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Simple proof of Weil triviality in supersymmetric gauge theories
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Using methods of supermanifold cohomo1ogy we give a simple proof of Weil triviality in super-
symmetric gauge theories, generalizing previous results of Bonora, Pasti, and Tonin which are
relevant to the solution of the anomaly problem for such theories. By considering a supersymmetric
gauge theory over an (m, n)-dimensional supermanifold with trivial topology in the odd directions,
we prove without imposing constraints on the supercurvature and supertorsion forms the exactness
of the forms P(F '), where F is the curvature form of a connection on the relevant principal super
fiber bundle and P is an invariant polynomial on the (super) Lie algebra of the structure
(super)group, of degree k )m /2. In order to prove the locality of the form X such that P(F ) =dX
we have to use the constraints, but the necessary calculations turn out to be rather easy for any
space-time dimension.

I. INTRODUCTION

Differential geometric methods based on the transgres-
sion formula of suitable principal bundles have proved to
be extremely useful in the analysis of anomalies in Yang-
Mills and gravity theories. ' When trying to generalize
these geometric methods to supersymmetric theories,
one needs to prove what Bonora and co-workers called
Weil triviality, i.e., that the form P (F ) is exact, where F
is a curvature form on the relevant principal bundle and
P is an invariant polynomial of degree k =m/2+1, m
being the space-time dimension. Moreover, the super-
form X such that P (F ) =dX is required to be local in the
field variables.

In Ref. 3 Bonora, Pasti, and Tonin analyzed a coho-
mology complex whose coboundary operator is deter-
mined by the torsion tensor (T cohomology). The con-
straints on supercurvature and torsion imply conditions
on the T cohomology such that the Weil homomorphism
is trivial (at the order which is relevant to the anomaly
problem) when restricted to the space of gauge-invariant
superforms. The actual computations in the case of a
high-dimensional space-time involve a heavy and intrigu-
ing study of the irreducible representations of the struc-
ture group of the frame bundle.

In this paper we show that by using techniques of su-
permanifold cohomology one can both greatly simplify
the proof and generalize the results of Bonora and co-
workers. We shall prove that if Q is any principal super
fiber bundle on a DeWitt (m, n)-dimensional supermani-
fold M (Ref. 4) [roughly speaking, an (m, n) supermani-
fold M is DeWitt if it is a bundle over an I-dimensional
ordinary manifold Mo, which physically plays the role of
space-time], the Weil homomorphism of the bundle Q is
trivial when restricted to invariant polynomials of degree
k )m /2, i.e., P(F")=dX for k )m/2, P being an in-
variant polynomial of degree k.

The assumption that the supermanifold is DeWitt does
not seem to be physically restrictive, since so far no phys-
ical meaning of a nontrivial topology in the odd direc-
tions is known. In contrast with what happens in Ref. 3,
in order to prove the exactness of P(F") we do not need
to take into account constraints on the torsion or curva-
ture, nor do we need to study irreducible representations
of any group, nor do we have to consider T cohomology.

All this is shown in Sec. II. If one wants to prove that
the form X such that P(F")=dX can be chosen so as to
be local in the field variables, one must take into account
the constraints on the supertorsion and supercurvature.
However, locality is proved by means of very simple cal-
culations and the method we are proposing is much
simpler for any space-time dimensions than the one de-
scribed in Ref. 3. In Sec. III we shall sketch this method
only for m=2, 4, but also the computations in higher di-
mensions can be straightforwardly carried out.

The possibility of proving the exactness of P (F")
without imposing the standard constraints is intimately
connected with our assumption of a trivial topology in
the odd directions. An analysis of the global geometry of
supersymmetric gauge theories over supermanifolds
shows that the result of Bonora and co-workers [i.e., the
fact that the standard constraints imply the exactness of
P(F")] holds globally in any topology, at least for a
four-dimensional space-time.

II. WEIL TRIVIALITY

Let us give a brief outline of the anomaly problem in
supersymmetric gauge theory; to be definite we consider
the case of supersymmetric chiral anomalies with exter-
nal supergravity. Let Q be a principal super fiber bundle
over an (m, n) dimensional supermanifold M with struc-
ture (super)group G, and suppose on Q there is a connec-
tion co with curvature F. For the sake of simplicity we
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shall write the relevant equations assuming that the bun-
dle Q is trivial; however, everything can be easily general-
ized to the case of a nontrivial principal super fiber bun-
dle. (This was done in Ref. 6 in the case of nonsupersym-
metric theories. )

In order to write the Becchi-Rouet-Stora- Tyutin
(BRST) transformations we need the Faddeev-Popov
ghosts c and g=g B„ofthe group of gauge transforma-
tions and of the superdifffeomorphism group, respective-
ly; here A is a collective index 3 =(a,a), a =1, . . . , m,
o, =1, . . . , n, and c is locally a mapping from M into
Lie(G). Then the BRST transformations are, respective-
ly,

6GCO — dC COC CcO — D C, 6GC — C

and

(2)

where g is any scalar-valued superform and X& denotes
the Lie derivative. The operators 6G and 6D are both nil-

potent; the operator 6=6D+6G is nilpotent as well, pro-
vided that in addition to (1) and (2) one lets

5Dco=X~, 5Dc =%re, 5G$"=0, 5GQ=O .

