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We present calculations of the electron pair production cross sections in relativistic heavy-ion
collisions. The electron pairs arise from the decay of vacuum excitations induced by the very strong
and sharply pulsed electromagnetic fields near nuclei which collide at relativistic velocities. We
present an exact Monte Carlo evaluation of the two-photon terms describing this process, and we
discuss at length the inadequacies of the approximation schemes that are inherent to the usual
virtual-photon approaches. Typical results for collisions corresponding to experiments at the BNL
Alternating gradient Synchrotron, CERN, and the Relativistic Heavy Ion Collider are discussed.

I. INTRODUCTION

One of the most useful modern probes of hadronic
matter is the associated production and decay of lepton
pairs during a collision. In such collisions, lepton-
hadron final-state interactions are usually small, and
hence the leptons carry direct information on the space-
time region of creation. Historically, lepton pair produc-
tion has been an important tool in collider experiments,
in part, because the special relationship between deep-
inelastic lepton-hadron scattering and the large-mass
Drell-Yan processes provide complementary information
on quantum chromodynamics (QCD) in the asymptotic
regime. ' From these experiments have arisen new ideas
and phenomena: scaling, chiral, and Aavor symmetry,
charm, and a quantitative understanding of a rich meson
and baryon spectroscopy. '

In ultrarelativistic heavy-ion collisions, lepton pair
processes have been widely discussed as a possible tool to
help probe the formation and the decay of the quark-
gluon-plasma phase of matter. ' Although lepton-pair-
production measurements are sensitive probes of the local
space-time region where they are formed, the detailed be-
havior of the deconfining phase transition with the subse-
quent expansion and rehadronization strongly affects the
lepton yields. No clearly identifiable signal has emerged
from these studies that will diagnose the formation of the
plasma. ' In contrast with the high-mass Drell- Yan
pairs studied in high-energy proton and electron collider
experiments, the dilepton signals from the relativistic
heavy-ion collisions are not asymptotically free, and are
strongly dependent on the nonlinear structure of QCD
(Ref. 10).

It has been suggested by several authors" ' that oth-
er sources of lepton pairs might possibly mask the signals
from the plasma phase. In such collisions, the near-zone
electromagnetic fields associated with the colliding ions
can readily produce large numbers of lepton pairs. ' '
The present work addresses a series of questions that
arise in attempting to calculate the electron pair produc-
tion cross sections from such strong fields. In studying

the production of high-mass electron-positron pairs, the
long-range electromagnetic production is usually treated
with perturbative methods. ' ' Particular approxima-
tions based on Refs. 18 and 19 have been extensively ap-
plied as either the equivalent-photon or the Weizsacker-
Williams method. In this method it is usually as-
sumed that the lowest nonzero terms in the perturbation
series are the diagrams with two intermediate photons,
and that these terms suSce to describe the electromag-
netic production phenomena. There are also additional
assumptions: the photons must be on shell, the corre-
sponding S matrix elements, which are singular, are regu-
larized with both high- and low-frequency cutoffs, the
source currents must either correspond to the motion of
point charges, or be excluded from the volume containing
the pairs. Only incoherent pair production can be calcu-
lated with the method. A derivation of the method with
a good discussion of these points is given in Ref. 27.

In the context of the ultrarelativistic collisions of two
nuclei, different assumptions on the electromagnetic
structure of the constituent nucleons yield very different
results for the pair production: if we assume nucleons are
comprised of valence quarks and sea-quark —antiquark
pairs, then single-photon-exchange mechanisms, which
are approximately proportional to Za, also contribute to
the pair production; otherwise the lowest-order terms are
the two-photon-exchange diagrams which are propor-
tional to (Za) (Ref. 28). The yield from these two pro-
cesses is quite different. Also, since Za is not small, and
since very large fields develop during the collision, the
production of pairs from processes containing many ex-
changed photons gives rise to the coherent production of
pairs. The coherent production of photons from such
collisions has been discussed, and it is worth noting that
the photon multiplicity and the details of the spectrum
are sensitive to both low- and high-frequency cutoffs.
Similar cutoffs are necessary to regularize the electron
production in the two-photon diagrams.

In the present paper, we depart from previously men-
tioned work in several respects. We assume that fields
from the heavy ions can be represented by prescribed
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time-dependent classical fields. This is briefly discussed
in Sec. II, together with a treatment of the formalism.
Our study of the electromagnetic production via two-
photon processes is presented in Sec. III, with details of
the method and gauge invariance in the Appendixes. We
work in the center-of-momentum frame of the colliding
nuclei. For the two-photon diagrams, this makes trans-
parent the essential symmetries and the large cancellation
in the amplitude for low-momentum pairs. In this sec-
tion, our discussion is principally focused on a theoretical
analysis and the evaluation of the two-photon diagrams
using Monte Carlo integration; we consider such points
as the violation of unitarity and high-energy bounds on
total cross sections. ' ' In Sec. IV typical results for col-
lisions which represent experiments at the BNL Alternat-
ing Gradient Synchrotron (AGS), CERN, and at the Rel-
ativistic Heavy Ion Collider (RHIC) are presented and
compared to those obtained with approximate methods.
Finally, we summarize our results and conclusions.

