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The renormalized quantum stress tensor for an electromagnetic field in the Hartle-Hawking state
in Schwarzschild spacetime is calculated using a mode sum which is evaluated numerically. The re-

sults shed light on stress-tensor-approximation methods that have been proposed in recent years.

I. INTRODUCTION

Four years ago, Howard' performed the numerical cal-
culation of the renormalized one-loop stress tensor for a
conformally invariant scalar field in thermal equilibrium
with a Schwarzschild black hole and found remarkably
good agreement with a simple analytic expression found
earlier by Page. Since then there has been considerable
interest in Page s approximation for scalar and higher-
spin fields. In Ref. 5 it was shown that there is a prob-
lem in applying this approximation scheme to the case of
an electromagnetic field in Schwarzschild spacetime, in
that the value of the energy density on the horizon
disagrees with the value calculated by Elster. ' In a
separate publication, ' we have shown that this published
value was in error and gave the corrected value

19—( T, ')(r =2M) =—
30~

where ~—= 1/4M. Even with this correction, however, the
Page approximation does not agree with the exact result.
More recently Frolov and Zel'nikov suggested an ex-
tended version of the Page approximation which gives a
conserved tensor with the trace anomaly and also neces-
sarily gives the correct value of the energy density on the
horizon. However, the main drawback with the Page ap-
proximation is that it is not known in what sense it is val-
id as an approximation except in certain simple cases-
the major problem being that it is too local; i.e., it is not
clear in what way it rejects the global choice of the state.
The only concrete justification for interest in Page s ap-
proximation for scalar fields in Schwarzschild spacetime
is Howard's numerical calculation. We have undertaken
the corresponding numerical calculation for the case of
electromagnetism.

Howard separated the scalar stress tensor

( T„),„„„„,. We have made a similar split for the elec-
tromagnetic case. In this case, however, the approximate
tensor corresponds neither to the Page tensor nor that of
Frolov and Zel'nikov.

In this paper we have followed the same general
method of Howard but have taken advantage of tech-
niques introduced by Leaver" (for a calculation of quasi-
normal modes of Schwarzschild black holes) to stream-
line the program. The decrease in calculation time was
suf5cient to enable us to perform the numerical calcula-
tion on a small personal computer.

II. CALCULATION OF ( T„"&

As our methods closely follow those of Refs. 1 and 8,
we will simply give an outline here, relegating the details
of the calculation to the appendixes.

The quantum stress tensor for the electromagnetic field
may be written

( T„&= ( T„& + & T„&,+ & T„&,„, (2.1)

where ( T„)M is the expectation value of the operator
version of the classical Maxwell stress tensor

(2.2)

which is built of the field operators A„(x) in the usual
way:

(2.3)

The tensor operators ( T„)oa and ( T„) h are the con-
tributions due to the gauge-breaking and ghost terms in
the action. Classically, one can show that

(2.4)

and this equation is respected by any gauge-invariant re-
normalization procedure.

We can write Eq. (2.2) as

where 5„,consisting of a mode sum evaluated numeri-

cally, is a small correction to Page's approximate tensor

( T )M = lim g„~G «(x,x'),
X ~X

where

(2.5)
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39 RENORMALIZED ELECTROMAGNETIC STRESS TENSOR IN. . . 1131

G &.(x,x')=(A (x)Afi(x')) (2.6)

is the electromagnetic two-point function, and the
di6'erential operator w is given by

~vap' D pvap' I pva rap'
4

with

D pvap' —(g p'g v p's'
g g vpgs')(g rap@ g pa+ Y )

(2.7)

(2.8)

(2.9)

where ( T„),„i,„„,is a quantity based on the Schwinger-

Expression (2.5) diverges in the limit and so must be re-
normalized. We feel that the neatest prescription for this
is Hadamard renormalization, ' as demonstrated by
Kirsten. ' In the present case, however, we will follow
Howard and Elster and employ the Christensen geodesic
point-separation method. ' ' This procedure consists of
taking the limit

(T„)„„=lim [r„~G &(x,x')

1 o oPor
p )div, hn 2 pa gy24m ' o.

(2.10)

Here C pr& is the Weyl tensor, and o—:o', where
o (x,x') is one-half the square of the geodesic distance be-
tween x and x'.

