak decay constants appearing in (83) and (84)

can be estimated in the mock-meson method which gives
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e;=0 —1E.=—
2

Experimental
value

TABLE IV. .The weak decay constants. f, and f are cal-

culated using (85) and (86); f is determined using an equation
analogous to (B6). The parameters e; are those in Eqs. (B5) and
(86). The experimental value quoted for f, is determined from

1

a fit to the absolute rate for ~~v mme. .
f (mp)
f (m, , m') (GeV)

g, (rn, , m ) (GeV)

f ~ (m, , m ~)(GeV)

Model prediction

6.08'
4.8
6.0

5.8
7.3

Fit to data

6.08+0.04
4.6+0.2
5.4+0.5'

TABLE V. The strong decay on-shell form factors.

f (GeV)
f, (GeV')

f ~ (GeV)

0.19
0.22

0.08

0.14
0.16

0.04

0.11
0.12

0.02

0.132
0.25+0.02

1 1.9

'Fit to p~n. m to determine string-breaking constant yo.
Fit to ~~v mm. ~ (Fig. 3) and m~ projections (Fig. 4).

low for relativistic corrections, as suggested in Ref. 21.
Table IV shows the results obtained from (85), (86), and
the analogous formula for f as a function of the parame-
ter e, . Since relativistic corrections are expected to be
more important in the pion than in the ai, it is not
surprising that the pion favors a larger value for e;. For
the fits of the text we take f ~ If, =0.2 GeV

1

2. Strong vertices

The strong form factors f, , g, „,and f „defined in
Appendix A can be computed by similar methods. Since
they involve the creation of an additional qq pair, they
are less trivial dynamically than the weak form factors
which just involve the action of a current. As previously
mentioned, we compute them in the Aux-tube-breaking
model' in the I'o limit. ' Since, once again, we wish to
build in the mass dependence appropriate to the time-
ordered resonant graphs, we study (Al) —(A3) for physical
states, where we have

&p(p, s, )7r(p. )IH„(0)l~i(p.s. ) &

The two form factors f, and g, „can be related to the
5- and D-wave amplitudes for a, ~p~. Defining

&p(ks )m. ( —k)lH, (0)la, (0s, ) &

=if, 5, , You(Qk)

+if, g C(211;mls s, )Y2 (Qi),
mL

where s and s, are the spin projections along the z axis
for the p and a „one finds

f, (m, , m )= [(E +2m )f, (m, , m )
3m

(812)

3m

ie*(pps —)(f, ~ "+g, p.'p" )e„(p,s, ),
&p(p s )~(p„)lH,„(0)le'(p ) &

& ~(p / )~(p2)IHgb(0)lp(ppsp) &

=fp e„(ppsp)(pi —p2)" .

(89)

(810)

where YI (0) and C(LSJ;mLmsmj) are standard
L

spherical harmonics and Clebsch-Gordan coefficients.
Note that the association (see, e.g. , Ref. 13) of f, with
the 5-wave decay amplitude is incorrect.

To compute the Lorentz-invariant form factors in the
quark model, one first calculates the following matrix ele-
ment for specific polarization states:

&B(ke, ;ski)C( —ke„'sc)lHb(0)l A (0;s„)&

=(2m) yo Jd'pampa(p)(pc(p)(p~ p+
2

e, V 8M„MaMc[5 b5; ,5„g(s,sb) 5—.5-;b5,by(sbs, )( —1) ' ],
(813)

where M denotes a mock mass, ' I. denotes a quark-antiquark relative angular momentum, y denotes a total wave func-
tion including spin, Aavor, and spatial degrees of freedom, and yo is the string-breaking constant. The notation is such
that, for example, the indices a and a denote the Aavor and spin-projection onto the z axis for, respectively, the quark
and antiquark of meson A. The symbol 5 specifies that the Kronecker 6 function is to be applied only to the Aavor de-
grees of freedom. The function y is given by y(1';1')= —y ( J, ; $)=2p sinOe ~ and y(1; J, )=y($;1')=k —2p cosO
where p is the magnitude of p and (8,$) are the polar angles specifying p with respect to the z axis. We use simple
harmonic-oscillator wave functions for computational simplicity. Calculations of the above matrix element utilizing
such naive wave functions agree fairly well with those using more sophisticated wave functions in most cases. '
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f,p (s, si)= —icQpQ 1—
QP'll & I

3 OPS

The form factors are then obtained by equating the above amplitudes to expressions (88)—(810) and replacing mass
squares by the appropriate Dalitz-plot variables. The results are

f „(s;)= tt „„(I+()F (p;),
V'3 Pp (814)p1111 1 2 p771T

132

3k;
(1—g', p„) F,p„(k,'), (815)

gp2 QP11 QPQ 1

4 Qk', +s,
gQP11( $i1) ~ KQPQ~3 ~s k;

f „(s,s; )=
2 13.p

k, +s;
1/2

St

' 1/2
—1+, (1—g', ) F, (k'),QP11 QP1T 1

k
(2g„+1)(3—5$ ) — (1+( „)(1—g„„) F ~ „(k; ),1t P1T 2P2

(816)

(817)

where

Lac «a +&c )
F~ac(k; ) =expAac 1 p

g3 0~ I Aac
3/4

n „ac="t/ 8M~ MaMc
9I3~ac

4~ac =@ac/(3K )

p 2 —f (p 2+p 2+p 2)

(818)

3/2
I ABC

(819)

(820)

(821)

I

k; =[(s —s; —I„) —4m~, ]/(4s),

2
'

2

The form factors f, and g Q are obtained by re-
placing p by K' or K" and m by K or K in the expres-
sions for f, / 2 and g, /&2. Some numerica1 results
are given in Table V. In our numerical results we take all
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