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Conservation laws, Korteweg—de Vries and sine-Gordon systems, and the role of supersymmetry
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It is shown that the eigenvalue problem of the L operator for the sine-Gordon equation can be
put in a supersymmetric form. We comment on the connection between the conserved quantities of

the Korteweg—de Vries and sine-Gordon systems.

Perhaps the simplest of all integrable systems is the
Korteweg—de Vries (KdV) equation

3
—=6bu_——— . (1)
This equation has been studied! widely in the literature

and is known to possess an N-soliton solution.
The conservation laws in (1) may be derived "2 from

a simple consideration of the Poisson brackets. Express-
ing (1) in two equivalent ways (D =3/9x),
%—1:=Mu, M =—D3+2(Du +uD) , (2a)
au . 2
o =D 3u’—D%), (2b)
the following definitions of Poisson brackets,
8F[u] SG[u]
(FIulG[ul},= [dxg Mo (3a)
8F[u] 8G[u]
{F[u],G[u]},= [dx 5w D ontn) (3b)

where F and G are functionals of u, may be seen to lead
to

%={u(x),Hl}l=right-hand side (RHS) of (2a) ,
H1=fdx u¥(x), (4a)
%’ti—{ (x),H,},=RHS of (2b) ,

=fdx[u3+%(Du)2] . (4b)

On account of (3) and (4), one can immediately write
down the connection

8IIn+1 8Hn
=M , =0,1,2,..., 5
dulx) oulx)’ " ©)
where H0=fdx u(x), H,H,,Hj, etc., play the role of

conserved quantities. It is obvious from the Poisson-
brackets structure of (4) that the conserved quantities are
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actually a sequence of Hamiltonians each generating its
own evolution equation.

To derive the conservation laws in other integrable sys-
tems, the transition from the KdV equation to its
modified form (MKdV, for short) is naturally the next ob-
vious step. The MKdV equation is not only interesting in
its own right but has a subtle role to play in bringing out
the connection between supersymmetric quantum me-
chanics and the construction of the N-soliton solution of
the KdV equation. To appreciate this, we need to note
that the quantities

u,=f2f —k?, (6a)

k =const (6b)
are automatic solutions in (1), provided that f satisfies

fiH6(k> = f)f o+ frax =0 . 7

Equation (7) is recognized in the literature as the MKdV
equation and one of solutions (6) (when k =0) is similar?
to Miura’s transformation.

The combinations in (6) are nothing but the so-called
partner potentials in supersymmetric quantum mechan-
ics. Physically this means that if we define

fo=r=f=kK (8a)

then the positivity of k? prevents f_ from having any
bound state. On the contrary, it can be shown*? that the
f+ given by

fe=fr+f=k? (8b)

possesses a zero-energy bound state. Thus one can carry"
out the construction of reflectionless potentials as indeed
the form* of the S matrix for the f, reveals. Further-
more, employing appropriate boundary conditions on f,
the solutions # , and u _ may be identified with the N +1
and N solitons of (1), respectively.

The conserved quantities for the MKdV system may be
worked out from those of the KdV using (6). These turn
out to be

1186 ©1989 The American Physical Society



39 CONSERVATION LAWS, KORTEWEG-DE VRIES AND SINE-. ..

Hy=[dx f>, H,= [dx[f*—6k*f2+(Df1], ©)

etc. However, one can also obtain (9) by expressing the
MKGdV equation in a pair of equivalent ways as was in
the case of the KdV. In this case, the quantity corre-
sponding to M in (2a) is [ —D*+3(Df*+ f*D)—6k*D].

The purpose of this work is to show how supersym-
metric transformations may be used to relate the con-
served quantities in the KdV system and those which fol-
low from the sine-Gordon equation. Actually, as will be
seen in the following, a remarkable property of the Lax
form for the sine-Gordon equation is that it is endowed
with a supersymmetric structure if we look at the eigen-
value problem of the L operator. The relation between
the conserved quantities in the KdV and sine-Gordon
systems emerges as a trivial consequence. It is not quite
obvious why a link should exist at all between the KdV
system which is a nonrelativistic nonlinear equation and
the sine-Gordon system which is a relativistic one. How-
ever, as should become clear from the arguments given
below, supersymmetric transformations do not really
transform the sine-Gordon equation bodily into the KdV
equation: only the eigenvalue equation of the L operator
(and as a consequence, the conserved quantities) for the
two are mapped onto each other.

16-70r the KdV equation, the L and B operators are given
by ‘

aZ
L=——=+u(x1), (10a)
ox
_4 9 4,08 .3
B_4ax3 3 uax+8x (10b)
These enable one to express (1) in the Lax form
L=[L,B]. (1)

The spectrum of L is conserved and the conserved quan-
tities may be obtained from the definitions’

2
L(x,y)Z—%S(x —y)+u(x)8(x —y) (12a)
X
along with
TrL = [ dx dy 8(x —p)L(x,p) . (12b)

On the other hand, the sine-Gordon equation when ex-
pressed in light-cone coordinates x, =1i(x +t¢), and
x_ =4(x —1t) reads

62

ox, 0% (13a)

= —siny ,

i.e.,

¥'=—sing , (13b)
where the overdot (prime) denotes a partial derivative
with respect to x; (x_). As the work of Ablowitz,
Kaup, Newell, and Segur® has shown, like the KdV equa-
tion, (13b) also admits to the Lax form (11) with
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L=20 L‘*‘O’ A (14a)
3 ax_ 2 i

B =(0;costp+o,sing)L ! . (14b)

The use of light-cone coordinates reflects that the con-
served quantities will be the x _ integrals of appropriate
functions of 1.