An anomaly A corresponds to a nontrivial 6-cohomology
class modulo d, with ghost number one, so that

~o
dS2k )

=0 )

~o
dS2k 2+6GS2k, =0

dS2k —3 + 6GS2k —2 0)

(8a)

(8b)

(8c)

where S)k, is a (2k —1 —q)-superform with ghost
number q. If one defines

]. 0~G 2k —2) ~D g 2k —1

by using Eqs. (8) and (2), and the fact that %&=i&d +di&,
one proves that

6GAG —dS

D~ G +6GA D
—dl gS2k 2

6DA D
=2dl gl gS 2k

~0

so that A G and A D as defined in (9) provide a solution to
the anomaly problem (4). Notice that if Eq. (6), and as a
consequence Eq. (8a), did not hold it would be impossible
to find a partner AD of AG such that the consistency
conditions (4) are satisfied.

Now we give a brief description of the supermanifold
techniques we shall use to prove Weil triviality. The fun-
damental algebraic object is a real exterior algebra
BL =(BL )oe(BL )& with L generators. One considers the
"vector superspace"

6A =dX for some X,
A ~5A '+ dX' .

(3a)

(3b)
pm, tl —(g )177 )(' (g )/l

If one writes A =A D +A G, with A D and A G linear in
the corresponding ghost fields, then Eq. (3a) yields

[5DAD ] [5DA G 5GA D ] [5GA G ] (4)

P(F")=(d +5G) k J dt P(rD', 7", ')

where [ ] denotes a d-cohomology class.
Now, let us take an invariant polynomial P of order

k =
—,'I+1 on the Lie (super)algebra of G. By using the

BRST equations in (1), one proves that

and defines an (m, n)-dimensional supermanifold as a to-
pological manifold modeled over BI '" by means of an
atlas whose transition functions satisfy a suitable
"supersmoothness" condition. (Actually, a rigorous
definition of supermanifolds yielding a viable theory in-
volves some subtleties that are ignored here; see Ref. 7.)
A supersmooth function f:Ut:BL "~Bt has the usual
form (superfield expansion)

f(x' x,y' y")=f0(x)+ g f (x)y +.

—:(0 +5G)S,

where co'=co+c, co', =tao', and

V, =(d +5G )~DI+ —,'[cDI, coI] .

In Ref. 3 it has been shown that in order to obtain an
anomaly A satisfying Eq. (4) from the descent equations
determined by P, one needs the Weil triviality: namely, it
must happen that

where the x's are the even (Grassmann) coordinates, the .

y's are the odd ones, and the dependence of the coeKcient
functions f. . . (x)'on the even variables is fixed by their
values for real arguments.

Together with the sheaf 9 of germs of supersmooth
BL-valued functions on M, one can consider the sheaves

of germs of k-superforms and an exterior differential
d:0 ~B +'. The cohomology of the differential com-
plex

P(F )=dX,

6,X =0.
(6a)

(6b)

d d d

g(M)~Q, '(M)~Q (M)~

If that is the case, Eq. (5) can be written as

(d+5G)S=O, S=S—X .

By expanding Eq. (7) according to the ghost number, one
obtains the sequence of equations HsD„(M) =H "(M,Bt ), k ~ 0 (10)

where Q(M) and 0"(M) are the spaces of global su-
persmooth functions and k-superforms on M, respective-
ly, is denoted by HsDR(M) (Refs. 8 and 9). It is to be no-
ticed that the analogue of de Rham's theorem
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[where H (M, BI ) is the Cech cohomology of the constant
sheaf BL on M] in general fails to apply. This is basically
due to the fact that, contrary to what happens in the case
of ordinary smooth manifolds, the sheaves 0 and 0, may
have nontrivial Cech cohomology in degree higher then
zero.

