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A new type of effective potential is proposed. It combines the ordinary one-loop effective poten-
tial and a Gaussian approximation within the method of the constraint effective potential. The po-
tential contains the one-loop term and formally bounds the exact effective potential from above.

field theory in four dimensions is reconsidered and the new potential for this theory is calculat-
ed.

I. INTRODUCTION

A well-known method to study the behavior of
quantum-field-theory models (spontaneous symmetry
breaking, triviality, stability, phase structure, etc. ) is to
use the effective action or the effective potential Vdr(fo)
(Ref. 1). The (exact) effective potential Vdt(go) is rather
difficult to compute in practice; so a reliable and calcula-
tionally relatively simple approximate effective potential
is needed. In the physical literature the most popular one
is the one-loop (or, in general, L-loop) effective potential.
The one-loop effective potential is a computationally
rather simple object and is believed to be a good approxi-
mation. Since it has been shown that the one-loop
effective potential can be obtained by minimizing the ex-
pectation value of the shifted linearized Hamiltonian in a
Gaussian state a nonlinearity is lost in a sense from the
point of view of the so-called Gaussian (Hartree-Pock)
approximation. Recently, the Gaussian effective poten-
tial VGEp(go), which takes into account the full nonlinear
Hamiltonian, has attracted much attention. The Gauss-
ian effective potential VGEp(go) is the minimum expecta-
tion value of the Hamiltonian density & in a Gaussian
state ~s ) wherein the field operator P has a constant ex-
pectation value Po. It is an essentially nonperturbative
object and by virtue of the definition it formally satisfies
the highly nontrivial inequality

V.~(ko) —VGEP(4'o) .

Inequality (1), however potentially very interesting, may
be spoiled by renormalization procedure. '

The third so-called constraint effective potential *

V„„(go) [see Eq. (3)] was at first introduced as a compu-
tational tool in the analysis of the exact effective potential
V ff ( (t o ) permitting us to avoid the inconvenient Legendre
transform. But later on it appeared that it was related to
similar definitions in statistical mechanics and it had
something to do with the %'ilson effective potential exten-
sively used by constructivists. The constraint effective
potential V„„(go) tends to the true effective potential
V,a.(go) in the infinite-volume limit, i.e.,

lim V„„(go',0)= V,s(po) .
Q —++ oo

The aim of our paper is to propose a new, hybrid,

Gaussian-improved one-loop effective potential VGL(go).
This effective potential consists of three parts: the classi-
cal potential V(go), the usual one-loop contribution
V,L(go), and a Gaussian term VG(go). It should be
stressed that this compound appears in a very natural
way as a result of some simple procedure performed on
the functional integral representation for the effective po-
tential. As a starting point we have used the concept of
the constraint effective potential V„„(go) and some ear-
lier ideas presented in Ref. 4.

Introducing a new object needs some justification. In
the first place, proposing a compromise effective potential
VGi (Po) we aim to calm the controversy between the
"one-loop traditionalists" and the "followers" of the
Gaussian-effective-potential method. In the second place,
we would like to satisfy for our effective potential
VoL(go) an inequality analogous to inequality (1). Thus
we hope to retain advantages following from both of
these approaches. Our method is defined for the Euclide-
an version of quantum field theory and it works only for
boson fields.

The plan of the paper is as follows. Section II reviews
the definition of the constraint effective potential V„„(go)
and introduces the notion of the Gaussian-improved
one-loop effective potential V~L(go) for boson field
theory in the Euclidean space. As a standard example

theory is reconsidered in Sec. III, where a cutoff ver-
sion of VoL(go) for this model is derived. The renormal-
ized Gaussian-improved one-loop effective potential is
obtained in Sec. IV. A comparison with other methods
and summary is given in Sec. V.

II. GENERAL FORMALISM FOR BOSON FIELDS

The constraint effective potential V„„(go)correspond-
ing to a classical Euclidean boson action S (P)
=So(P)+St(P) in a (D+1)-dimensional space, where

So(go) is a free term and St(go) is an interaction, is
defined by the following Euclidean path integral:

exp[ —QV„„(go)]—:const X f DP, exp[ —S(go+/, )],
(3)

where Q is a (D + 1 )-dimensional volume
(II —f dD+'x), yo is the constant comporient of the field
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P [the zero (D +1)-momentum component of the field P
in the Fourier expansion], and P, is the nonconstant com-
ponent of the field P [nonzero (D + 1)-momentum com-
ponents of the field P in the Fourier expansion]. Obvi-
ously P=Po+P, . Here, the normalization constant we
have chosen is

const ' = D
&

exp —So (4)

dpi —=const XDP, exp[ —So(gi)],

One can easily see that Eq. (3) gives for the free action
[S(P)=So(P)] the classical potential V„„(go)=V(go).
Now, using Eq. (4), we can rewrite Eq. (3) as

exp[ &Vco.(go)1= f dpi exp[ S'(Po Pi)]

where the Gaussian measure we have introduced is

S'(Po, g, )=S(go+/, )
—So(gi)