Because of the presence of the Pauli matrices 0, and o,
in. (14), the operators L and B possess a (2X2) matrix
structure. Hence the spectral problem for L looks like

Lx=&x, (15a)
where £ is a constant and Y is given by
X1
X= X2 (15b)

Inserting (15b) in (15a) and using the form of L in (14a),
the resulting equations become

(16a)
(16b)

22X —iY' X, =Xy »
WX, —2x,=6x; -

Interestingly (16) may be put in a supersymmetric form.
This may be achieved if we introduce the notation

X+=X1FTX2 (17a)

X-=X1—X2 (17b)
along with W =ivy’/2. We obtain as a consequence

— XL (=W =W )x,=—(E/4)x, , (18a)

— X (=W W xy_=—(E/4)x_ . (18b)

The supersymmetric Hamiltonian H°® which acts on the
two-component column

X+
XY_

may be expressed as

H=\|4 g | (19)

where H, =—d?/dx>+ U, and U, and U_ represent
the so-called bosonic (+) and fermionic ( —) potentials

U, =W>tW' . (20)

Indeed factorizability of H*® enables us to define nilpo-
tent fermionic operators Q and Q * such that

0 0 0 4f
=140l 2=10 o |- @1
where
A=—%+W, (22a)
A*=§d;+W. (22b)
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In terms of Q and QT, H'is
H=0'0 +00 23)

with H* and H ™ corresponding to the pieces A4 and
A4, respectively.

Since Q2=QT2=O, both Q and QJr commute with H°.
In supersymmetric quantum mechanics, this means® that
if ¢, is an eigenvector then, with the exception of the
n =0 case, Q¢, is one also. Since Q¢, is zero trivially,
one concludes that the ground state is associated with the
bosonic Hamiltonian H , only. However, all other states
are paired, thereby yielding two towers of degenerate ei-
genvalues.

Such a natural embedding of supersymmetry in the ei-
genvalue problem of the L operator for the sine-Gordon
equation does not seem to have been noticed before. To
the best of our knowledge, supersymmetry has been so far
developed to construct the general N-soliton solutions of
the KdV equation.

It is straightforward to relate the conservation laws in
the KdV and sine-Gordon systems. To this end, we write
down the eigenvalue equation of the L operator for the
KdV system. Using (10a), this reads

2
[——d——+u r=Ex . (24)

dx?

It then follows that either of Egs. (18) is identical to (24)
if u transforms as

u—(Witw’), (25a)

E——(£2/4) . (25b)

Effectively, this implies that given the set of conserved
quantities H;, H,, etc. of the KdV system, the corre-
sponding ones for the sine-Gordon system may be written
down using the mapping (25) and the link between W and
Y. These are

Qo=—4[v2dx_,
Q=+ [ (¥ —ay Ddx_ (26)
Q2=_% (¢l6_20¢/2¢112+81’l’ln2)dx_ ,
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etc. It may be noted that to express the Q’s in the above
form, we have integrated by parts!'® and discarded the to-
tal derivatives. It should be emphasized the the Q’s do
not depend on the arbitrariness of the sign in (25).

To bring out the role of supersymmetry in the above
correspondence let us distinguish the two cases in (25) by
7, and #_. Our preceding discussion on supersymmetry
now tells us that if suitable boundary conditions are im-
posed on ¥ (and consequently W) &, may be interpreted
as an (N +1)-soliton solution if #_ corresponds to the
N-soliton solution.

Elimination of W yields

)

ax—(a++a_)“2=%(z7+—ﬁ_), 27

which provides a relation between #, and #_. Expect-
edly, this relation is similar to what one would have ob-
tained if f was eliminated between (6a) and (6b).

In this way the connection between the infinite se-
quence of conserved quantities in the KdV system and
those of the sine-Gordon system may be established. But,
unlike the transformation (6) which implied that if f was
a solution of the MKdV then u were those of the KdV,
the transformations (25) only provide a convenient con-
nection between the conservation laws in the KdV and
sine-Gordon systems. However, it is not true that if ¢
satisfies the sine-Gordon equation then-the right-hand
side of (25) will satisfy the KdV equation.

To conclude, it may be remarked that during a litera-
ture survey we came across the work of Chodos’ in which
a connection between the conserved quantities in the
KdV and sine-Gordon systems had been noticed. Al-
though a formal proof has been given to show that the
coefficient of i in the transformation (25) did not contrib-
ute to the sine-Gordon conservation laws, Chodos did not
notice that, as the sine-Gordon equation is invariant un-
der ¥— —1, the transformation u——L(¢'242i¢")
could also be an equally acceptable choice and so it was
not surprising that the conserved quantities could not
really depend on the imaginary part. In fact, one can
check through simple integration by parts that one can
do away with the imaginary quantities in (26). Neverthe-
less, Chodos’s work appears to be the first attempt!! to
relate the conservation laws of the KdV and sine-Gordon
systems. That this author refrained from drawing any
conclusions regarding the closeness of his transformation
to those of supersymmetry is perhaps because the
discovery of supersymmetry in nonrelativistic mechanics
came about!? later.
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