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Reflectionless symmetric potentials from vertex operators
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The construction of symmetric reAectionless potentials with an arbitrary bound-state spectrum is
compared using supersymmetric quantum mechanics and using vertex operators. The simplicity of
each method may have useful consequences for the other.

It is relatively easy to construct the unique symmetric
reflectionless potential V(x) = V( —x) possessing an arbi-
trary bound-state spectrum. In part for this reason,
several of us have employed such potentials over the past
ten years as a means of describing arbitrary potentials
such as those encountered in quarkonium systems. '

In this Brief Report we note that techniques associated
with vertex operators allow an extremely concise deriva-
tion of a form previously obtained for such potentials.
By comparison with results obtained ' using supersym-
metric quantum mechanics, we find an alternative repre-
sentation of the vertex operator in terms of Schrodinger
wave functions. Finally, we comment on the fact that the
same level cannot be inserted twice in constructing sym-
metric reAectionless potentials. This extends a previous
observation, and makes contact with the supersym-
metric nature of the transformation which adds a level to
a potential.

We seek a potential V(x ) in the one-dimensional
Schrodinger equation

d + V(x) r/r(x) =Eg(x)
2p dx

with the following properties.
(a) The potential is symmetric: V(x) = V( —x). The

odd-parity solutions of Eq. (1) then are the appropriate
reduced radial wave functions u (r) =rR (r), satisfying
u (0)=0, for S waves in a central potential V(r).

(b) The bound states in Eq. (1) occur at energies

E~ = A K~/2P (2)

V(x) = —2 lnD (x),
dx

Henceforth we shall set A=2p= I.
(c) The potential V(x) leads to scattering without

reflection. As a result, the construction of V(x) is possi-
ble on the basis of its bound states alone. ' Scattering
data, normally required in the inverse-scattering formal-
ism, "may be dispensed with.

The result for V(x) satisfying conditions (a)—(c) above,
obtained in Ref. 3, is that

where

D(x)= +II(S,S)cosh x g K —g K„
S mGS PITS

(4)

Here we define the order of levels such that

and

K„&K„ i) ' ' &K)

V"'(x)= —2K /cosh Kx, (8)

while for two levels,

D (x) =2[cosh(K1+K2)x +g12cosh(K1 K2)x)

where g, 2
= (K, +K2) /(K2 K, ). —

The potential V(x) in the Schrodinger equation may
be regarded as an instantaneous "snapshot" of a family
of solitons of various nonlinear equations. The
Korteweg —de Vries equation' is the simplest of these:

0] =Q~~~ +6QQ~ (10)

The multisoliton solutions of Eq. (10) are just the families
of reAectionless potentials:

V(x)= —u (x, t =0) .

The one-soliton solution of Eq. (10), related to the one-
level potential (8), is

u(x, t)=2K /cosh K(x —xo+4K t) . (12)

In general there will be equations of order 2n +1 in x,
and first order in t, whose one-soliton solutions are of the
form

Ki +Kj
11(S,S)—=

i&S;jES
When the set S or S is empty, II(S,S)=1. As an exam-
ple, for one level, at E = —K,

D"'(x)=coshKX,

corresponding to
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u (x, t) = 2m / cosh ~[x —x0+ (2a ) "t] .

One may regard the solitons as evolving according to
infinitely many time variables, labeled as t3, t ~, t7, . . . , in
such a way that, for a single soliton,

T

tt ( xyt3yt5, . . . )=2m / cosh K x xo

forerunner of string theory. ' The function ~0 may be
defined to be 1. The ratio of the coeScients A„and B„ in
Eq. (16) is a free parameter for each n, while multiplica-
tion of ~„by an overall factor does not change u„.

The one-soliton solution which is symmetric in x at
t3 = t5 = . =0 is generated by

tP =[X(x)+X(—a.)]1 . (18)

+ g (X) "t2.„+)
n=1

(14)

At t3 = ts = - =0, this agrees, up to an irrelevant
overall factor, with the result (7).

