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A complete set of tests of charge symmetry in n-p elastic scattering is given in a formalism in
which the number of tests, the types of observables appearing in the tests, and the characteristics of
the spin-amplitudes parameters utilized in each test are easily identifiable and displayable. The re-
sults allow one to pinpoint the particular test which is theoretically the most interesting and experi-
mentally the most advantageous.

Tests of symmetry laws have been of central concern in
subatomic physics. Polarization measurements have al-
ways played a pivotal role in such tests, partly because, in
some cases, they can provide null experiments as tests of
symmetries whereas the unpolarized differential cross
sections cannot do that, and partly because such polariza-
tion experiments can discern both the magnitude and the
phase of the symmetry-breaking amplitude, while the un-
polarized differential cross section can measure only mag-
nitude squares. For the same reason symmetry-breaking
effects in unpolarized differential cross sections are
second order in the small symmetry-breaking amplitudes,
while they can be of first order in the polarization observ-
ables.

In particular, a number of papers have recently studied
charge-symmetry breaking in n-p elastic scattering, part-
ly motivated by a very clever experimental method
which has been used to measure such an effect. A recent
review has summarized some of the considerations and
results.

The present paper contributes to the investigation of
charge-symmetry breaking in n -p elastic scattering by
differing from previous papers in the following respects.

(a) The optimal transversity formalism is used to ana-
lyze the reaction.

(b) Emphasis is placed on testing the symmetry break-
ing on the amplitude level rather than on the observable
level.

(c) The amplitude-observable structure is displayed in
its complete generality and simplicity, thus allowing one
instantly to determine the number of tests, &he nature of
the observables appearing in each test, and the particular
parameters of the symmetry-breaking amplitude which is
being tested.

In the aspects in which the present paper overlaps with
previous ones, the results agree. The present paper, how-
ever, gives perhaps a deeper "explanation" of why the
particular tests have the form they have and what the
limitations are in searching for such tests.

The treatment can be given very concisely since it can
be based on features of the optimal formalism that have
been amply explained and demonstrated in the litera-
ture. Since for any parity-conserving reaction the phe-
nomenological determination of the amplitudes is the
simplest and most accurate (i.e., containing minimal off-

diagonal elements of the merror matrix) in the transversi-
ty system, we use that system in this paper. Using for the
amplitudes the usual notation in which the foui argu-
ments of the complex reaction amplitude D refer, in this
order, to the first final, the first initial, the second final,
and the second initial particle, the reaction containing
four-spin- —,

' particles, when parity conservation and
time-reversal invariance are imposed, is described by the
six complex reaction amplitudes D (+ +, + + ) =a,
D( ——,——)=P, D(++, ——)=yi, D( ——,++)
=yz, D(+ —,+ —)=5, D(+ —,—+)=g, where +
denotes +—, for the spin projection in the quantization
directions (in this case, the normal to the scattering
plane), and —similarly denotes a spin projection of —

—,'.
When charge symmetry holds, we have y, =y2, so our
task will be to measure the difference between y, and y2.

The next task is to write out the relationship between
the bilinear products of the above six amplitudes and the
experimental observables. The latter will be denoted by
four arguments in parentheses, the order of the argu-
ments being the first initial particle, the second initial
particle, the first final-state particle, and the second final-
state particle. We will write the observables directly in
the so-called secondary observable notation, that is, in
one in which unpolarized and simply polarized particles
appear in the observables, since these are then immedi-
ately identifiable with the actual experimental situations.
The optimal formalism, evolved for treating reactions
containing particles with arbitrary spins, uses for the
secondary observables here the arguments A, 5, R, and I,
standing for unpolarized (averaged) particles, for parti-
cles simply polarized in the quantization direction (in this
case in the direction normal to the reaction plane), for
particles simply polarized in the longitudinal direction,
and for particles simply polarized in the planar transverse
direction. Thus the last three of the above four argu-
ments can be identified with the indices X, I., and S more
conventionally used for nucleon-nucleon scattering, ex-
cept that there are some subtleties of signs which are
specified in the Appendix.