=So(so+~, )-So(~i)+Sr(~o+~, )

The measure (6) is a probabilistic one; i.e., it is positive
and normalized to unity.

We would like to extract the one-loop contribution
V, I (Po) performing the expansion

S(P o+P, )=S((t o)+S (2(t' oui)+Ski(go (t'i)

where Sz(go, gi) is a term quadratic in field Pi, and
Sii(go, g, ) is a rest. Sz(go, g, ) can contain quadratic
terms of "quantum origin, " e.g. , terms included into
normal-ordering procedure. The term linear in field P,
vanishes because the volume integral of the nonzero
(D +1)-component of iI), vanishes: namely,

Si(go, gi)= f Xi(gohbi(x)d +'x =X,(Po) f P, ( )xd +'x

=&i($o) f iI)(x) —0 ' f p(x)dD+'x dD+'x =0.
Collecting Eqs. (4) and (7), and inserting unity, we can rearrange Eq. (3) in the following manner:

—].

exp[ —QV„„(iI~o)]= f Dgi exp[ So(gi)] f Dgi exp[ —S(fo)—S2(iI)o Pi) —Sii(go Pi)]

= exp[ —S(go)] f Dgi exp[ —So(iIii)] f Dgi exp[ —Sz(go, gi)]

X D, exp —S2

X D
&

exp —S2 0, &

—S&

= exp[ —S(go) —S'iI (~I)o)] f dpi(Po) exp[ SR(Po 4i—)]

It is easy to check that in the infinite-volume limit
S', I (Po) tends to the one-loop contribution V, l (Po):

lim 0 'S
iL (iI)o) = Vil. (ko) .

Q-~+ oo

Using the Jensen inequality for the convex function
"exp" in Eq. (8) we get the estimation

exp[ —QV„„(go)]~ exp —QV(go) —S',~(Po)

—f dl, (go)S, (y„y, ) (10)

and according to Eq. (2) we obtain

where

SiI (go)—=constX f Dg, exp[ —S2(go, gi)],
and dpi(Po) is a normalized Gaussian measure with a
background-field covariance

—1

dpi(Po)= f Dgie"p[ —S2(go, gi)] DP
E

X exp[ —Sz(do 0i)] .

V ff(40) —VGL(00) = V(eo)+ Vl j{00) VG(eo)

where the Gaussian term VG(go) is given by the expres-
sion

VG(ko)= lim 0 ' f dpi{ko)Sz{4o 4i) .

It is worth noting that Vo(go) contains a part of the
higher-loop contributions.

From inequality (11) it follows that the true effective
potential is bounded from above by VGL(go) [the sum of
the classical potential V(go), the one-loop term Viz (Po),
and the Gaussian term VG(go)]. Unfortunately, the in-
equality is rather formal [compare with (1)], and it may
be spoiled by the renormalization procedure. We are not
able to decide when the renormalization preserves in-
equality (11) because the exact bare coupling constants
are unknown. Instead, we must perform some simpler
explicit renormalization procedure to cancel infinities. In
any case, provided the one-loop effective potential
V, l (go) gives a reliable approximation the Gaussian-
improved one-loop effective potential VG„(go) should
also give a reliable approximation.
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III. CALCULATION OF VGL($0)
FORA/ THEORY

We will illustrate our method with the help of the sim-
ple and widely tested A,P model in 3+1 dimensions,
where the Euclidean action has the form

The expression (14c) represents a part of the two-loop
contribution to the efFective potential V,s(po). Thus, one
can implement standard techniques for the e8'ective po-
tential in background 6elds to settle our problem. The
one-loop contribution (14b) can be explicitly calculated:

/2
S(P)= f d x —,'P( —b, +mo)P+ —Log

1 4 (13)

Now

2 2V($0)= —,
' m 0/0+ —A,ogo,

and

S',L(po) =
—,
' ln det( —6+no+ —,'Aopo)

—
—,
' ln det( —b, +m 0 ),

(14a)

(14b)