III. THE HARTLE-HAWKING STRESS TENSOR

The electromagnetic two-point function appropriate to
the Hartle-Hawking boundary conditions has been given
by Elster:

DeWitt short-distance expansion of the Green's function.
In Ref. 15 Christensen gives geometrical expressions for
the quartic, quadratic, logarithmic, and finite divergent
terms of ( T„),„i„„„,. There is also a linearly divergent
term which Christensen eliminates, directing users to
average over o. and —o. . In explicit calculations it is
inconvenient to perform this averaging, and failing to do
it while ignoring this term can lead to wrong answers. '

In a Ricci-Aat spacetime this term is given by

00 oo

G (x x )
— g cine(w —8) g y g abR m(l', p )aYm(8 y)b Y™(iBy )

SmM „ I=O m= —I a, b=l
(3.1)

Here we are using the Schwarzschild space coordinates r, B,Q and imaginary Schwarzschild time r; n and l are the
(imaginary) energy and angular momentum eigenvalues, respectively (note that this is opposite to the usage of Elster).
The functions „'Y& (8,$) are the vector spherical harmonics. ' The ' Ri (r, r'), which are examined by Elster, are not
expressible in terms of known functions. Fortunately, their contribution to ( T„)may be reduced to that of a single
two-point function, which shall be described below and in Appendix A.

Taking points separated in the time direction (it'=it+i@, x'=x), we proceed as in Elster and find, for the 88 com-
ponent of expression (2.5),

~4
~G ~(x,x') = ]6 00 00

1
cosnKe g (I+ —,

' )l(l+1) —~i"(g) iql"(g) —2 ipse (g) iql (P)
(g+ 1) I=1 n

(3.2)

+ 1 2g —1

6' M e (/+1) (g' —1)

The last term in this expression arises from the "linearly divergent" term (2.10) which was omitted by previous authors.
With our choice of point separation in time it gives rise simply to a nondivergent contribution, but is essential for thd
conservation of the renormalized stress tensor.

Subtracting Eq. (3.3) from Eq. (3.2), we have

Here we have switched to the dimensionless variable g=(r/M) 1. The—radial functions ipse"(g) and, ql"(g) are the
spin-one solutions of the Schwarzschild radial wave equation (A3). (We subsequently drop the spin index. ) Their
definitions and general properties are given in Appendix A and Ref. 17. We have incorporated the n =0 term into the
sum from n = 1 to infinity in Eq. (3.2) by use of Eq. (3.7d) below.

The Christensen subtraction term for points separated in imaginary time is

( s) 1 /+1 1 16/ —76/+ 49 1 1
8 sllbtfsct

720m M (/+1) (g —1) 4m M (/+1)

& Ts' &
=

& Te'),„„„„,+, b,s', (3.4)

where

~4
(Ts ),„„„„,= (1+2ui+3w +44m —305to +66tU —579w )

720~

with to—:2M/r=2/(/+1) and

(3.5)
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16 OO

nlim g cosnae g (l+ —,')l(l+1) —pp(g)qp(g) —&p~'(k)q~'(4)
(g+ I ) n

n (/+1) n 1 + 2 1

(g+ 1)
(3.6)

In passing from Eq. (3.1) to Eq. (3.4) we have employed the following distribution theoretic identities valid for a&0:
QO

1
n cosnKE=

n =1 K E
(3.7a)

n cosnKe =0
n=1

(3.7b)

n=1
n cosnKE

2K 6
(3.7c)

cosn Ke = —
—,',

n=1
(3.7d)

which enabled us to incorporate the e and e pieces of ( T„'),„b„„,directly into the sum over the energy eigenvalue
n We .note that here we were also required to use Eq. (3.7d) to remoue a term (proportional to to ) from the n sum and
incorporate it into ( Tz ),„„„., (see Appendix B and Sec. V). This term, arising from the second term on the right-hand
side of Eq. (Cl), has no analogue in Howard s calculation. With these adjustments made, one can show (see Appendix
B) that the sum b z given by Eq. (3.6) is convergent for g) 1, and we are free to take the limit e~O inside the summa-
tion.

IV. NUMERICAL EVALUATION OF 4g

As outlined in Appendix B, we may rewrite the n summand in Eq. (3.6) by adding and subtracting the first three
WKB approximants to the product (1/n)pi"(g)q&"(g), which are given in Table I. The resulting expression for b, z
divides naturally into two terms:

g (b,„+b,„),16
(/+1)' „=i

where

TABLE I. The WKB approximants to (1/n ),pi" (g),qi"(g).