In order to make the basis in which we work more ex-
plicit, we can write the M matrix in the form

ctpi+f3p2+3 1p3+'Y&4+~ps+~p6
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where the six spin tensors assume the form

1 0 0 0 0 0 0 0

P3

0 0 0 0 0 0 0 0
oooo P2 oooo
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 1 0 0
oooo P4

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

P5 0 0 0 0 ' P6 1 0 0 0
0 1 0 0 0 0 0 0

if we use the convention for the labeling of the matrix ele-
ments that the four rows correspond to ( A, B ) =(+, + ),
(+,—), ( —,+ ), and ( —,—), and the four columns cor-
respond to (C,D)=(+, +), (+,—), ( —,+), and
( —,—).

We know that, in general, the bilinear products of the
reaction amplitudes and the observables are connected to
each other by submatrices which are of size 1 X 1, 2 X 2,
4X4, and 8 X 8 for any four-particle reaction, regardless
of the values of the spins of the particles. In particular,
for the reaction involving four spin- —, particles, when
Lorentz invariance alone is imposed, we have 16 ampli-
tudes, and thus 256 bilinear products and that many
linearly independent observables, and these products and
observables are connected to each other by two 8 X 8 ma-
trices, sixteen 4X4 matrices, forty-eight 2X2 matrices,
sixty-four 1X1 matrices, and another sixteen 1X1 ma-
trices involving magnitude squares (these are denoted by
1). This adds up to (2X8)+(16X4)+(48X2)+(64
X 1)+(16X1)=256. This holds for the primary observ-
ables. The secondary observables arrange themselves
into thirty 8 X 8 matrices and one 16X 16 matrix.

The imposition of the parity conservation and time-
reversal invariance reduces the 16 independent ampli-
tudes to 6, and hence the 256 independent bilinear ampli-
tude products and the 256 linearly independent observ-
ables to 36. As we know from the general theory of the
optimal formalism, in the transversity formalism the 4X4
and the 1 X 1 submatrices (except for the 1M types) vanish
for the primary observables of this reaction, and the oth-
er remaining matrices simplify. In particular, for the
secondary observables we are left with 15 submatrices:
One 6 X 6, containing magnitude squares (originating
from 1); nine 4X4, one of them coming from the 8X8
submatrices of the primary observables and the remain-
ing eight from the 2 X 2 submatrices for the primary ob-
servables; two 3X3, coming from 2X2 submatrices for
the primary observables; and one 2 X2, coming from the
8 X 8 submatrices of the primary observables. This rela-
tionship between the observables and the bilinear prod-
ucts of amplitude is given in Table I.

The identification of the origin of these submatrices in
terms of the submatrices for the primary observables is

important because we know from the general theory of
the optimal formalism that, if we denote a primary ob-
servable (nD), if n particles in it have off-diagonal argu-
ments (i.e., arguments pointing in directions other than
the quantization direction), then the observables in the
8 X 8, 4X4, 2 X 2, 1 X 1, and 1~ type submatrices for the
primary observables are (4D ), (3D ), (2D ), (1D ), and
(OD) types. In the corresponding submatrices for the
secondary observables this rule translates into the follow-
ing result. We will now denote a secondary observables
(nP) if n particles in it are in a specific polarization state
and hence are not unpolarized. Using this notation we
can then state that matrices coming from 8 X 8 matrices
for the primary observables contain observables of the
type (4P): from 4X4 contain observables of types (4P)
and (3P ); from 2 X 2 contain observables of types (4P ),
(3P), and (2P); from 1X1 contain observables of types
(4P), (3P ), (2P), and (1P); and from 1M contain observ-
ables of types (4P), (3P), (2P), (1P), and (OP). Thus we
can clearly and simply typify the observables occurring in
the submatrices of Table I.

Similarly, we can also typify the bilinear products of
amplitudes that occur in these submatrices. Again draw-
ing on the general theory of the optimal formalism, we
can immediately state that the submatrices coming from
8 X 8's of the primary observables contain products of
two amplitudes which differ from each other in all four
arguments of the amplitudes. Similarly the number of in-
dices in which the two amplitudes forming the products
differ are three for 4X4 matrices of the primary observ-
ables, two for 2 X 2 matrices of the primary observables,
one for 1 X 1 matrices of the primary observables except
the 1M type, and finally zero for the 1~ matrices of the
primary observables.

All these regularities are rejected in Table I.
Now we can turn to the tests of charge symmetry. As

mentioned above, the imposition of charge symmetry, in
addition to parity conservation and time-reversal invari-
ance, reduces the number of independent amplitudes to
five by making y, =yz. Thus we will have 25 rather than
36 linearly independent observables. This means that we
have 11 independent tests of charge symmetry.