II. FORMALISM

4= J d x &4(r)l:ro(x)+r;„,(x):I@(t)&,

»m lC'(r)& 10& . (4)

Since we shall only consider pair production out of the
vacuum, we choose ~0& as the vacuum state, which we
also identify as the reference state for the ordering in (2).
By construction, we have a well-defined initial Hamiltoni-
an with a corresponding complete and orthonormal set of
single-particle states:

where the normal ordering is with respect to an
unspecified reference state and where Xo is the usual
noninteracting fermion Lagrangian

Xo(x)=V(x)(y„ii}"—m )%(x) .

In (2), the dynamical coordinates which are varied to
make the action stationary are the parameters labeling
the state vector &b(t) and not the field operators.

(ii) We assume that the initial state vector corresponds
to a single Slater determinant, ~0&,

We propose to treat the production of electron pairs
using a semiclassical formalism, wherein the electron
states evolve in the presence of classical electromagnetic
potentials. The source currents for the potentials are the
Lorentz-boosted charge distributions of the two heavy
ions. For the present purposes of exposition, it is most
convenient to consider the symmetric collision of two
heavy nuclei in the center-of-momentum (c.m. ) frame. In
the case of structureless point charge nuclei, these poten-
tials are the retarded Lienard-Wiechert interactions.
The realist;ic calculation of electron pair production re-
quires a detailed knowledge of the charge currents of nu-
cleons within each nucleus, and also the charge structure
functions of the individual nucleons. Although a fully
dynamical understanding of such currents in terms of a
fundamental theory such as QCD is presently not possi-
ble, models for incorporating these effects into the calcu-
lations are well known, and they will be treated in fu-
ture work.

We develop the equations governing pair production in
the spirit of Schwinger s space-time picture of electro-
dynamics, with appropriate modifications to allow for
the classical motion of the heavy ions. The two impor-
tant differences are the localization of the fields along an
impact parameter transverse to the motion of the ions,
and the large number of virtual photons in the fields. The
semiclassical coupling of electrons to the electromagnetic
field is given by the Lagrangian density

&;„,(x ) = —0'(x )y„%(x) A "(x),
which separately conserves electron number, ' and only
depends on the field variables via the classical four-
potential A". Given the Lagrangian (l), the equations of
motion for state vectors in the Schrodinger picture follow
from three basic assumptions.

(i) We construct a semiclassical action in terms of a
time-dependent many electron state @(t ):-

With this choice of reference state, the states ~y'+'& and
'

& are single-particle and single-antiparticle states, re-
spectively. In the second-quantized representation, the
corresponding annihilation operators a and b satisfy
the relations

a, l0& =b, lo& =0,
Ia, , a I =Ib, btI =5,

(6)

H(x)K(r, r') =i B,K(r, r'),
where

H(x) =Ho(x}+V(x),

Ho(x}= ia V+yom, —

V(x)= —a A(x)+Ho(x) .

With the above noted assumptions, all orders of pro-
cesses can be obtained from the solutions to (8). In par-
ticular, those solutions which are perturbative in A" can
be expressed as the series

All other combinations of anticommutators of the opera-
tors a and b that do not appear in (6) are zero.

(iii) We assume the dynamics governing the time evolu-
tion of the states in (2) is unitary; that is,

~C(r) &=K(r, — )~0&,

where KK =K K = 1. There are several important
consequences of these assumptions. Equations (4) and (7)
guarantee that the state 4 is at all times a representation
of a single Slater determinant, and equations of motion
can be cast into the form
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K(t, oo )=Ko(t, —m )+( i—)f drKO(t, r)V(r)KO(r, —~ )

t+( —i) f dr f dr'Ko(t, r)V(r)KO(r, r')V(r')Ko(r', —~)+ (10)

3"=3"(a)+2 "(b), (12)

where in (10), the lowest-order term is simply

K,(t, t')= exp[ —iH, (t —t')] .

In Fig. 1 we illustrate and label coordinates associated
with the relativistic collision between two heavy ions a
and b. For definiteness, we assume that the velocities are
along the z axis, and that the centers of the nuclei of
charge Z are separated in the transverse direction by an
impact parameter p. We employ natural units defined by
A=c=m =e=1. Each nucleus is moving in the c.m.
frame with a kinetic energy per nucleon E related in these
units to the Lorentz factor y by y =E+ 1. In (1), ,

of the multiplicity of produced electrons JV, (p) and
N (p) as

cr, = f d~p JV, (p),
o. = fd p A' (p) .

