
PHYSICAL REVIEW D VOLUME 39, NUMBER 4 15 FEBRUARY 1989

New p-adic strings from old dual models
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In the simplest bosonic p-adic string, a central role is played by an 53 symmetry in the four-
particle amplitude. Using an 53 analysis of four-point dual amplitudes, we exhibit a general class of
p-adic string amplitudes. All are shown to satisfy a factorization (adelic) property for the infinite

product over p-adic amplitudes. Explicit examples are worked through for a p-adic string with
spin-0 and spin-2 poles and no tachyon.

I. INTRODUCTION

Superstring theory is currently undergoing a phase of
consolidation with efforts being devoted to both second-
quantized and first-quantized formalisms. In the former,
string field theory has not yet fulfilled its initial promise.
In the latter, conformal field theory has led to the present
attempts to classify all possible vacua of the string.

It is appropriate at this time to pursue an entirely new
approach to string theory in order, perhaps, to progress
in a completely different direction. Such an approach is
the p-adic string. ' The idea is to replace real numbers by
p-adic numbers at some point (e.g., the string coordinate)
and, in this way, remarkable formulas for p-adic string
tree amplitudes have been obtained. The physical in-
terpretation of the p-adic string has been studied using an
effective field theory ' and other methods. ' For the
moment, the name "p-adic string" refers to a set of am-
plitudes rather than to a physical picture, just as in the
early period of the dual resonance models.

To proceed further, it is necessary to establish for what
class of stringlike amplitudes the p-adic counterpart ex-
ists. In particular, the adelic formula has been estab-
lished only for the simplest bosonic string. ' ' ' ' In
the present paper we show that new p-adic strings which
generalize the adelic formula can be arrived at using the
1973 symmetry-group approach"' to generalize dual
resonance models. Here we shall show how the ampli-
tudes arising from that old approach are precisely such
that the p-adic counterparts have properties in parallel
with those of the Veneziano model. Using the p-adic
techniques, we may be able to establish for the case of a
real variable a geometrical interpretation, perhaps not a
string but at least based on Lagrangians.

In the four-point function, a key role is played by the
quantity y=a(s)+a(t)+a(u)+1 related to the mass-
shell condition for the external particles. The Veneziano
model requires y=O and has a tachyon ground state at
m = —2 (we use units with a'=

—,
' ). The new p-adic

strings we shall arrive at correspond to y = 6n with
n =non-negative integer, and have ground state at
m = —2+ 12n. There is no tachyon for nonzero n.

The outline of the paper is as follows: in Sec. II the p-
adic string for the Veneziano model is reviewed; in Sec.

III the new p-adic strings with y&0 are developed. In
Sec. IV explicit examples for y=6 are worked out. Sec-
tion V is a discussion. Appendixes A and B are devoted
to technical questions which arise in the text.

II. p-ADIC VERSION OF SIMPLEST DUAL MODEL
(VENEZIANO)

+B(—a(u), —a(s)) . (2.2)

In order to express A4 in terms of p-adic gamma func-
tions, let us define

z —1

r, (z)= —z
(2.3)

for finite prime number p and for real variables let us
define"

I „(z)=2(2') 'cos I (z), (2.4)

where I (z) is the Euler gamma function. From Eqs. (2.3)
and (2.4) one finds the adelic formula

r„(z)~ r, (z)=1.

Equation (2.5) has, in general, no region of convergence
but may be regularized by the technique discussed in Ref.
10. From Eq. (2.2) we find, using (for the present case
n =0, but we write the general form for later use)

y =a(s)+a(t)+a(u)+ 1 =2n, (2.6)

»n~a(Q) =( —1)"+'4+ cos era( )

Q =s, t, u Q

(2.7)

that

I"(z)I (1 —z) =
Sin 7TZ

(2.8)

For the simple bosonic string, we write the four-
particle amplitude as

& =f
=B(—a(s), —a(t))+B(—a(t), —a(u))
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=—Q I ( —a(Q))cos
4 era( Q)
7T

Q
2

(2.9) a(s) a(t) a(u)
13,(x)'P, (x )'P„(x )

(3.3)

= g I'„(— (Q)),
Q

(2.10)

using the definition in Eq. (2.4).
From Eqs. (2.3), (2.5), and (2.10) we see that defining

r

Q=s, t, u

—a(Q) —1

p a(Q) (2. 1 1)

which is the result of using p-adic integration in Eq. (2.1),
then

(2.12)

The definition, Eq. (2.11), is the p-adic amplitude given
in Ref. 2. Equation (2.12) is the adelic formula; its regu-
larization was discussed in Ref. 10.

