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Quantum field theory of the Universe

Akio Hosoya
Research Institute for Theoretical Physics, Hiroshima University, Takehara, Hiroshima 725, Japan

Masahiro Morikawa
Department ofPhysics, Kyoto University, Kyoto 606, Japan

(Received 15 August 1988)

As is well known, the wave function of the Universe dictated by the Wheeler-DeWitt equation
has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a
theoretical possibility of the second quantization of the Universe, following the same passage histor-
ically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple
production of universes is an inevitable consequence even if the initial state is nothing. The prob-
lematical interpretation of the wave function of the Universe is circumvented by introducing an
internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in quantum
field theory in curved space-time.

I. INTRODUCTION

Since the fundamental paper by DeWitt, ' quantum
geometrodynamics has been investigated by many people.
Recently, Hawking and his collaborators and Vilenkin
revived the interest in this field in the context of quantum
cosmology. Despite the promising features (e.g. ,
inflation) of the wave function of the Universe discovered
in various semiclassical solutions of the Wheeler-DeWitt
equation, there remains a serious difficulty in its proba-
bilistic interpretation. Because the Wheeler-De Witt
equation is a hyperbolic second-order difFerential equa-
tion, there are no such conserved quantities that are posi-
tive definite. This is a familiar situation with which we
once encountered in the case of the Klein-Gordon equa-
tion in particle physics. More fundamentally, we do not
understand even the meaning of probability for the very
Universe in which we live; difFerent universes are impossi-
ble for us to recognize.

In this paper we would like to explore the possibility of
the second (third?) quantization of the wave function of
the Universe. Our motivation is simple: by proceeding
to the quantum field theory of the Universe, we can over-
come the difficulty of negative probability just as we suc-
ceeded in the case of the Klein-Gordon equation. (This
idea of reinterpretation of the wave function may not be
new, e.g. , see Ref. 4.)

One of the advantages of our approach is that there is a
privileged state nothing where even the Universe does not
exist. Suppose our state is this empty state nothing.
Then how can our Universe emerge from nothing? The
Wheeler-DeWitt equation, which is reinterpreted as a
field equation, will tell us how.

To be specific, let us consider an isotropic homogene-
ous spatially fIat universe. For a homogeneous scalar
field, the Wheeler-DeWitt equation takes the form, up to
the operator-ordering ambiguity,

[a'.—a', +V(a, y)]e(a, y)=O, V =Sm e ' V(P), (1.1)

where a=c 'lna, and c=&4trG/3. Hereafter we take
the unit c = 1. As we remarked before, the partial
difFerential equation (1.1) is hyperbolic and a plays the
role of time in the Klein-Gordon equation. The big
difference of Eq. (1.1) from the ordinary Klein-Gordon
equation is the presence of the time-dependent potential
V(a, g) which is not an ad hoc quantity introduced by
hand but an integral part of the Einstein gravity. It is
well known, in ordinary quantum field theory, that the
particles can be created from vacuum if the external po-
tential is time dependent. In the same way in our field
theory of the Universe, many universes can be created
from "nothing. " They are not a priori causally discon-
nected objects; they may coherently affect our observa-
tion of the Universe. Here we are forced to reconsider
the basic assumptions of classical cosmology. For exam-
ple, do we live in one and only one universe? Is the
Universe always countable? (More details will be given in
Sec. III.) The idea of multiple universes is hardly new.
For example, Sato, Kodama, Sasaki, and Maeda dis-
cussed the multiple production of universes in the
inflationary universe scenario. They are essentially left-
over wormholes on the occasion of the inflationary phase
transition. Recently Hawking discussed the path integral
over all the topologies of space-time. His approach is
analogous to the Polyakov approach in string theory
while ours corresponds to the field theory of a string in
the manner of Kaku and Kikkawa.

However, a natural question may arise: what is the ob-
servational consequence of the theories of multiple
universes? We will attempt to answer this question in the
context of our quantum field theory of the Universe.

The plan of this paper is as follows. In Sec. II we give
a brief review of the Wheeler-DeWitt equation and sum-

marize the present status of quantum cosmology from
our point of view. We are going to develop the formalism
of our second-quantized field theory of the Universe in

Sec. III. A specific model is investigated in Sec. IV and
the number of universes, though unobservable, is estimat-
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ed there. We discuss in Sec. V the issue of the detector in
more detail. The final section is devoted to a summary
and discussions.

II. QUANTUM MECHANICS OF THE UNIVERSE:
REVIEW OF THE WHEELER-DeWITT EQUATION

Bl. BL 3 V aa,
4~GX

BL Va
p$

(2.6)

This section is devoted to a brief review of the quan-
tum mechanics of the Universe in order to introduce no-
tation and to clarify our motivation for the second quant-
ization of the Universe.