Note that in the strong field limit the multiplicity of elec-
trons is not a probability, but represents the mean num-
ber of electrons produced out of the vacuum. Denoting
the time-evolved vacuum state in the interaction picture
as

SIO& = lim K, (O, t)K(t, t)IO&, —

where the nonzero components of the potential from nu-
cleus a are, in momentum space,

5(qo —pq, )
A (a)= —87r Zy 2 2 exp iqi +

q~ +fy ' 2
(13)

the singles multiplicity can be written as

JV, = g &Olst:ata„:SIO&
k&0

= y g 1&x.'+'Islx,'-'&I',
k&0 q&0

(17)

a +b —+e +X, a +b ~e +e++X', (14)

have very different total cross section yields even though
electron-number conservation is preserved by (8) and (9).
Assuming that the heavy-ion motion can be localized
along definite impact parameters, the total inclusive sin-
gles o., and pair o. cross sections can be written in terms

A'(a)=pA (a) .

The potentials from nucleus b can be easily obtained from
(13) by the substitutions

p~ —p, p~ —p.
The semiclassical approximations that lead to the

equations of motion, (8)—(10), also lead to a semiclassical
approximation for the total inclusive production cross
sections. The two reactions

where the summation over the states k is restricted to
those not occupied in the Dirac sea and the summation
over the states q is restricted to those occupied in the
Dirac sea. The pair multiplicity corresponds to an entire-
ly dift'erent measurement and possesses correlations that
are not accessible from a series of single measurements:

JV = g g &OIS:a„a„b,b, :SIO&
k&0 q&0

g I
&x'+'Islx'-, '& I'

k &0 q'&0

x y y 1&x&-ilsfxi„., i&l
. k'&0 q&0

+ y y y &x',"lslx', -'&&x',-'lslx', -'& '
k &0 q &0 q'&0

(18)

??

?

?4"

??g;.",.

'::::,".;,.':.„.?~r4+::::.':,:.:.
i;.;:,::,'.? ~ .? ??::,':;:

= fd'p y y l&x'„+'Islx', -'&I'.
k&0 q&0

We consider such solutions in the next section.

(19)

The present discussion is limited to production out of the
vacuum, but is easily extended to cases where the initial
lepton number is nonzero. It is instructive to note that,
in the perturbative limit, if the interaction is of the order
of E, then the first term on the right-hand side of (18) is of
the order of e, while the second term is of the order e .
In this limit the pair multiplicity is the same as the sin-
gles multiplicity, and the inclusive pair cross section is,

~o

III. TAO-PHOTON CROSS SECTIONS

FICx. 1. geometry and labeling convention for two colliding
heavy ions.

In this section we develop perturbative solutions to (8)
and (9) using time-dependent perturbation theory. Our
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method of time ordering the perturbation series and the
corresponding rules for diagrams is similar to the Feyn-
man theory for electrodynamics; however, we note that
the interaction Hamiltonian is constructed from the clas-
sical potentials (8) in the Lorentz gauge. In the c.m.
frame, these functions have two nonzero components and
are general functions of the energy-momentum transfer q.
Except for the enumerating of the time orderings, the di-

agrams we calculate here are the same as those in the
Feynman theory for the production of pairs from a time-
dependent external Geld. The lowest-order diagrams
which contribute to the amplitude in (19) are shown in
Fig. 2. These terms correspond to the second-order
terms in (10) and represent the summation over the possi-
ble time orderings, including the terms with crossed pho-
ton lines,

&X'„+'lslX',-'&=( i)—'f dr f dr'&X'„+'IK, (0, ~)K,(~,v.)[V.(~)K,(r, r')V„(7 )+ Vb(7)E 0(7, T )V (7 )]

xz, (r', — )1~,( —,0) lx,'-'& . (20)

For purposes of clarity, it is convenient to identify and to discuss the contribution from each diagram in Fig. 2 separate-
ly; these are, respectively, S,b and Sb„with

S—S,b+Sb, . (21)

Although S is completely regular, most approximations introduced to simplify the calculation of (20), e.g. , the
equivalent photon method, ' ' also introduce singularities; we shall see that this is quite unnecessary. Using com-
pleteness (5), the reduction of the time ordering is, in general,

&x'„+'ls.blx', '&=i f", y y(&,"—~—in' )-'&x'„"lv.(~—Ek+')lx,"&&x,"lvb(E,' ' —~)lx', '&

p s

(22)

Energy-momentum conservation prevents the denomina-
tor in (22) from becoming zero and hereafter we shall
choose q+ as zero. For ultrarelativistic collisions, the po-
tentials in (13) have an approximate factorization in
terms of light-cone coordinates. ' ' Although we shall
not employ this procedure explicitly, it is worth remark-
ing upon since it leads to a simple structure for (22) in
terms of the invariants of the Lagrangian (1). The sum-

(a)

mation on the states of Ho in (22) is over spin and
momentum:

(23)

The momentum in intermediate states is composed of
parts transverse and parallel to the motion of the heavy
ions p=pz+p, . The momenta parallel to the motion of
the heavy ions and the frequency in (22) are fixed by
momentum conservation:

z,'-' —z„' '+P(k, +q, )

2

Z„'+'+Z,'-' —I3(k, —q, )

2

(24)

The transverse momentum is not fixed by kinematics, but
depends on the momentum carried in the fields. Thus,
for fixed momentum and spin states, the transition matrix
element in (22) can be written as

FIG. 2. Direct (a) and crossed (b) Feynman diagrams for pair
production in a heavy-ion collision.