(1)n

x
2 4

W( '"= [1+8s (g' —1)]—2(2g' —6/+7) +5(g—2)~
8X' X' X' '

Wl'3'"= —'[(16/+ 11)+16s (g—1)[(2$'i—6/+7)+ 12s2(g—1)]j
(3)n
I 32~5 4

2

+ [
—(16( —60/3+88/~ —70/+171) —40s (g—1)($2—3/+5) jx'

4

+ [
7 [(56/ —320$'+773/ —1020/+666)+40s (g—1)(g—2) ]j

6 8

+ 6 [—231(2$ —6/+7)(g —2) ]+ s [ ""(g—2)4]

n 2

where g =(1+—') (g' —1)+go, go= (/+1)
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oo

~x g (/+ & )I(/+ 1) pn(g) qn(g) P (1)n Pr(2)n Pr&(3)n

1=1 n

OO= g (I+—')l(l+1)[$'I"'"+W' '"+8'I' '"—2p (g') i (g')] — +— +
96 (g —1)2 6 (g —1) (g —1)

1

(g'+ 1)

(4.1)

The numerical evaluation of the function (1/n )pl"(g)ql"(g) is carried out as follows: following Leaver, " we write, for
general spin s,

p n( g) e n(g 1)—/4(g 1 )n/2

k=0 &+'
(4.2)

where ao = 1 and az satisfies

k(k+n)ak+[s —3(k —1) —n(k —2) —l(1+1)]ak,—[2s —3(k —2) —l(l+1)]ak 2+[s —(k —3) ]ak ~=0, (4.3)

where ak =—0 for k (0. The sum in Eq. (4.2) converges on
the half-open interval g E [1,oo ). ,q& (g) may be calculat-
ed by the integral of the Wronskian

,qI"( )=2n,pI"( ) (g' —1),pP(g')'
(4.4)

The product appearing in b,„[Eq. (4.1)] can therefore be
written (s= 1 implied)

n(

n(g) n(g) 2I pl"(4')
(4.5)

A variable-step-size Simpson s-rule integration routine
was used to evaluate (4.5) numerically, with pI"(g) in the
integrand generated by Eq. (4.2).

To evaluate 6„ it is convenient to use the Watson-
Sommerfeld technique of converting the summation to an
integration in the complex X plane. The details of this

procedure are described in Appendix B. The A, integral
was easily evaluated by a Romberg integration program
using as a contour in the complex A, plane the half-circle
centered on the branch point at A, = ~n (1+/) (g
—1) '/ (see Fig. 3 of Ref. 18).

As the sum over n converges rapidly, we were able to
terminate the sum after n =4 and retain l%%uo accuracy in

The upper limit on the sum over I in h„ranged
from 25 to 200, depending on g and n Num. erical evalua-
tion of h„on the horizon is impossible as more and more
terms in the sum are required for convergence as g~ 1.
However, numerical experiments showed that it tended
to zero as the horizon was approached. Using our im-

proved algorithms described above we were able to obtain
all our numerical results using a small personal comput-
er.

The results for ( Ts ), ( T, '), and ( T„")are plotted in

Figs. 1 —3 which also show the contributions to the full
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FIG. 1. The angular pressure as a function of r/M. The
solid line is the numerically calculated value; the dashed line is
the analytic approximation. FIG. 2. The radial pressure.
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FIG. 3. The energy density.
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method could not work for the electromagnetic field in
the Hartle-Hawking state, giving a severe discrepancy on
the horizon or at infinity, which can be calculated explic-
itly, ' according to whether point-separation, zeta-
function, or dimensional renormalization is used. A pos-
sible resolution of this problem was proposed by Frolov
and Zel'nikov, who consider adding to the anomalous
term in the renormalized effective action the most general
conformally invariant action that could be constructed
from the geometry and the timelike Killing vector and
which has the correct scaling properties. This yielded
one extra conserved tensor which vanished at infinity but
not on the horizon, thus enabling them to choose its
coefficient to give agreement with the exact results on the
horizon and at infinity. However, their approximation
suffers from the same drawback as all the other ap-
proaches in that it can give no measure of the error it
produces.