We know from the general theory of optimal formal-
isms that it is impossible to construct a dynamics-
independent, null experiment for charge-symmetry test-
ing. This result was actually proven for time-reversal in-
variance and not charge symmetry, but the structures of
the two symmetries are so similar in the optimal formal-
ism that the theorem can be directly taken over for
charge symmetry also. Thus we know that all of our
charge-symmetry tests will involve at least two observ-
ables which then have to be compared.

In fact, we know even more deta. ils about these tests
from the general theory of the optimal formalism. We
know that for charge symmetry, just as for time-reversal
invariance, the tests will be of two kinds: Some will be
"mirror relations, " in which two observables, with parti-
cle arguments interchanged, will become equal if the
symmetry holds, while some others (in general a smaller
number of them) will be of nonmirror type and will in-
volve more than two observables. Indeed, one can deter-
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TABLE I. The relationship between observables and bilinear products of amplitudes in the transver-
sity optimal formalism. For the notation, see the text.

ly&l' l~l' ly21' Ipl'

(AA; AA )=(hA;55)
(AA; AA )=(AA;AA)=(AA; AA)=(AA;hA)
(AA;AA)=(AA'Ab)=(hA AA)=(AA AA)
(b,A; AA)=(AA hA)
(hA;AA )=(AA; AA)
(b A;Ah)=(Ab;AA)

+1
+1
+1
+1
+1
+1

+2
0
0
+2
—2
—2

+1
+1
—1
—1
—1
—1

+2
0
0
—2
+2
+2

+1
—1

+1
—1
—1
—1

+1
—1
—1

+1
+1
+1

(RR;RR) =(II;II)
—(RR;II)= —(II;RR)
(RI;RI)= (IR;IR)
(RI;IR ) = (IR;RI)

Reap*

+1
+1
+1
+ 1

8)
Rey)y2

+1
—1

+1
—1

+ 1

+1
—1
—1

+1
—1
—1

+1

—(RR;RI)= (II;IR)= —(RI;RR)= —(IR;II)
—(RR;IR)=(II;R,I)= —(RI;II)=(IR;RR )

8)
Imy )y2

—1

+1

( A A;RR ) = —
( hA; II)

—( A A;II) =(Ah;RR )

(AA;RR ) = —(AA;II)
( A 6;II)=(hA;RR )

Rea5*

+1
+1
+1
+1

2]
Rey )e*

+1
—1
—1

+1

Rey2m*

+1
—1

+1
—1

+1
+1
—1
—1

( AR; AR) =(EI;AI)
( AI AI) =(AR AR )

(AR;AR ) =(EI;AI)=( AI;EI)=(AR; AR)

Rely &*

+1
+1
+ 1

Re6e*

+2
—2
0

Repy,*

+1
+1
—1

( AR;R A) = (AI;IA)
( AI;IA) =(hR;R 6)
(AR RA)=(lU;IA)
( AI;Ih) =(AR;R A )

Reer*

+1
+1
+1
+1

23

Rey)5*

+1
—1
—1

+1

Rey, 6

+1
—1

+1
—1

Reps*

+1
+1
—1
—1

(R A; AR) =(Ih;EI)
(IA; AI)=(RE;AR)
(RA;ER)=(IA; AI)
(IA;AI ) =(R6; AR )

Rear

+1
+1
+1
+1

24

Rey~5

+1
—1
—1

+1

Rey, 5*

+1
—1

+1
—1

Repe*

+1
+1
—1
—1

(R A;R A) =(Ib;Ih)
(IA;IA ) = (R 6;R 6)
(R A;R 5)= (Ih;IA) =(IA;IA) =(R 6;R A )

25
Rely*

+1
+1
+1

Re5e*

+2
—2
0

Repy*,

+1
+1
—1
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TABLE I. (Continued).