A useful identity' is

(Here we have absorbed some powers of 2 into definitions
of t2„+,.) It has then been shown ' ' that the general
¹oliton solution is of the form

a'
u„=2

2
ln

BX

with

]. /2

X(~)X(~')1=, exp(K x+~ t3+ . )K+K

Xexp(x'x+a' t3+ . ) . (19)

This is most easily proved (let us take a.)~') by noting
that

a11d

r„=[A„X(~„)+B„X(—~„)]r„ (16) a
exp

P K~ ~tp

X(a)=exp(Irx+v t3+a t5+ ) is a shift operator:

1 aXexp
K BX

a
3K exp — f (tp)=f t~-a

PK& Bt& PK~
(20)

The operator X(a) is known as the vertex operator. ' It
has appeared previously in the dual resonance model, the Then

1X(z)X(z') =exp(vx +v t3+ ) exp w' x ——+& t3 3
+ ' ' '

3K

oo
( s/ )2K+ 1

2k+1 exp(KX +K t3+ ' ' ' ) exp(K x +K t3+ ' ' ) (21)

But

(~'/~) "+' 1
1

I+~'/K
2k + 1 2 1 —. v'/a

(22)

leading to (19).
One finds, first of all, that X(sc)X(a)1 =0. Physically this corresponds to the fact that one cannot add the same level

to a potential twice. There is no degeneracy of bound states in one-dimensional quantum mechanics. (For an earlier
discussion in the context of the inverse-scattering method, see Ref. 4.)

The two-level symmetric, reAectionless potential may be obtained from

0= [X(~2)+X (
—x2)][X(x, )+X( —v, )]1

K2 K)=2
K2+ Ki

1/2 1/2
K2+ K]

cosh(Kl+K2)x +
K2 K)

cosh(~2 —x, )x (23)

Up to an inessential overall factor, this is just (9).
The construction of the symmetric, reAectionless n-

level potential is now straightforward. We define

t„'" =[X(a.„)+X(—~„)]t„'" (

and

8y ( )
— 2 gymm

n
g 2 n =0

3 5

(25)
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The shift operators contained in X(a„), acting to the
right, generate products

1/2—1 K +Kn —jn .

f„f„'= V„ t(x)+1—~„[Vo(x)—:0],
f„+f„' = V„(x)+a„, n =1, . . . , N,

(26)

easily derived using the methods of supersymmetric
quantum mechanics. ' Symmetric potentials are ob-
tained if one imposes the boundary condition f„(0)=0.
The equations for f„f„' are Riccati equ—ations which
may be linearized using the substitution

f„=—w„'/w„,

so that

w„"/w„= V„,(x)+a„.

(27)

(28)

But this is just the Schrodinger equation for w„ in the po-
tential V„,(x). Since —a„ is below all bound-state ener-

when acting on the exponentials in r'„™&.If we divide
out all the factors of the form

1/2
K~ Kj

K~ +Kj

we just obtain the result (4).
The product of N vertex operators X(a~) . X(I~i)

(a.~ ~ . . ~ 1~, ) acting on 1 will vanish when any two lev-
els are made to coalesce, because of the ubiquitous factors

1/2
Ki Kj

Ki +Kj

Again, degeneracy of levels in one-dimensional quantum
mechanics is forbidden. (A slightly more involved proof
applies to the symmetrized version leading to r~.) The
vertex operators act like fermions in this respect, obeying
an exclusion principle. There is thus a further connection
between the vertex operator (which performs a Backlund
transformation, ' adding a soliton) and the supersym-
metry transformation in supersymmetric quantum
mechanics, which adds a level' to a potential. (These
connections were noted in Ref. 20.)

In practice for large n there turns out to be a more use-
ful way to evaluate V„(x) than to compute D (x) in Eq.
(4). One solves the chain of equations

gies in V„„the wave function- w„(x) [obeying w„'(0) =0
in order that f„(0)=0] is even in x, nodeless, and
diverges exponentially at x =+~. It has been encoun-
tered previously in related studies. ' The ground-state
Schrodinger wave function in V„(x), with bound-state en-
ergy —~„, turns out to be just 1/w„(x) (Refs. 5 and 8).

Numerically in Eqs. (26) one only has to perform a sin-
gle "sweep" of the integration region, passing informa-
tion obtained on wi(x) at the kth integration step back to
the (k —1)th step in the determination of wi+, (x) (Ref.
5).