&x',"Is., Ix',-'&

l 8pg2

f exp i pi-
(2m. )

XF(ltJ. Pi:~ )I'(pl Ql:~b) Tk (pl:~)

(25)
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4~ZyF(q: )= ~'+0')"
I
ql'

(26)

Note that in (25) co, and cob are the frequencies associated
with the fields of ions a and b, respectively,

E' ' Ek+'—+/3(q, —k, )
COg—

2

EI ' —E'+' —P(q, —k, )

b

(27)

The function V' explicitly depends on the velocity of the
heavy ions P, on the transverse momentum pi, and on the
states k, q: it is given by

where p denotes the impact parameter and the function I'
is the scalar part of the field from each heavy ion. For
point charge nuclei, F is given by

in particular their rigorous gauge invariance, and their
asymptotic behavior. In view of the diverse approxima-
tions existing in the literature under the heading of the
"virtual-photon method, " we feel it is useful to derive
some tractable forms from (30) with as few approxima-
tions as possible, and these clearly stated. Finally, analyt-
ic formulas are a convenient means to interpolate exact
results, e.g., multiply differential cross sections.

We shall adopt the view that these approximations are
justified, insofar as they agree with the exact results. For
completeness, we shall also rederive the virtual-photon
method.

The amplitude 5; defined in (28), relates the
intermediate-photon lines to the outgoing-fermion lines.
It can be reduced by summing over the intermediate spi-
nor indices s, o. , with the aid of projection operators to
find

V'„(p:/3)=g g E"
S 0'

E(+)+E(—)
k q

2

&k, (pi:»
H, (p)+~u'+' (1 —Pa, ) 2 z (1+Pa, ) u' ', (31)

k H (p)2

k, —q,

X(u'+'ill —/3a, ) u" )

X(u" l(1+/3a, )lu' '),
Z 0' (28)

where

Ho(p) =Hi(pi)+p, a, ,

Hi(pi)+ai pi+yo,
(32)

1

=4p, X
d kd qdp~

(2'�)'

x lA~+'(k, q:p )+A' '(k, q:k

where u" is the spinor part of the states g". The longi-
tudinal momentum implicit in (28), p„ is determined by
(24). Finally, we note that with the expression for the S
matrix (25), the integration on the impact parameter for
the pair cross section can be explicitly evaluated. Includ-
ing both the direct and crossed photon contributions
yields the result

o.= J dk, dq, d K 4(co, )4(co )bcr &(co„cob.mi),

where

(33)

and where (co,p, ) depend on P, as in (24).
We shaH consistently assume that y)&1, so that y =3

is the lowest energy of interest. Then all transverse mo-
menta can be assumed much smaller than any longitudi-
nal momenta, for the range contributing to the cross sec-
tion. It is a consequence of the Lorentz transformation
that p~ =mc, while p, =@me.

All approximations to (29) seek to integrate out the
transverse momentum (ki, pi, qi), resulting in an expres-
sion of the form

where,

+qi pi) l K =
—,
' ( ki+ qi )

(29) is the transverse momentum of the pair, and where

m =(1+K )'

(34)

(35)

A'+'(k, q:pi) =F(ki —
pram, )F(pi qi:cob )V'kq(pi:+—/3),

(30)
~' '(k, q:pi) =F(k.—pi:~b)F(p. —qi:~. )&k, (pi:—~) .

A. Analytic reductions

is the transverse mass. To derive (33) from (29) and (30),
the form factors (26) are integrated over the transverse
momentum to obtain "photon cruxes, "e.g.,

@(co)=, J dA, ,A i lF(A,,:co)l' .
(2m. ) Pro

If the momentum is cut off at A,~ =m J,

Before evaluating the pair cross section (29) exactly by
numerical means, we shall explore some approximate an-
alytic reductions. Our objective is threefold. We wish to
understand certain features exhibited by the exact results,

(37)

The function P(x) is defined in Appendix A; for large x,
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P(x)-ln(x). The remaining factor in (33) is an effective
two-Photon cross section

crier

derived from 5'bq.

B. Two-peak approximation

The most obvious way to eliminate the transverse mo-
menta from (29) is to observe that the form factors are
strongly peaked about the point

&x Px Qx=K . (38)

V, (A, ) =F(A, :co, )(1—Pa, ), (40)

is replaced by the corresponding interaction in the tem-
poral gauge:

A, ai
(41)

Note that (39) is obtained in the limit of very-high-energy
collisions, where the longitudinal term e, becomes negli-
gible. The equivalence of the amplitudes in two different
gauges is discussed in Appendix A and hinges entirely on
cancellations between the terms A'+' and A' ' in (30),
corresponding to the direct and crossed diagrams in Fig.
2.