(RR; A A) = —(II;Ah)—(II; A A) =(RR;hA)
(RR; AA)= —(II;AA )—(II; A 5)=(RR;6A )

Reo;6*

+1
+1
+1
+1

26
Rey )E

+1
—1
—1

+1

Rey&e*

+1
—1

+1
—1

Rep6*

+1
+1
—1
—1

—( A A;RI) = —(AA;IR)
—(AA IR)= —(hA'IR)
—( A b, ;RI)= —(6A;IR )—( A 6;IR)= —(hA;RI)

Ima6

+1
+1
+1
+1

2i
Imy le*

—1

+1
+1
—1

+1
—1

+1
—1

ImP5*

—1
—1

+1
+ 1

22

—( AR; AI) =(AI hR ) =( AI; AR) = —(AR;AI )—
( AR;AI) =(AI AR )

(AI;AR)= —(dR; AI)

Imczy*,

+1
+1
+1

Im6e*

0
+2
—2

ImPy2

—1

+1
+1

—( AR;IA) =(AI;R 6)
( AI;R A) = —(AR;Ih)
—

( AR;Ih)=(KI;R A )

( AI;R 6)= —(AR;I A )

+1
+1
+1
+1

23

Imy )6*

+1
—1
—1

+1

Imy 26

—1

+1
—1

+1

ImPe*

—1
—1

+1
+1

—(R A; AI) =(Ih;AR )

(IA; AR )= —(Rh;AI)
—(R A; hI ) = (Ih' AR )

(IA 'AR ) = —(R 6; AI )

Irno, e

+ 1

+1
+1
+1

24
Imy26*

+1
—1
—1

+1

Irny )6*

—1

+1
—1

+1

ImPe*

—1
—1

+ 1

+1

—(R A;IA ) = (Ih; R 6)=(IA;R A ) = —(R 6;Ih)
—(R A;Ib ) = (IA;R A )

(IA;R 6)= —(R 6;IA )

25

Immy'

+1
+1
+1

Im6e*

0
+2
—2

ImPy,*

—1

+ 1

+1

(RI; A A ) = (IR;AA)
(IR; A A) =(RI;AA)
(RI; A 6)=(IR;6A )

(IR; AA) =(RI;AA )

Ima6*

+1
+1
+I
+1

26

Imy l
e*

—1

+1
+1
—1

Imy2m*

+1
—1

+I
—1

—1
—1

+1
+1

mine, from the general theory, also the numbers of each
kind, and obtain, for our case, that there will be ten mir-
ror relations and one nonrnirror relation.

We can also draw conclusions from the general theory
about the type of observables occurring in these tests.
The only submatrix in which (1P) observables occur is

1M, and since this submatrix reduces from 6 X 6 to 5 X 5,
there will be one single test occurring in this submatrix
which, as we said, contains only magnitude squares of the

amplitudes. Thus we conclude that the experimentally
simplest test, involving two observables in each of which
only one of the four particles is polarized, will be one in-
volving the difference of the magnitude squares of y& and
of y, .

Similarly, since, as explained earlier, we know what
types of amplitude products and what types of observ-
ables appear in each submatrix, we can determine the
structure of each of the 11 tests.
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What needs to be emphasized is that virtually the com-
plete specification of the 11 tests could thus be obtained
from the general theory of the optimal formalism,
without writing down any specifics, without calculating
traces, or without doing any algebra at all. To be sure,
Table I gave us the actual relationships between each ob-
servable and the bilinear products, but that table has so
far not been utilized at all in deducing the set of con-
clusions enumerated above, concerning the nature of the
tests.

In particular, we could determine through these gen-
eral considerations the following features of the tests.

(1) The number of independent tests.
(2) How many observables would appear in each test.
(3) How many particles are unpolarized in each of

these tests.
(4) In what direction the particles are polarized in each

of these tests.
(5) With what other amplitude the charge-symmetry-

breaking amplitude is multiplied in each of these tests.
(6) Whether the real or the imaginary part of the am-

plitude product enters each test.
It is only when we are interested in conceptually

inessential (though of course in practice important) de-
tails, such as the coefficients and signs in the submatrices
and hence in the expressions for the tests that a modicum
of algebraic calculation has to be carried out.

For the reaction in question, np elastic scattering, it
may not make a large difference whether we generate the
tests through this general knowledge of the polarization
structure of particles or through the straightforward,
routine, and laborious calculations of traces and alike,
since the reaction involving four spin- —, particles has re-

ceived so much attention in the past 35 years that the
necessary calculations have in fact been carried out.
When, however, similar considerations are applied to
spinwise even just a little more complicated reactions, the
advantages of using the general method become very evi-
dent.