Note especially the mechanism by which Ag'' of Eq.
(2.11) avoids double poles: at, e.g. , a(s)=a(t)=0, one
has —a(u) —1=0 because y=O; for any y&0 the
numerator 1 —p ' "' ' would not have the required
zero.

III. NEW p-ADIC STRINGS

To discuss our new p-adic strings, it will require some
recall of old dual-resonance models, in the classification
of Ref. 11. Although that paper speculated about X-
point functions, the most solid part focused on the case
%=4 which is of greatest interest. The s-t-u symmetry of
the p-adic A g' will require that we consider a stringlike
amplitude

34= A„+3,„+3„, ,

where

(3.1)

dx x '" '(1 —x) " '(1 —x +x )~i P .
1

(3.2)

The requirement that A„have no odd daughters (i.e.,
poles corresponding to odd units of spin below the parent
trajectory) leads uniquely to the form of Eq. (3.2) for arbi-
trary y=a(s)+a(t)+a(u)+1. In the case y=O and
/=1 we have the Veneziano amplitude. For y=O and
/=a(s)13, +a(t)P, +a(u)P„with P, =x (1—x +x )

13, =(1—x)( 1 —x +x ) ', and P„=—x (1—x)(1—x
+x2) ' one arrives at the Neveu-Schwarz amplitude.

For general y and P the form of Eq. (3.2) is uniquely
dictated also by the requirement of summability: that
Eq. (3.1) takes the form of Eq. (3.4) below.

Note that for y unequal to an even integer, the in-
tegrand of Eq. (3.2) would have branch points at
x=exp(+i'/3); these two points are fixed points under
the permutation group S3 which takes x ~(1—x)~ —x ( 1 —x ) '. In the multiparticle generalization" the
relevant group for the X-point function becomes an S&
acting simultaneously on the Koba-Nielsen variables and
external momenta. In fact, the function P is restricted to
depend on x, s, and t in the following special way:

where P is invariant under the simultaneous transforma-
tions s~t~u~s and x~(1—x)~ —x/(1 —x)~x. In
other words, P is S3 invariant under permutations of the
three argument pairs a(i), 13,(x) with i =s, t, u.

This ensures that one may write

X(1—x+x )r (3.4)

—a( Q) —1+2n
p

4 +
1 a(Q) —2n

Q=s~u P
(3.5)

This will have a doule pole at, e.g. , a(s) =a(t) =2n unless
a(u) =2n —1 corresponding to y =a(s)+a(t)+a(u)
+1=6n. This suggests that y must be a multiple of 6.
In fact, only in such a case is it possible (see Appendix B)
to write

A„=K48(2n a(s), 2n —a—(r) ), (3.6)

where E4 is an s-t-u symmetric kinematic factor.
Using Eqs. (2.7) and (3.6), and y=6n, then permits us

to rewrite

3 ~ =%~ + I „(2n —a(Q) ) .
Q

and that A4 has poles only at a(i)=0, 2, 4, 6, . . . . The
residues of these poles correspond to only even spins.
The S3 symmetry thus removes all the odd daughter tra-
jectories in 3„;one then removes all the odd spins by
adding terms as in A ~ of Eq. (3.1).

In order to construct the p-adic counterpart of A4 one
replaces, at some stage, the real integration variable by a
p-adic variable. One possibility is to replace the factor
such as (1—x +x ) in Eq. (3.2) by its p-adic norm direct-
ly; this is discussed in Appendix A. Our procedure will
instead be to write first the integral as one of the Euler P-
function type, by extraction of a kinematic factor, before
making the replacement of the real variable by a p-adic
variable. This latter procedure will lead to an adelic for-
mula for the amplitude; whether or not the former pro-
cedure leads to an adelic formula is less certain (see Ap-
pendix A) and this is why we relegate that discussion to
an appendix. In any case, the important point is that
there exists a definite ambiguity, a priori, in proceeding to
the p-adic amplitude with potentially quite di6'erent
answers. In order to resolve this ambiguity we have
given weight to the possibility of writing explicitly an
adelic formula. But this is for the moment only a matter
of preference and is not based on any fundamental princi-
ple.