If all frequencies and momenta in (39), except the lead-
ing powers of A, and p, are evaluated at the point pz= K,
we immediately obtain from (29) an expression for the
differential cross section of the form (33):

d4o-

dk, dq, d K
8 P(Pymi/co, )P(Pymilcob)

m~P4 [m E~+~E~ ~(1+Z'/y ) ]
(Za)

X('lVO+'N, K ) . (42)

The rather complicated functions %'0, %'], and Z of
(k, q„mi) are defined in Appendix A. It is worth noting
here that

Z=IE' E+,' 'I/( (43)

so that the integrations over (k„q, ) cut off rapidly when-
ever /k, [, /q, f ~ymi

After integrating (42) over k, and q„d cr/d Ic: de-
creases as m~ . Thus, the above approximation leads to
a finite total cross section without further assumptions.
Each factor of P results in a contribution to the cross sec-
tion which goes as ln(y) asymptotically, but the integra-
tions over k, and q, fall less rapidly than ln(y); thus
overall, (42) predicts (T -ln(y) .

If T is evaluated at this point, it vanishes as y . In Ap-
pendix A, we show that the leading term obtained by ex-
panding in powers of (pi —K) is

qTQ( .())
(

(+) ) (

)) (gg)
Z a Ho(p)+~

where A, =ki —pi, p =qi —pi. This form of the amplitude
can be simply obtained by carrying out the perturbation
expansion directly in the temporal gauge. In this case the
interaction in the Lorentz gauge,

We refer to (42) as the "two-peak approximation. "
The exact results suggest that it is valid for y ~ 100. The
essence of the two-peak approximation is that most of the
cross section comes from intermediate transverse mo-
menta, p~ =K. At this point, terms behaving as
(Ek+' E~~ —') for large magnitudes of Ek+' and E'
cancel, removing a ln(y ) from the asymptotic formula.

C. Small-transverse-momentum approximation

a=3.40(Za) ln(y)' . (45)

The coefficient here is slightly larger than the
Weizsacker-Williams value of 224/27vr=2. 64. We refer
to (44) as the "small transverse-momentum approxima-
tion. "

IV. RESULTS AND CONCLUSIONS

We shall present exact calculations of the second-order
perturbation formula derived in Sec. III. The integra-
tions in (29) were evaluated by Monte Carlo techniques to
an accuracy of about 1%. Details of the numerical
method are given in Appendix B. We note that extensive
tests of the numerical procedures have been carried out,
including calculations of the pair production starting
from the two different gauges (40) and (41). Even though
the diagrams in Fig. 2 are not individually gauge invari-
ant, the sum is gauge invariant, which we have confirmed
numerically. Our numerical results can be compared
with a variety of approximate results, though we focus on
the two-peak formula (42), which appears nearly to
reproduce the exact results over a wide range of energies.

A. Total cross sections

In Fig. 3 we show the variation of the total cross sec-
tion with energy for colliding beams of heavy ions. As
previously stated, y —1 is the beam kinetic energy per nu-
cleon in units where the nucleon mass is 1. The cross sec-
tion for producing an electron pair from ions of charges
(Z„Zb ) is expressed in terms of the reduced cross section
~o:

o- =x'z.'z'a4,0 a b (46)

where A, =A/mc is the reduced Compton wavelength of

For very large y, say y ~ 100, values of pi&K begin to
dominate the integration, so that a better approximation
to (29) is to integrate first over pi, and then use (38) for
ki, qi to obtain a form similar to (42). This leads to an ex-
pression

d4o-

dk, dq, d K

8 P(Pymi/co, )P(Pym i/cob )

Tr'P' [m'E'+'E' '(1+Z/y')'](Za) 'N2 .

(44)

The expression for 'N2 is given in Appendix A. Since
%'2 —(Ek+ Eq ),—(44) predicts, for large y,
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4 — I I I I I Illa' I I I I I I II( I I I I I I II) I I I I I I II 4 — I I I I I I I I( I I I I I I I I I li I I I I I lt-

I I I I I III ! I I I I IIII I I I I ! I III

log„(7)
FIG. 3. Dependence of pair production cross section with en-

ergy. The ratio of the cross section to the reduced cross section
defined by (46) is plotted vs y. The three curves are solid line,
exact numerical result; dashed line, two-peak approximation
(42); long-short dashed line, small-momentum-transfer approxi-
mation (44).

FIG. 4. Dependence of pair production cross section with en-
ergy. The ratio of the cross section to the reduced cross section
defined by (46) is plotted vs y. Solid line: exact numerical result;
dashed line: equivalent-photon approximation (Ref. 20); long-
short dashed line: modified Weizsacker-Williams (Ref. 26).

ln(y )
O. =C 00 1+0.4570Y+0.0222 Y +

where

(47)

the electron. For Au+ Au, o0=0. 165Kb. Our exact re-
sults are compared with the two-peak approximation
(42), and the small-momentum-transfer approximation
(44). Both reproduce the exact results to about 20% over
the range of energies per nucleon between 3—300 GeV,
which will be of most experimental interest in the near
future.