However, the isomorphism (10) holds iri a particular
case, which is relevant to physical applications. We say
that an (m, n)-dimensional supermanifold is DeWitt if it
is a locally trivial bundle over an m-dimensional ordinary
smooth manifold Mo, called the body of M, with fiber the
R-vector space Nl '"=(Nl )o X (Nl )i, NI being the ideal
of nilpotent elements in BL. It has been shown else-
where' that if M is DeWitt the sheaves 9 and 0 '

are
cohomologically trivial; this in turn implies that the iso-
morphism (10) holds, i.e., a de Rham theorem applies
provided that the supermanifold is DeWitt.

Since a DeWitt supermanifold is a locally trivial bundle
over its body with a contractible fiber, it follows that it is
contractible to its body, so that

H"(M, BL)=H"(MO, BI )=H"(M OR)„B ,Lk ~0 .

The isomorphisms (11), together with de Rham's theorem
for Mo,

HoR(MO)=H"(MO, R), k ~0,
imply that if M is a DeWitt supermanifold with body Mo,
then

SDR (M) —H DR ( Mo ) IRBL

(This result is the analogue in supermanifold theory of a
theorem in graded manifold theory due to Kostant. ")
From now on we understand that the supermanifold M
under consideration is DeWitt. The consequence of the
isomorphism (12) that is relevant to our purposes is that
any closed k-superform on M is exact if k )m, since in
that case Hsoa(M)=0. Let Q be a principal super fiber
bundle on M carrying a connection co with curvature
form F (Ref. 12), and let P be an invariant polynomial of
degree k on the Lie superalgebra of the structure group
of Q; generalizing classical results, it has been shown in
Ref. 12 that P(F ) determines a closed 2k-superform on
M (that we denote by the same symbol) whose cohomolo-
gy class [P(F")]EHsoa (M) does not depend on the con-
nection but only on the bundle. If 2k )m, that cohomol-
ogy class necessarily vanishes, so that we have the follow-
ing result:

manifold in any space-time dimension, no matter whether
or not the gauge field is coupled to supergravity, and in-
dependently of the form of the constraints.

o.*T'=——'(Cy') ~ co, o*T =0,
where T =

I
T', T ] is the torsion form of the connec-

tion, the co's are the coframes dual to the D's, and Cis the
charge-conjugation matrix.

The even frames [D; J generate over the supersmooth
functions on U an involutive rank-(m, O) subbundle T'U
of TU, while the odd frames ID I generate a rank-(O, n)
subbundle T"U which is not involutive; indeed the com-
mutator of two D s lies in the span of the D s, while the
anticommutator of two D 's does not lie in the span of
the D 's. Because of the fact that Spin(l, m —1) acts
reducibly on these two subbundles of TU through a
block-diagonal representation, they are not mixed by that
action but they glue together to yield a global splitting

TM = T'Me T"M . (14)

Denoting by T*M =T*Me T' M the splitting of the
cotangent bundle T*M dual to (14), we define the super
vector bundles of superforms of type (p, q):

SY'~=( A~T*M) h( A~T* M);

III. LOCALITY OF THE FORM X

In this section we show that, provided the standard
constraints on curvature and torsion are taken into ac-
count, the form X appearing in Eq. (13) in the case
k =m/2+1 can be chosen so as to be a polynomial in
the components of the field variables. We shall need to
consider the operators T and 5 introduced in Ref. 3; these
can be defined in a mathematically consistent way, as the
analysis of the geometry of supersymmetric gauge
theories done in Ref. 5 showed. Here we shall only
sketch the calculations involved in the proof of the locali-
ty of X, while the reader interested in mathematical de-
tails may refer to Ref. 5.

If the supersymmetric gauge theory under considera-
tion is coupled with supergravity it is necessary to intro-
duce also a principal super fiber bundle Lor(M), which is
a subbundle of the superbundle L (M) of frames over M.
The structure group of Lor(M) is (the Grassmann gen-
eralization of) Spin(l, m —1), the covering group of
SO(l, m —1). Let U be an open set in M over which
Lor(M) trivializes, and let o =

I D, ,D, i = 1, . . . , m,
a= 1, . . . , n I be a section of Lor(M) over U. We assume
on Lor(M) there is a connection satisfying the usual con-
straints

P(F")=dX (13)
then we have a decomposition

with X a (2k —1)-superform on M. When comparing
Eqs. (6) and (13) one must consider that the superforms in
Eq. (6) are forms on the total space of the bundle, while
those in Eq. (13) are forms on the base space M. The X
in Eq. (6) is the pullback of the X in Eq. (13), and there-
fore is invariant under the action of vertical bundle auto-
morphisms, i.e., Eq. (6b) holds.

It is clear from the previous analysis that this result
holds for any supersymmetric gauge theory on a super-

Qk= Op~
p+q=k

with projections ~P'~:6 ~QP ~.