Specifically, for the electromagnetic field in the
Schwarzschild background, Ref. 5 gives

answer from & T„),„,i„„,and b, e . The results for & T, ')
and & T„")have been obtained from & Ts ) using conser-
vation and the trace anomaly, which give'

&T„")= f [M&T„")(r')

+2(r' —3M j& Ts )(r')] dr',

]&4
& Ts )Bop= (1+2w+3w +44w

720m

+55w +66w' —579w ) (5.1}

which gives

& Ts )Bop(r: 2M ): 17

(4.6a) Frolov and Zel'nikov propose

(4.6b)

Here & T„") is the state-independent trace anomaly given
by

&T „) 13 M
60~' r' (4.7)

V. APPROXIMATIONS

The approximation of renormalized stress tensors in
Schwarzschild spacetirne has a long history. The pro-
grarn was initiated by Whiting who proposed a simple ap-
proximation for &q& ) for the conformal scalar field p,
which was found to fit very closely the exact expression
calculated numerically by Fawcett. Page then ob-
served that this formula could be obtained by making a
conformal transformation to the ultrastatic optical metric
where it could be simply approximated using heat-kernel
techniques. In addition, Page was able to use this same
method to obtain an approximation for & T„) for con-
formally invariant scalar fields in static Einstein space-
tirnes. Interest in this approximation increased when it
was shown numerically by Howard' to be in good agree-
ment with the exact tensor for the Hartle-Hawking state
of a conformally invariant scalar field in Schwarzschild
spacetime. The Page approximation was extended to
conformally invariant fields of arbitrary spin in Refs. 4
and 5 by relating it to the conformal transformation law
for the renormalized one-loop effective action. However,
it was also shown in Ref. 5 that -this approximation

~4
& Te )Fz= [(1+2w+3w +4w

+5w +6w —729w )

+cw (4+Sw+6w +15w )], (5.2)

where c is chosen to guarantee that the tensor has the
correct value on the horizon at w=1. Choosing c=10
reproduces Eq. (5.1); Frolov and Zel'nikov chose c =46 in
order to match Elster's (incorrect) value, while a choice
of c = —2 gives the correct horizon value of

(5.3)

where

0 g 0 1 4
0

—
g 2w (5.4)

We remind the reader that in the process of rewriting Eq.
(2.9) we were forced to remove a term from the "mode
sum" part of & T~ ) in order to render the sum conver-
gent in the limit @~0. It is precisely this piece, which
comes from the n =0 (zero-frequency) term in the sum,

but does not seem to provide a good approximation else-
where; see Fig. 4.

While none of these approximations can be said to be
valid, they are not irrelevant to our answer. Our tensor
may be written in the form
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APPENDIX A

It has been shown by Wheeler ' that the sourceless
Maxwell equations in a Schwarzschild background are se-
parable and that the radial dependence of both electric
and magnetic fields are governed by a single function a (r
which is a solution of

d Q dQr(r —2M ) +2M
dr dr

+l(1+1) a =0,
r —2M

that spoils the approximation.
For completeness we note

tx )analytic'

all components of

FIG. 4. b g =(71 /tc )(( Tg ) ( Tg )»p«x} for ( Tg )approx= ( Tg ),„,t„„, (solid curve}, ( Tg )sop (dashed curve}, and
( Tg )„z (dashed-dotted curve).

where l(1+1) and (ice) are the separation constants as-
sociated with the angular and time variables. This equa-
tion was shown to be a special case of a general real
differential equation governing the radial dependence of
integer-spin perturbations (s =0, 1,2):

d Q dQr(r —2M) +2M
dr 2 dr

( T ') = T ( —3 —6w —9w —12w +315wt analytic 45 H
~ 2 3 s —1

2' " +i(&+1)—2M a=o
r —2M r

(A2)

—78w +249w ), (5.5)

( T ") = T (1+2w+3w —76w +295wr analytic 45 H

—54w +285w ), (5.6)

(T ) . = T (1+2w+3w +44w —305w"0 analytic 45 H

Note that this equation has three singular points: regular
singularities occur at r =0 and r =2M and an irregular
singularity at r = ~. Equations of this type, which also
occur in problems in atomic physics, are discussed by
Leaver. 27

For our purposes, it is more convenient to switch to
the variable g=(r/M) —1. Then Eq. (A2) becomes

+66w —579w ), (5.7)

where TH:~/(2') is the Hawking temperature. Here,
( T ') and ( T ") . have been obtained fromt ~ analytic an r analytic

( Tg ),„,i„„,through use of Eq. (4.6).

d
(~2 1) df

dg dg

+ l(l+ 1)— f =0,
16 /+1 (A3)

VI. CONCLUSION

Our calculations have demonstrated that the methods
of Howard' can be extended to the electromagnetic case
and continue to yield an excellent approximation when
other methods fail. In addition, the method could readily
be extended to other spins and to massive fields, and
overcomes the major failing of other methods in provid-

fthea-ing a concrete way of determining the accuracy o e ap-
proximation.