In the amplitude of Eq. (3.2) we must impose restric-
tions both on y and on the form of the function P. As al-
ready mentioned, the amplitude A4 has poles only at
a(i)=0, 2, 4, 6, . . . . Let P be chosen such that the lowest
pole is at a(i)=2n, n=non-negative integer. Then the
relevant Euler I3 function will lead to a p-adic amplitude
of the form analogous to Eq. (2.11): namely,
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Using the adelic property, Eq. (2.5), then permits us to
define the p-adic amplitude

(3.8)

where A 4~' is given by Eq. (3.5) and which has the same
spin structure at the ground-state pole a(i)=2n as the
string amplitude 34.

The general principles are thus: choose P such that the
poles at a(i) =0, 2, 4, . . . , (2n —2) are removed from A4,
choose y=6n; calculate the kinematic factor which is
s-t-u symmetric by virtue of Appendix B. The p-adic am-
plitude is then given by Eq. (3.8).

The adelic formula now relates

of K4 survives in A4. This is therefore true for

Ag'' =%4 Q I (2 —a(Q)) .
Q=s, t, u

The following remarks apply to this A4 example.
(i) There is an adelic formula of the kind

34=K4 A4,

(4.3)

(4.4a)

(4.4b)

(4.4c)

34=%4 'A4

( )to 34~' according to

(3.9)

(3.10)

IV. EXPLICIT EXAMPLES

by virtue of Eq. (2.7).
The reader may ask, why not choose y=6n and use

general P? In such a case, the string amplitude has
lower-mass poles than the one at a(i) =2n, namely the
poles at a(i) =0,2, 4, . . . , (2n —2). These lower-mass
poles will appear not in 3 4t' but in the kinematic factor
K~. This would mean that Ag' defined by Eq. (3.8)
would have two different types of poles. The ones at
a(i) =2n +2' (lnp) M are similar to those of the p-adic
Veneziano string, but the poles arising from K4 are only
on the real axis. %hile such a generalization may itself
be very interesting, we wish to pursue a generalization
even more closely parallel to the simplest possible case.
In particular, we shall not allow noncanceled poles from
the kinematic factor K4.

/=a(s)P, P„+a(t)P,P, +a(u)P, /3, , (4.&)

which leads to the kinematic factor

&+ [3—a(Q)][2—a(Q)][1—a(Q)]a(Q)
[1—a(s)][1—a(t)][1—a(u)]

(4.6)

The symmetric group has been used to remove the
a(i) =0 pole, and thus this seems to be a natural generali-
zation of the Veneziano case.

(ii) The real pole at a(s) =2 has residue proportional to
[a (t) —3a(t)+4] in both the string amplitude 3& and in
the p-adic amplitude Ag''. Hence the kinematic factor
K4 is playing the key role of providing the correct spin
structure at the p-adic pole.

(iii) Potential double poles at, e.g. , a(s)=a(t)=2 are
avoided by the zero of (1—p '"'+') in the numerator;
this stems from the choice of y= a(s) +a(t) +a( u)

+ 1 =6 which is in any case necessitated by the s-t-u sym-
metry of K4. [Note that for the complex poles at, e.g. ,
a, =2+2mi(lnp) 'M the residue is nonpolynomial and
there exist double poles such as a, =2 2vri {lnp) —'M and
a(u)=1. ]

Other examples for @=6 are straightforward to corn-
pute. We may take, instead of Eq. (4.1),

a(i)/3, . (4.1)

For the general amplitude given by Eq. (3.2) the sim-
plest case is with ? =0 and /=1 corresponding to the
amplitude discussed in the review in Sec. II.

The first nontrivial new p-adic string occurs with y =6.
For this case, according to the discussion given in Sec.
III, one must choose P as a function of a(i), P, such that
the a(i)=0 pole is absent in the string amplitude A4.
The simplest choice, already considered in Ref. 11, is to
take

A third example is

P =a(s)P, +a( t )/3, + a( u )/3„,

leading to

[2—a(s)][2—a(t)] [2—a(t)][2—a(u)]
1 —a(u) 1 —a(s)

[2—a(u)][2 —a(s)]
1 —a(t)

(4.7)

(4.8)

i =s, t, u

A detailed calculation gives the kinematic factor E4 as

4 —a(s)a{t) 4 —a(t)a(u)
1 —a(u) 1 —a(s)