For y) 300, terms of order ln(y) begin to dominate.
Indeed, the exact results can be fitted for all y ) 3 by the
formula

B. Singles distributions

Differential cross sections provide more detailed in-
sights. Figures 5 —9 systematically compare exact results
with the two-peak approximation. Figures 5 and 6
present angle and momentum distributions in the labora-
tory for a fixed-target experiment at an energy per nu-
cleon of 200 GeV. This is equivalent to a colliding beam
experiment with y =10. Heavy-ion beams of this energy
are presently available at CERN. The differential cross
section of the produced electron in terms of the laborato-
ry momentum k is obtained from (29) by

0.05

Y=in[1+ (g0/y ) ], (48)

and the other fitted parameters are C =2. 19 and

go = 10 ~ The small-momentum-transfer approximation
has a similar form with C =3.40. The two-peak result
increases only as fast as ln(y) . As explained in Appen-
dix A, this is due to the exact cancellation, at the peak of
the Coulomb form factors, of terms which fall off inverse-
ly as the pair energy squared. For very large y, contribu-
tions to the integrals from other values of the transverse
momenta become more important.

Figure 4 compares the exact results with two currently
quoted approximations. The dotted curve is the
equiualent-photon approximation of Ref. 20, which is
essentially a modern version of the Weizsacker-Williams
method with C =224/27m =2.64. The dot-dashed
curve is calculated from the formulas of Ref. 26, which
attempt to refine the Weizsacker-Williams result. It is
correct for large y, but appears to break down by as
much as a factor of 10 for y ~ 20.

0.04

o.os—

0.02

0.01

0.00

fOg, 0( 0) (deg)

FIG. 5. Angular distribution in the laboratory for a fixed-
target experiment at an energy per nucleon of 200 GeV,
equivalent to a colliding beam experiment with y = 10. The nor-
malized differential cross section (49) is plotted vs angle. Solid
line: exact numerical result; long-short dashed line: two-peak
approximation (42).
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FIG. 6. Momentum distribution in the laboratory for a
fixed-target experiment at an energy per nucleon of 200 GeV,
equivalent to a colliding beam experiment with y =10. The nor-
malized differential cross section (49) is plotted vs momentum.
Solid line: exact numerical result; long-short dashed line: two-
peak approximation (42).

FIG. 8. Pair-mass distribution for a collider experiment at
y =100. The normalized differential cross section (56) is plotted
vs M. Solid line: exact numerical (Monte Carlo) result; long-
short dashed line: two-peak approximation (42).

P=k+q, (50)
(49)

where cos(0)=k, /k. The agreement between exact and
approximate results, within 20%, is gratifying. The dis-
tributions computed in either way are consistent with a
picture in which single leptons are ejected with k, -ymc
and kj -mc; in this case, 0-0.3' and k ~200mc.

Pa+ P,F=—ln
2 Po —P, (51)

where k and q are the four-momenta of the electron and
the positron, respectively. The three variables of interest
are the rapidity

C. Pair distributions

We next consider di6'erential pair cross sections ob-
tained from (29) in terms of the four-momentum of the
pa11

the invariant mass

M =(I ', I,' P', )'"—, —

and the transverse momentum

(52)

I I I I I I I I I I I I I I I I I

0 6
I I I I I I I I I I I I I I I I I I I I I I I
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—5 —4 —3 —2 —1 0 1 2 3 4 5
0.0 I I I I I I I

2 3

PT/rue
, 4

I I ( T

FIG. 7. Rapidity distribution for a collider experiment

y = 100. The normalized differential cross section (56) is plotted
vs K Solid line: exact numerical (Monte Carlo) result; long-
short dashed line: two-peak approximation (42).

FIG. 9. Transverse-momentum distribution for a collider ex-
periment at y =100. The normalized differential cross section
(56) is plotted vs PT. Solid line: exact numerical (Monte Carlo)
result; long-short dashed line: two-peak approximation (42).
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In the Monte Carlo cross-section calculations, the distri-
butions do. /dY, do/dPz, and do /dM are obtained by
accumulating the generated events into bins having the
appropriate values of Y, PT, and M. In the two-peak ap-
proximation, (42) is transformed using the relations 10

Y=—,'1n(co, /cob), M=(co, co&)', Pz =2K, (54)

which are valid for small-transverse momenta,
E ((

~ k, ~, ) q, ~, and the Jacobian

B(k„q, )

8( Y,M)
4M

(k, /Ek+') (q, /E' —')
(55) —1 3

With these relations, it is straightforward to transform
(42) numerically into the required form

4 p(pym~/co, )p(pym j /coq )
(Za)

dY dM2dP2 ~2P4 [m 2E(+ )E(—
)( 1++/~2)2]2

(%~()+ 'V (PT /4)

(k, /E'+ ') —(q, /E,' ')
(56)

Figures 7—9 compare the Monte Carlo and two-peak
results for the Y, M, and Pz- distributions, respectively.
In each case @=100, corresponding to the proposed
RHIC facility at Brookhaven. Again the agreement is
excellent, except possibly at large values of M ( ) 10).