Our investigation also led us to discover the problem of
th linearly divergent Christensen subtraction terme ine

8which had been missed by Elster and Frolov and
Zel'nikov. Having obtained a finite result without this
term we spent much time calculating 6 down to
r=2.01M to convince ourselves that it really did tend to
zero. Finally, we were led to repeat Christensen's calcu-
lation and only then found the problem.

where we have set a(r)=(/+1)f(g) and ice= —vt~ (a
=1/4M). We choose independent solutions, pl"(g) and

,q&'(g) defined by

,pi"(g) —(g—1)" ',
,qI"(g) -(g—1)

(A4)

and, q& (g)~0 as g~ cc. The analytic properties of
(p I g an pq I"(g) d '(g) as functions of g, l, and v are discussed
in Ref. 17: these results may be trivially extended to the
higher spin functions. Their Wronskian is given by

~t,J i"(P,qi (4 }l =,I i",qi" ,s i ',qi—
—(g —1) ', v=O,
—2v(g —1) ', v&0 .

The solutions of Eq. (A3) for v=O are given by
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,pl (g) = 1, (g'+ 1)'o (1 —s)! ~
d'

1+s!
s/2

P;(g')g —1
AppKNDIx &

o P g —1
O'I'(4) =Pl(f) l(1+1) dk

(k)

iqi'(4) =Ql(k) —
1 1+1

(A7)

(A6)s/2

,ql (g')=; (/+1)', Ql'(g')0 (1 —s)!
1+s! dP +1

where Pl' and Ql' are the associated Legendre functions.
Useful alternative expressions for the spin-1 zero-
frequency functions are

We may write the n summand in Eq. (3.5),

g (1+—,
' )l(l+ 1) —pi"(g)ql"(g) —2pl (g)ql (g)

1=1

n (/+1)" n 1 + 2
96 (g —1)' 6 (g—1)'

as two sums:

1

(g+ 1)

(B1)

oo
1

b, = g (1+—')1(1+1) —pi"(g)ql"(g) —WI""—W' '"—Wi' '"
1=1

oo= g (1+—')l(1+1)[Wll""+W' '"+ Wl' '"—2p (g) (g)]— ~ + — +
96 (g —1)' 6 (g —1)' g

—1

1

(g+ 1)

(B2}

where the W's are the first-, second-, and third-order WKB approximants to (1/n )pl"(g')ql"(g), as given in Table I. The
first sum is O(n ) for large n We sho. w here that, despite its appearance, the second sum is similarly O(n ). Using
the formula (Cl),

2(1+ ,' )l(1+1)pl'(—g)ql(g)
1=1 (g2 1)&/2

A„becomes

g' —7 8$—7

8((2 1 )3/2 8( $2 1 )3/2
1

((+1)

(1+—')l(1+1)(W'""+W' '"+ W' '"}-
tl I l l (~2 1))/2

8$—7
8(g2 1 )3/2

8g —7 n (g'+1) n 1 2

8($2 1 )3/2 96 (g 1 )2 6 (g 1 )2
(B3)

For the purposes of asymptotic analysis, it will be more convenient to write the above sum as

(1+—')l(1+1)(W,'""+W' '"+ W,' '")—
2 (g2 1)i/2 8($2 1)3/2

n (/+1) n 1 2
96 (g—1)2 6 (g —1)2 g

—1

(B4)

We employ the Sommerfeld-Watson technique of rewriting the sum as a contour integral, i.e., for F(l) any function
which is analytic in the right-hand half-plane:

g F(l)=Rei I dl c to~/F(l)= I dA, F( —
—,'+A) —Rei f dAF( , ,'+iA)——

—1/2 0 0 1+e2mk,
(B5)