A section i1 of fY'q, i.e., a superform of type (p, q) over
an open set U in M, is 1ocally written as
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where

do+d1+ T (16)

where the co"s are of type (1,0) and the co 's of type (0, 1).
It was shown in Ref. 5 that the exterior diA'erential d

acting on a superform of type (p, q) splits into

X, p=p; 0 (C—y") p(yqC ')" P;„ (23)

By applying the operator S to Eq. (22c) and using Eq. (17)
one determines X'; the resulting equation can be writ-
ten down in local components as follows. If X'
=X, ~ co~co'and SP ' =P; ~ co~cu', then

Applying S to (22b) one obtains

X '= —'S(P' —d X' }1 (24)

Locally T can be written as

Tr)=(Cy') ~ co~iD r) .

We also introduce an operator S:6 ' ~A +' locally
defined by

1Sr)= (y;C ') ~co'iD iD q;2n u P

a simple calculation shows that, if g is of type (p, q), then

(TS+ST)r)=pri+ (Cy') &(y;C ')"'~ ~ iD i& g .

(17)
We shall describe the procedure we use to prove the lo-

cality of X by considering a specific example: namely, the
case m=2. The physically relevant theories in two di-
mensions are related to string theory. In that case one
cannot assume the standard constraints, i.e., F &&0 in
general. ' We have k=2 and

P(F2) P2, 2+Pl, 3+P0,4

It is not hard to see that any X satisfying P (F ) =dX has
only terms of types (4, 1), (3,2), and (2,3). With the same
reasoning as before we can prove that a four-superform g
exists such that X=X+dri is of type (4, 1); i.e., we may
assume that X is of type (4, 1). Then we have

P'=dX
P' =TX.

(ZSa)

(25b)

Equations (23) and (24) show that X is local (actually, a
polynomial) in the components of the field variables.
Aside from notations and conventions, Eq. (24) agrees
with the result obtained in Ref. 13 by means of group-
theoretical arguments, while in order to transform Eq.
(23) into the result of Ref. 13 one needs to plug in the ex-
plicit form of P ', coming from the constraint
F

&
~ (Cy&) &R, where R is the curvature scalar.

In the case m=4 one has to use the standard con-
straints, i.e., I'"

&
=0. Since k= 3 we have

P(F )=F ' +P '

Any X satisfying

P(F )=dX

is of the form

(19)
Applying the operator S to (25b) one obtains, as a conse-
quence of Eq. (17),

X=—'SP '
4

X=X '+X' +X '

0, 2 0
1, 1 X0,3

2, 0 0

(21a)

(21c)

Trivial local calculations involving some Dirac matrices
algebra show that Eq. (21b) can be solved.

Assuming that X =X ' '+X ', Eq. (19) can be written

We wish to show that one can find a two-superform q
such that X=X+dr) has no (0,3) component; then of
course P(F ) =dX, and it will be easy to prove that X is
local. We must solve the equation

(X+drt) =0
in the unknown ri; setting r)=r) +g"+r), Eq. (20)
gives

X ' +Tg' +d1& ' =0 .

This equation is solved if

so that X is local.
The same computations have been done in the cases

m =6 and 10; the number of equations one has to solve to
determine g does not increase with space-time dimension,
so that the procedure comes out to be rather easy in any
space-time dimension.
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p2, 2 d X2, 1+d X1,2
1 0

P"=TX' '+d X''
1

p0, 4 TX1,2

(22b)

(22c)

APPENDIX: INTEGRATING ANOMALIES
OVER SPACE-TIME

In supersymmetric gauge theory the anomalies deter-
mined in Eq. (9) are usually integrated over space-time by
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means of a formal procedure, see, e.g. , papers by Bonora
and co-workers in Ref. 2. We would like to make a few
remarks upon a mathematically consistent description of
that integration. Whenever we have an ( m, n )-

dimensional DeWitt supermanifold M whose body Mo is

compact orientable without boundary, and g is an m-
superform on M, we can integrate g over Mo by pulling it
back to Mo by means of a global section of the smooth
bundle M~Mo, which always exists since the fiber of the
bundle is dift'eom orphic to a vector space. So, if
o.:Mo ~M is such a section, the integral

(26)

is well defined. This is the integral formally defined in
Refs. 2 and 3; of course, it will depend also on the section
o. It was shown in Ref. 14 that the integral (26) does not
depend upon o. if its integrand is invariant, up to an exact
form, under supersymmetry transformations. Thus the
integral over space-time of an anomaly is well defined
whenever one can choose a supersymmetric representa-
tive of the anomaly cohomology class.
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