Very long Monte Carlo runs having more than 10
points, were needed to accumulate good statistics in the
singly differential cross sections plotted in Figs. 5 —9.
Some degree of Auctuation is still visible. However, the
two-peak approximation appears sufBciently reliable that
we have used it to predict doubly differential cross sec-
tions presented by means of contour plots in the planes
( Y, PT), ( Y,M), and (M, PT) The (Y,P.T) plot in Fig. 10
clearly shows how the pair production is strongly peaked
along the beam axis in the forward and backward direc-
tions. Figures 11 and 12 demonstrate the strong correla-

FIG. 11. Doubly differential cross sections: contours in the
( Y,M) plane for a collider experiment at @=100 calculated
from the two-peak approximation (42).

tion between M and PT, such that M is concentrated
around M-2PT. The foregoing results of Figs. 10—12
are in quantitative accord with our earlier calculations
using a coherent field model. ' '

The formalism and calculations presented in this paper
set the stage for further developments, in which we shall
incorporate elastic and inelastic form factors for the nu-
cleus and its constituents, and thus predict the produc-
tion of heavy leptons, electroweak bosons, pions, etc.
These processes can be evaluated at the two-photon level,
either by exact numerical means, or in well-defined ap-
proximation schemes.

We further propose to use our results as a means of go-
ing beyond perturbation theory. At least three reasons
can be advanced for believing that low-order perturba-
tion theory gives an incomplete description of pair pro-
duction in heavy-ion collisions. The supposedly small pa-
rameter Za is comparable with unity. The asymptotic
ln(y ) dependence of two-photon theory cannot be
correct. The reasons supporting this statement are very

5 I I

0 I I

I
I gl

1
I '. I l ll I I) I I I I I

10 15 ZO

FIG. 10. Doubly differential cross sections: contours in the
(Y,PT) plane for a collider experiment at y=100 calculated
from the two-peak approximation (42).

FIG. 12. Doubly differential cross sections: contours in the
(M, PT) plane for a collider experiment at y=100 calculated
from the two-peak approximation (42).
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simple, though they are rarely discussed. The Froissart
cross-section bound ' is believed to hold for electromag-
netic, as well as for all other processes. This imposes a
limit on the pair cross section at high energies: namely,

o & const X ln(y )

and which depends on P through p, and co. In (A6), pi is

an independent variable which is evaluated at p~ =K:

1/2)(K:+P) = Yl, /2)o, I/2)(K: —P) = —Y /2)o, (A7)

where we employ the notation

Finally, in higher orders, the N-photon contribution to
the cross section -ln(y) +' at least, demonstrating that
the perturbation series should be resummed.

Nonetheless, we believe that the second-order pertur-
bation results can be used heuristically to derive efFective
Lagrangians which can be solved nonperturbatively.
This program will be pursued in future papers.
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APPENDIX A: APPROXIMATE ANALYTIC
REDUCTIONS

The approximation leading to (42) can easily be visual-
ized by an expansion process which takes (29) into the
temporal gauge. We evaluate (29) by expanding in the
momentum-transfer variables

Our results can now be established concisely with the aid
of the relations

8' '(co+p, a3)8'+'=(co+p, a3)/y

H (p )8'+'=8' 'H (p ),
~(j )+p, (j )a,

xl( j/3)

(A10)

These follow from (A7) after some calculation. We shall
transform (A3) by expanding the amplitude V'I,q(pi:P) as
a series in Ho(p) —co, resulting in

V'k (K+q.:P)= ( u'+' ~8' 'A(K /3) '[I+aiq A(KP)
&=k&—

p&, p=q~ —p„q.=(A, +/b)/2, (Al) +ai.q A(K:P) 'ai. q A( K:P) '+ . ]

d4o-

dk, dq, d K
1 did' [P(i,m, )F(Pmb ) /'

4P' (2~)'

X i%'g (K—q'P)

+ &„,(K+~:—P) ~',

around the point (A. ,p) =0 for which ki =qj =K. Recall
that K is defined in (34} as K= —,'(ki+qi). Thus we re-
cast (29) in the form

x8'+'~ '. ') .
q

(A 1 1 }

By applying the relations (All), it is easy to show that
the first two terms cancel as far as 0(1/y ) when
7kq(K+q'/3) is added to 'Tkq(K q' P). This leaves
the third term which can be recast in the form of (39), us-

ing (Al 1) together with (A7) and (A9):

TI, (K:/3)+ V'„(K:—/3)

where

(~ .p( —(&(+( 8( —( 8((. ( +(—
()

Ho(p)+
Ho( ) +co

and

(A3)

Q~
k Q)

ui i . (A12)
A(K:P) cob

The denominator appearing in (All) and (A12) is given

by

p =pi+ e,p„8'*'= I+Pa, .