One may proceed further to generalize, e.g. , to cases
with the poles at both a(Q) =0 and 2 removed. One such
choice is y = 12 and

P =a(s) [1—a(s) ][2—a(s) ]P,

4—a(u)a(s)
I —a(t) (4.2)

+a( t) [1—a( t) ][2—a( t) ]P,

+a(u)[1 —a(u)][2 —a(u)]P'„ (4.9)

The poles at a(i) =1 in IC~ are immediately canceled by
the numerator of A g'. All that we insist is that no pole

in Eq. (3.2). We do not attempt here to classify all such
possibilities systematically.
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V. DISCUSSION

If the p-adic approach is taken seriously and one insists
on some adelic formula for at least the four-particle tree
amplitude, then the amplitudes treated in this paper ap-
pear to us as the natural generalization of the simplest
bosonic string. One interesting question is how to pursue
such a generalization to the higher-point functions.

If the p-adic string is related to the existence of a build-
ing block more fundamental than a string, then such a
broad class of amplitudes may possess a geometrical in-
terpretation that is more accessible by p-adic techniques
than by other methods. On the other hand, the absence
of massless particles may mean a,physical interpretation
not as a unifying "theory of everything" but instead as,
e.g. , a theory of hadrons or as a possible new phase of the
unifying string at energies beyond the Planck scale.

In any case, among the work on dual models in the
period which ended over ten years ago, our results sug-
gest the approach of Ref. 11 as worthy of further study
since it has not, to our knowledge, been studied for over a
decade.
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dx
I
x

I

' " '
I
l —x

I

" '
I
l —x +x 'I '"

)-')

= f dx~x~'")-'

(1 p
—1)pa{u)

( )
(A5)

dx~x~ '" '~1 —x~
P

X ~1 —x +x'~)'"

lxl =], li —xl
P ' P

( 1
—1

)
a{s)

p
u(s) (A6)

Here we have used the fact
~

1 —x +x
~

= 1, ~x ~, and
1 for (i), (ii), and (iii), respectively. Notice that the above
three terms are independent of y and give the same form
of "propagator" as in the case of Veneziano model.

The (iv) term gives the contact term which depends on
the value y in general. We define this as C (y ):

C (y)=
lxl =I]—xl =&

P

This work was supported in part by the U.S. Depart-
ment of Energy under Grant No. FG05-85ER-40219.

APPENDIX A: ALTERNATIVE p-ADIC VERSION For p=2

X ~1
—x+x'~~"

dx~ 1 —x+x'~&" .
lxl =l1 —xl

(A7)

In this appendix we will discuss an alternative p-adic
version of the amplitude Eq. (3.1) and its generalization.
Let us consider the integral'

x x ~{" '(1 —x) ~" '(1 —x +x ~)r~2 (Al
]

with y =n(s) +a(t) +a(u) +1. Here we do not restrict to
the y=6n case. Because of S~ generated by x~(1—x),
x ~( —x)/(1 —x), the total amplitude A4 = 3„+3,„
+ 3„,can be expressed as

dxx '" ' 1 —x " ' 1 —x+x
(A2)

The p-adic version of the above amplitude can be defined
by the usual procedure; replacing the real integral and
the norm by the p-adic counterparts:

dx~x~ " '~1 —x~
Qp

C2(y) =0, (A8)

since the integration region is empty. For the p=3 c'ase,
using the change of the variable x =2+3y ( ~y~

& 1),

C~(y)= f dx~1 —x+x
x =2+3y

=3 ' f dy/3[1+3(y + 1)]/)'~

3
—1 —y/2 (A9)

For p )3, since x can be expressed as x =a +py
(a =2, 3, . . . ,p —1, ~y~z

& 1), Cz(y) becomes

p —1

C„(y)= g f dxil —x+x
x =Q+pp

p —1= g p 'f dy~(1 —a+a )
0 =2

+p(2a —1)y+p y ~~

X~1—x+x (A3)
(A 10)

In order to calculate the above integral it is standard to
split A4 ) according to the following four integral re-
gions: (i) ~x~ &1, (ii) ~x~ ) 1, (iii) ~x~ =1, ~1 —x~ &1,
and (iv) ~x~~ =

~
1 —x(~ =1. Calculations for (i)—(iii) are

easily done and give the results

dxixi '" 'il —xi ' 'il —x+x'i'"
dxx

lxl

—1) a{t)
p (A4)

o.( t)