'(4n—).m y ln 1+4 1+y

—(1+p) ln 1+
1+p

+yp+ 1n( 1 +y ) (isa)

where the first term on the right-hand side in (14b) is
coming from the Gaussian integral in the numerator of
Eq. (9), and the second one is coming from the Gaussian
integral in the denominator [contained in "const, " see
Eq. (4)] of Eq. (9). According to Eq. (12),

1
VG(40)=

41
~0 f dv1(40)(4' +44'04' )

where p=l.ohio/2m and y denotes the dimensionless ul-

traviolet cutoff y=(A/I ) . Similarly (14c) is expressed
by

4

VG ko)= —'ko
( 2ir ) k +m +k P /2

2

=
—,'A, om (4ir) y —(1+p) ln 1+

1+p

1 2

o f dtu, ,($0)P (14c) Collecting (15a) and (15b) we obtain
(15b)

VoL(1f)0, g)=m (p+ —,'p )+(8n. ) y ln 1+4 1

0

+81k,0(4~)-4 (1+p)ln 1+ —X1+p

—(1+p) ln 1+ +yp+ ln(1+y)
1+p

, 2

(16)

Formula (16) gives the cutoff version of the Gaussian-
improved one-loop effective potential VoL($0) for A,p
theory in four dimensions.

d4k

(2ir) k +m +A.PO/2

1

k +I

IV. RENORMALIZATION

Equation (16) is full of ultraviolet divergences and
needs renormalization. The renormalization procedure
can be performed analogously to the method used in Ref.
9 for the two-loop effective potential. Choosing the stan-
dard normalization conditions

V",(O)=m2, V'"„'(O)=X,

we replace (15a) and (15b) by

A,go/2
(k'+ ~ '+ ~4'/2)'

2

The first counterterms in (17a) and (17b) can account for
the normal ordering in the interaction term, i.e.,

The second terms follow from the renormaliza-
tion of the bare coupling constant Ap. After some stan-
dard calculations we finally obtain

VoL(p)=m A. 'p+I (6A. ) 'p2

d4k A.go/2
V,~($0)=—f ln 1+

(2w)4 k +m

+(8m. ) m [(1+p) ln(1+p) —p ——', p ]

+2(8ir) m A[(1+p) ln(1+p) —p] (18)

and

APO/2 (A,go/2)+ (17a)k2+m2 2(k2+~2)2
where we have performed "almost two-loop" perturba-
tive renormalization, and p = A,go/2m .

In the case of the pure Yang-Mills theory, the situation
seems to be more satisfactory because of the possibility of
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introducing a nonperturbative (in the sense explained
below) and more accurate renormalization procedure
("little above leading-logarithm" accuracy). Gauge sym-
metry (Ward identities) imposes a condition on the renor-
malization constant of the wave function and of the
gauge coupling which leads directly from the one-loop
approximation to the leading-logarithm one without us-
ing the renormalization-group equation. ' This renor-
malization is nonperturbative in the sense that one inserts
the renormalization constants not bothering about keep-
ing the proper order in an expansion parameter (the num-
ber of loops).

V. SUMMARY AND DISCUSSION

Combining the concept of the constraint effective po-
tential V„„(gp) and the method of the Jensen inequality
we have succeeded in obtaining a Gaussian-improved
one-loop effective potential VoL(gp) which possesses the
following properties.

(1) Vo„(gp) is an enlargement of the one-loop effective
potential and in the case of A,P theory it is contained in
the two-loop effective potential.

(2) VGi ( Pp ) formally satisfies inequality ( 1 1), in the
same sense as the Gaussian effective potential satisfies in-
equality (1). This permits us to bound the effective poten-
tial from above which in turn gives a sufticient condition
for a theory to be unstable (inconsistent).

(3) In principle, the functional integral in Eq. (8) can be
calculated perturbatively and our Gaussian contribution
is only the first term in the cumulant expansion.

Now we would like to recapitulate brieAy our results
concerning A.P theory and compare them with those ob-
tained in other approaches,

(1) The cutoff version of A,P theory as well as its renor-
malized version is free of inconsistences (instabilities) for
large field Pp encountered in Ref. 3 or in large-N analysis
of Ref. 11.

(2) There is no counterpart of the "precarious" or "au-
tonomous" phase of Ref. 12. The only phase visible in
our approach is the perturbative one. Nevertheless, the
spontaneous broken phase in the cutoff version of the
theory cannot be excluded.

(3) There are no symptoms of the triviality of the re-
normalized A,P theory in four dimensions.
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