We introduce the abbreviations

Yk =Ek+'+k„Y =Eq '+q, ,

(A4)

(A5)

and repeatedly use the relation (24), which explicitly de-
pends on the heavy-ion velocity P. All these quantities
are functions of a single transverse mass m& =1+K .
Making use of the foregoing, we can express all the am-
plitudes in terms of Yk, Yq, m~, and y. We shall fre-
quently need the denominator

A(pi:/3) =Hj (pi)+p, a, —co . (A13)

Thus we observe that the leading term in the two-photon
amplitude in the two-peak approximation is simply the
amplitude in the temporal gauge. Apart from the expli-
citly displayed bilinear dependence on A, and p, all quan-
tities in (A12) are evaluated at the double peak, (A, ,p) =0,
or equivalently, k~=q~=p~= K.

From (39), we can write the two-photon amplitude
entering (29) in the form

V'k (K:P}+'Tkq(K: /3)—
2)(pi:P) =Ho(pi, p, ) —co (A6)

where Ho is the free Dirac Hamiltonian defined in (33),
( '.+'ik. ,H, (K)p. (A14)
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1 A,p
2 cog cobX)p

2

[(rik riq
—)'+ K'(1 rik

—
rlq )'I

(A15)

where rik =k /Ek+, gq =q /Eq ~. Substituting (A15)
into (A2) we can express the integrals over A, and p in
terms of the function

Again, use has been made of (Al 1) and (A7). Evaluating
the spinors, we find that

y I Vk, (K:p)+Vk, (K: p) I'
0 I,o

and the momentum variables by

k,
=ye&

gz

cos'g

sing

cosP&

ky
=a&tanO& sinPk

cosP„
=a tanO

p„ i" ~ sing„

Adequate estimates of a& and a„are given by

a k ( g, ri, K ) =co, /y, a„(g, ri, K ) =co, /y,

(B3)

(B4)

(B5)

(B6)

1 xP(x)= —ln(1+x )—
2 1+x (A16)

introduced in (36) and (37). Employing the relations
(A5) —(A9), we arrive at (42), with the following expres-
sions for 'No and 'lVI:

Yk + Yq Yk + Yq

q

(A17)

This is the two-peak approximation in which
V'kq(p~:p) is evaluated at p~=K. In contrast, the

small momentum -tvansfev a-ppvoximation proceeds by
first integrating IV'k (p~)l over pj. Then the leading
term is given by

+kq(Pl'P)+ +kq(PI: P)

xs=f(yi&I »7+7» (B7)

so that x. lies in the range 0 x &X . The throu is said
to be successful if xs )ys. After T throws, let the number
of successes be S. The cross section is given by

S
cr =F PX. ,

—
T '

1

(B8)

evaluated at X=p=0. The constant F0 is so chosen that
f ~ l. In the present case we have found it necessary to
start with an estimate F0, which is periodically improved
by noting the largest value of f for varying numbers of
Monte Carlo points.

The algorithm proceeds by making throws in an eight-
dimensional space y=tyI . . . ,ysI, where 0&y & 1. We
then calculate

o

whence we calculate that

f d'pal vkq(pg P)+7kq(pg . P)l'—
~k ~q

A,pm j(m~ —Yk Yq)

ct)a cob Ek Eq
(A19)

with a proportional error in o /Fo of
1/2

1 1—+-
5 T

(B9)

Clearly, a good estimate' of F0 is desirable. We are able
to compensate for the lack of a priori knowledge of F0 by
analyzing each throw for a set of F0 in parallel. At the
end of a run, the estimates of a thereby obtained from

Functions of pj other than 2)0 are evaluated at p&=0.
The remaining integrations over A, =k~ and p =q~ are ex-

pressed in terms of P, as before, leading to (43). The aux-
iliary function 'N2 is given by

20

I Yk Yq I

' (m ~
—Yk Yq )

(A20)

15

APPENDIX 8: MONTE CARLO INTEGRATION

The evaluation of (29) amounts to integrating a positive
function over seven variables, since one integration can
be removed by symmetry. We rewrite (29) in the form

o=FO J f(x„x2, . . . ,x7)dx, dx2 dx7, (Bl)

where we denote these coordinates by the seven-
dimensional vector

I I I I I IIII I I I I III I I I I I IIII I I I I I I I

5 6 7

l,og, o(1V)

FIG. 13. Percentage error in Monte Carlo integration
scheme, 6, vs total number of points accumulated in a series of
runs, X; see (B9).
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(88) were interpolated to the best value of F&& inferred
from the run itself. The improved value of I'0 was used
in subsequent runs.

In Fig. 13 we display the error 6 as a function of the

number of Monte Carlo points for a y of 10 . We observe
a rapid and stable convergence of the sampling algorithm
as described above. Typical success rates were
S /T = 10 —10,whence b, =30—100/T'~ .
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