C~(y)= (A 1 1)

If p —1 is divisible by 3, separating two terms in which
1 —a +a =m (a)p [m (a) integer]

In order to evaluate the norm of the integrand, we have
to know whether the equation 1 —a +a =0 (mod p) has
solutions for a =2, 3, . . . ,p —1. It can be shown that if
p —1 is divisible by 3 the above equation has two solu-
tions and otherwise it does not have any solution. There-
fore, if p —1 is not divisible by 3,
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C~(y)=

+ y p
' '"f dylm(a)+(2a —l)y

2 terms P

Now let us define an integral J as

+py
2

~

y /2 (A12)

J=
„I dynam (a)+(2a —1)y +py

p

Writing y =b +pz (b =0, 1, . . . ,p —1, ~z~
( 1),

p —1

J = g p
'j dz~m (a)+(2a —1)b

(A13)

+p [(2(2 —1)z+(b +pz) ]iyy

(A14)

p 1 + —1 —y/2 p 1 + —1 —y/2 p
p p

p p

1
—1 —y/2

p

Substituting this into Eq. (A12), we get

p —4+ p —1

P p p 1+y/2

(A16)

(A17)

Combining Eqs. (A4)—(A6), (A8), (A9), (Al 1), and
(A16) we can summarize the result

wher'e

C2(y) =0,
C (y)=3

( 1
—1) a(g)

+C, (y),
p

0'.(Q)
(A18)

(A19)

(A20)

To calculate this integral it is enough to notice that the
equation m (a)+(2a —1)b=O (mod p) has always one
solution in [bI =IO, l, . . . ,p —1I. Separating that term
and using m (a)+(2a —1)b =n (a, b)p [n (a, b) integer]

J=P +p ' ~/ n ab+b + 2a —1zp —1

p I.I,

+p(2bz+pz )iy . (A15)

The above procedure can be repeated and J can be ob-
tained as an infinite series:

Whether the product of the above amplitudes over all

prime numbers gives some simple result is not so clear
since the formula involves the divisibility by 3. Therefore
the possibility of a new adelic formula based on this am-

plitude is still an open question.

APPENDIX B: PROOF OF s-f-u SYMMETRY

In Eq. (3.6) of the text, an assertion was made without
proof. Namely, that if we choose to write the amplitude
A„as a particular p function multiplied by a kinematic
factor (K„) then the factor K4 which is obviously s tsym--

metric actually has a larger symmetry under s-t-u inter-
change. In particular it was asserted that, for any
n=integer ~0, if

—a(t) 1( I )
——a(s) —1

$E

X (1—x +x ')y y'P(a(i ),P, )

=K4B(2n —a(s), 2n —a(t) ),
(81)

(82)

then if and only if y =6n is the kinematic factor K~ s-t-u
symmetric.

To prove this, let y =6n +5 and let a(g)
=[a(g)—2n] so that y=a(s)+a(t)+a(u)+1=5.
Then, using Eqs. (81) and (82) we have

8( —a(s), —a(t))= I dx x '" '(1 —x)
0

(83)
with

P=K4 '(1 —x+x ) (P,P,P„) "/{a(i)+2n, P, ) . (84)

For 8( —a(s), —a(t)) of Eq. (83) to have the same
residues of the poles at a(s) =0,1,2,3. . . as it would had
we replaced P by unity, then P must possess the S3 sym-
metry under x~(1—x)~ —x(1—x) ' and s~t~u

Now, in Eq. (84), the factor (P,P,P„) ' is S3 sym-
rnetric as, by assumption, is P. There remain two factors,
K4 ' which depends only on a(s), a(t), and a(u) (not on

P;) and (1—x+x ) which depends only on x [not on
a(i)]. The only possibility is thus that 5=0 and that K4
is s-t-u symmetric. This corresponds to y=6n as stated
in the text.

As an illustration of the P in Eq. (83), for the first ex-
ample of Sec. IV one finds

1 4—a(s)a(t) 4—a(t)a(u)
3 1 —a(u) 1 —a(s)

Cp 3(y) =
p

p —&+2p
4

—1 1
1+y/2

p —1 is divisible by 3 .

p —1 is not divisible by 3, (A21)

(A22)

4 —a(u)a(s)
1 —a(t)

X
3

[a(s)x+a(t)(1 —x) —a(u)x(1 —x)] .(1—x+x )

x (1—x)

(85)
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