(see Ref. 1 for details). We further split our expression as

1 „=1,(n, g) 1,(n, g)
"& —+ " & — & ——1,(n, g)+I, (n, g)+

where
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oo (2)n (3)nI, (n, g)= dA, A, (W —1/2+k+ W —1/2+2. +W —'1/2+k)
0 (g2 1)1/2

8$—7 n (/+1)+
8(g —1) 32(g —1)

oo 1
I2(n, g)=2Re dt(,

2 2
A (W —1/2+'2. +W —1/2+F2, +W —1/2+iX, )

1+e
(B7)

oo (1)n (2)n (3)nI3(n g)= dA, A( W 1/2 2 + W 1/2~2 + W 1/2+tj )
0 (g2 1 )1/2

oo 1
I4(n, g)=2Re dA,

2 q&(W 1"/2+i', +W —1/2 +ik +W —1/ 2+i 2}
0 1 +e 27K

Note that we have added a terin proportional to n to ensure convergence of Ii. Since, «r &+0, gi"n cos«&=0t this
term does not contribute to the anal sum over n. We may now perform the integrations Il and I3, and isolate the lead-
ing behavior in n of I2 and I4 by expanding the integrands about X=0. The terms in the integrals of order n and n

cancel those explicit in (B6},and the terms of order n
—

cancel among themselves, resulting in an expression that is of
order n for large n. We refer the interested reader to Refs. 1 and 18 where similar calculations are performed in
more detail.

Inserting the expression for the les from Table I, and performing all integrations that can be carried out analytically,
our final expression is

I
n

—
2/

"dX

[(—17/+63)(/+ 1)+80( 1 lg —25 }]
120n (1+g)

At + 4 (1)n ( 1 )n (2)n (3)n

1+e
—1/2+ ik.—1/2 W —1/2+12. W —1/2+ i2, }' (B8)

To see that this expression is zero at /=1, we expand the WKB approximants in the integral in powers of A, /A, and
&'=po/(g' —1) and yo is defined in Table I. ~e then integrate the resulting series term by term to arrive at an asymp-
totic series in A . As the constant term in this series is zero at g= 1, and the rational function in 6„ is linear in (g' —1),
we may conclude that b,„(/= 1)=0.

APPENDIX C

The purpose of this appendix is to establish the identity

2(l+ —,
' )l(l+ 1)pi (g)qi (g)—

/=1 (g2 1)1/2

We begin by considering the sum

2(l+ ,' )l(l+ 1)pi (g)qi (g)——
1=0

gg —7 gg —7
8(g2 1 )3/2 g($2 1 )3/2

8$—7
8(g2 1 )3/2

1

(g+ 1)
(Cl)

(C2)

Substituting the definitions (A7) and distributing the summation, the expression (C2) becomes

2(l+ —')l(l+ 1)Pi(g)Qi(g)
I=O

1

g(g2 1 )3/2

+(g—1) y (2&+1) (g)Qi(g)+Pi(g) (g) +, ,/,
oo dQi

The first two sums in (C3) were examined by Howard' who found

21+1 i Qi 1

l(l+ 1) d g dg
(C3)

2(l+ —')l(l+ 1)Pi(g)Qi(g)—
I(l+ 1) 1

l=o (g2 1)1/2 8(g2 1)3/2

oo dpi(2&+1) (g)Qi(g')+
1 =0 d 2(g —1) /2

=0, (C4a)

(C4b)
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( 2I+1)pt(g) (g)+
oo dgt

2(g2 1 )3/2
=0. (C4c)

The last sum in (C3) may be evaluated by considering the identity

( 2l + 1 )( 1 )mP Ill( g)g Pl(g)
1=0

m

g2
(C5)

proved in the Appendix of Ref. 18. Noting that

2 1 1/2 dPt z'(g)= (g), Qt'(g)=(g' —1)'/' (g) (l )0)l(l+1) dg
' d

Rnd

—1 —1
Po t(E)=, Qo~(P')=

(g2 1)1/2 ' go ~
(g2 1)1/2

Eq. (C5) may be written for m = 1 as

(g' —1) g (g) (g)+, ,/, +Pc '(g)g(')(g)+
2l + 1 dPt dgt 1 1 1

(C6)

or

dpt dgt2 )+l(l+1) dg dg (g —1) /
(g—1)

(g+ 1)2 (g2 1)3/2
(C7)

Inserting the results (C4) and (C7) into expression (C3), and moving all l =0 terms to the right-hand side of the resulting
equation, we are left with the identity (Cl).
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