The 11 tests are tabulated in Table II, according to the
number of polarized particles required and according to
the kind of product in which the symmetry-breaking am-

plitude appears. From Table II it is easy to generate a
practical procedure for exploring charge-symmetry
breaking. I will describe it for the case when some model
calculations for the contribution to the symmetry-
breaking amplitude have been made. One should note
that such calculations generally offer contributions from
a number of different mechanisms (for example, different
meson exchanges). Since the different contributions
will generally have different magnitudes and phases, a set
of experiments offers the possibility of checking these
contributions separately. The procedure is therefore as
follows.

(1) For each contribution the magnitude and phase of
the resulting addition to the symmetry-breaking ampli-
tude should be calculated. Since an overall phase of the
set of reaction amplitudes is arbitrary, it is important to
determine, in comparison with the convention used in
calculating these contributions, as to what the relative
phase is between the calculated amplitudes and the phe-

nomenologically obtained amplitudes.
(2) From a phenomenological analysis of np elastic

scattering (assuming charge symmetry), the magnitudes
and phases of the five reaction amplitudes a, P, y, =y2, 5,
and e should be determined as a function of energy and
angle.

(3) From Table II it should be determined, for the case
'of the calculated and determined amplitudes, which ob-
servables, and at what energies and angles, are optimal
for testing the various contributions to charge-symmetry
breaking.

(4) The tests should be carried out, if possible, at vari-
ous energies and angles, since the various mechanisms for
symmetry breaking also vary (and vary differently from
each other) as functions of energy and angle. Such a reli-
ance on the type of experiment, on the energy, and on the
angle will help greatly in checking the various contribu-
tions to symmetry breaking separately from each other.

(5) The choice of measurements naturally must also in-
clude a consideration of the experimental constraints.
Indeed, such factors may play a dominant part. For ex-
ample, the already existing measurement utilized a clev-
er trick by choosing as the kinematic point (energy and
angle) for the experiment one at which a dynamical ac-
cident could make the experiment a null experiment and
thus could hope to measure something of the order of
10 or so in amplitudes. Once one knows which observ-
ables offer tests at all, however, other similar tricks may
be discovered.

It might be noted that if, for reasons of experimental
feasibility, we consider only (1P)- and (2P)-type experi-
ments, we still have products of the symmetry-violating
amplitude with all four other amplitudes, but in some
cases only the real parts and in some other cases only the
imaginary parts. This possibly leaves room for discrete
ambiguities in the solutions for the symmetry-breaking
amplitude.

Finally, it should be mentioned that the above analysis
and procedure holds for any ("class" ) of charge-
symmetry breaking of the four listed in Ref. 6. For all
classes, the number of amplitudes increases from 5 to 6,
and the extra term will have the same spin structure in
any of the four cases. Distinctions among the classes can
be made either theoretically or by studying also reactions
other than np elastic scattering. Another handle to make
distinctions may be the comparison between the reaction
observables at a given angle and at its complementary an-
gle.

One of us (M.J.M.) is indebted to Dr. Erich Vogt and
Dr. Harold Fearing, at TRIUMF, for a stay at TRIUMF
which directed our attention to this problem and which
offered the opportunity to perform much of this research.

APPENDIX

The list below gives the correspondence between the
notation of observables in the optimal formalism and the
traditional notation as used, for example, in Ref. 7:
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(b„A; A, h) =K~~, (R, A; A, R )= —KLL

(I, A; A, R ) = —Kss, (I, A; A, R ) = KsL—

(A, A;A, A)=oo, (A, b, ;A, A)=P(=P~),
( b„b,; A, A ) =C~~, (R,R; A, A ) = CLL

(I,I; A, A ) = Css, (I,R; A, A ) =CsL,

(A, 5; A, b, )=D~~, (A, R; A, R )= DLL-,

(A, I; A, I)= Ds—s, (A, R; A, I)= DLs—,

(I&I& A&5)=Hss~& (I&k& A&I)= Hs~s

(I,b, ; A, R ) = Hs—~L, (I,R; A, b, ) =Hs~L

( b„I;A, I)= H~—ss, (b, ,I& A, R ) = H—~s~,

(5,R; A, I)= —
H~Ls& (R,I; A, 6)=HLs~

(R, b; A, I)= HL~s—, (I,I;I,I)= Hss—ss,

(I,I;I,R ) = HsssL .
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