Taking differences of pairs of Eqs. (26), one finds

a'V„—V„ i =2f„' = —2 lnw„,
Bx

which implies

(29)

D~(x)= + w„(x) .
n=1

In particular

+n t =t =.. -=0 Wn X n —1 t =t =- =0'
3 5 3 3

(30)

(31)

If V(x) is replaced by —u (x, t3, t5, . . . ) and the corre-
sponding w„(x) by w„(x, t3, t~, . . . ), it is in fact true '
that

+n —1

X(a„)r„
=W~

+n —1

(32)
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for arbitrary times t3 t5, . . . .
We have thus shown one example in which a problem

associated with a vertex operator is most directly solved
by recourse to the linear problem, involving determina-
tion of the "fake" Schrodinger wave functions w„(x). We
would expect this result to have useful generalizations.

iH. B. Thacker, C. Quigg, and Jonathan L. Rosner, Phys. Rev.
D 18, 274 (1878); 18, 287 (1978).

~C. Quigg, H. B. Thacker, and Jonathan L. Rosner, Phys. Rev.
D 21, 234 (1980); C. Quigg and Jonathan L. Rosner, ibid 23, .
2625 (1981); Peter Moxhay, Jonathan L. Rosner, and C.
Quigg, ibid 23, 2638 (1981). .

Jonathan F. Schonfeld, Waikwok Kwong, Jonathan L. Rosner,
C. Quigg, and H. B.Thacker, Ann. Phys. (N.Y.) 128, 1 (1980).

4Waikwok Kwong, Jonathan L. Rosner, Jonathan F. Schonfeld,
C. Quigg, and H. B.Thacker, Am. J. Phys. 48, 926 (1980).

5Waikwok Kwong and Jonathan L. Rosner, Prog. Theor. Phys.
Suppl. 86, 366 (1986) (Festschrift volume in honor of Y. Nam-
bu).

Waikwok Kwong and Jonathan L. Rosner, Phys. Rev. D 38,
279 (1988).

7Alan C. Newell, Solitons in Mathematics and Physics (SIAM,
Philadelphia, 1985).

C. V. Sukumar, J. Phys. A 18, L57 (1985); 18, 2917 (1985); 18,
2937 (1985); 19, 2229 (1986); 19, 2297 (1986);20, 2461 (1986).

E. Witten, Nucl. Phys. B188, 513 (1981). A further set of refer-



39 BRIEF REPORTS 1245

ences may be found in Ref. 5.
I. Kay and H. E. Moses, J. Appl. Phys. 27, 1503 (1956).

'I. M. Gel'fand and B. M. Levitan, Am. Math. Soc. Trans. 1,
253 (1955); V. A. Marchenko, Dokl. Akad. Nauk SSSR 104,
695 (1955).
D. J. Korteweg and G. de Vries, Philos. Mag. 39, 422 (1895).
Masaki Kashiwara and Tetsuji Miwa, Proc. Jpn. Acad. Ser. A
57, 342 (1981); Etsuro Date, Masaki Kahiwara, and Tetsuji
Miwa, ibid. 57, 387 (1981).
The most straightforward derivation of this result we have
been able to find in the literature is by H. Flaschka, Quart. J.
Math. Oxford (2) 34, 61 (1983).

~5James Lepowsky and Robert Lee Wilson, Commun. Math.
Phys. 62, 43 (1978).

'6Yoichiro Nambu, in Symmetries and Quark Models, proceed-
ings of the International Conference, Wayne State University,
1969, edited by Ramesh Chand (Gordon and Breach, New

York, 1969), p. 269.
See, e.g. , Newell, Solitons in Mathematics and Physics (Ref. 7),
p. 139.

8A. V. Backlund, Math. Ann. 9, 297 (1876); 19, 387 (1882).
G. Darboux, C. R. Acad. Sci. (Paris) 94, 1456 (1882). For
more modern treatments, see, e.g., Ref. 9 and B.
Baumgartner, H. Grosse, and A. Martin, Nucl. Phys. B254,
528 (1985); M. Luban and D. L. Pursey, Phys. Rev. D 33, 431
(1986); D. L. Pursey, ibid. 33, 1048 (1986); 33, 2267 (1986).
Miki Wadati, Heiji Sanuki, and Kimiaki Konno, Prog. Theor.
Phys. 53, 419 (1975).

2 The function we call w„(x) is known as the Clebsch-Gordan-
Akhiezer-Baker function. See, e.g. , B. A. Dubrovin, in
Mathematica/ Physics Reviews (Vol. 3 of Soviet Scientific Re-
views, Sec. C), edited by S. P. Novikov, translated by Morton
Hamermesh (Harwood Academic, Chur, Switzerland, 1982),
p. 83.