We start from the Einstein action of gravity and the
action of a one-component real scalar field:

5 = Id x &—g R +boundary terms
1

16+6
+ J d"xv' —g [-,'(a„y)' —V(y)], (2.1)

where R is a scalar curvature and V is a rnatter potential
which includes a possible cosmological constant effec-
tively. Since the full argument on all the gravitational
variables is so hard, we restrict our consideration to the
homogeneous and isotropic metric:

The first equation merely constrains the variable (primary
constraint). The total Hamiltonian is constructed as

H =p~N+NA, (2.7)

where

&=p, a+p&P L-
2m.GX

(2.8)

The temporal evolution of any dynamical variables is
generated by this Hamiltonian. For the compatibility of
the constraint in the first line of Eq. (2.6) and the dynam-
ics generated by the Hamiltonian of Eq. (2.7), the follow-
ing equation must hold:

ds =N (t)dt a(t)dcr— (2.2)

Here the lapse function N represents the general time-
coordinate transformation freedom. On the other hand,
the shift function which represents the general space-
coordinate transformation freedom is neglected here
since it is trivial for the dynamics in general. The three-
space metric is given by

=0, (2.9)

der =dy +f'(y)(d0 +sin 0dg )

where the "radius" f(y ) is expressed as

(2.3)

sing if k =+1 (0 ~y (2m ),

f(X)= X if k=O (0-X&~»
sinhy if k = —1 (O~g( ~ ),

where k is the signature of the spatial curvature. For the
restricted metric Eq. (2.2), the total action becomes

V 6 d a ciS= dt Xa k+ +—
16~6

p2
+boundary terms+ Vf dt Na — —V(P)

2 X

3 g2 1 P2
L = VN a k — + —a —a V(P) . (2.5)

8~G

The canonical momenta for the variables N, a, and P are
given, respectively, by

(2.4)

We have introduced the spatial volume V of the homo-
geneous region we consider. This volume becomes 2m

for k =1; however, for other values of k, this must be
some properly fixed finite constant. The Lagrangian is
read from the above action as

which constrains the dynamics of our system (secondary
constraint). There are also constraints for the shift vari-
ables which are related to the spatial coordinate transfor-
mation invariance. However, they have nothing to do
with dynamics.

Now we proceed to the quantum mechanics from the
above classical description. We introduce the wave func-
tion of the Universe, V. The constraint equations [the
first equation of (2.6) and (2.9)] must be imposed as re-
strictions on the states:

pN@=0, &4=0 . (2.10)

where we have taken the unit c =&4m 6/3=1, and p
represents a part of ambiguity in operator ordering. This
equation is also expressed, for the new variable o,'= lna,
as

These constraints nullify all the dynamical evolution gen-
erated by the total Hamiltonian Eq. (2.7). A commutator
of any operator and the total Hamiltonian becomes zero
if it is evaluated for the above constrained states. The
disappearance of time seems disappointing; however, it is
a proper consequence of the invariance of general coordi-
nate transformation in general relativity. The first equa-
tion of the above restrictions merely says that the wave
function 4 does not depend on the lapse function X.
Therefore we expect that the second equation of the
above restrictions may contain the information of dynam-
ics, if any. The equation is expressed, in the representa-
tion that the variables a and P are diagonal, as

a.2+Pa.—,a2~+U, (a, y) %(a,g)=0,1

a
(2.1 1)

U] ——2V V(y)a —kV g
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[B +(p —1)a —B~+ U~(a, g)]%(a,g) =0,

U =2V e e V(P)— 3k
8mG

(2.12)

J.——ia~(@*a.q —q a.q *),
J~= ia~ '(e—*a~q qa~q*)—,

(2.13)

Equations (2.11) and (2.12) are called the Wheeler-
DeWitt equations. Recovery of a dynamical time is pos-
sible if we introduce an appropriate clock variable into
our system. The correlation between the clock variable
and the other variables establishes an internal time. Ac-
tually the time evolution is derived by using the WKB ap-
proximation assuming the semiclassical nature of the
clock variable.

Because the Wheeler-DeWitt equation is a hyperbolic
second-order partial differential equation, it is impossible
to construct a conserved (with respect to a time) proba-
bility current whose zeroth component is positive
definite. Actually, a square of the absolute value of the
wave function ~V~ is not a zeroth component of any con-
served current. Moreover, the conserved current

j=(j„j&), B,j,—
Bp& =0 is given by

which is the Klein-Gordon equation. As is well known,
since the time component of the conserved current is not
positive semidefinite, we get into trouble in probabilistic
interpretation at this level. A standard procedure to cure
this difficulty is to reinterpret the state vector P as an
operator. Then the action for the quantum field P is now
given by

2

& =-'f d'x —m'(t'
'

ax~
(3.5)

which reproduces the operator equation (3.4).
Almost the same line of argument was made in Ref. 7

for the string theory and opened up the road to field
theory of strings.

We will follow the same passage also in general rela-
tivity and will see what the consequence will be. Al-
though our idea should go through in full quantum gravi-
ty, we are going to present the formalism of the second
quantization of the Universe in the minisuperspace mod-
el. (In full quantum gravity, there remains a difficulty in
the identification of time coordinate in superspace. ) The
action for the first-quantized theory was given in Eq. (2.1)
with the reduced metric Eq. (2.2), as in Eq. (2.4). The
constraint equation was

however, it does not have positive-definite zeroth com-
ponent j, . This problem cannot be solved if we do not
proceed to the quantum field theory.

[B —B~+ U2( aP ) ]4( aP ) =0,

U2=2V e e V(P)— 3k
8~6

(3.6)

III. QUANTUM FIELD THEORY
DF THE UMVERSE

In this section we second quantize the Wheeler-DeWitt
equation reviewed in the previous section. Before that it
is probably instructive to recall the case of a relativistic
point particle, which is very similar to our gravitational
case. The classical action is given by

2" j/2

S, = —m fdic
dx "(r)

(3.1)
d~

j~p d~ dxp"—: = —m-
d~ dw dw

—]. /2

(3.2)

where m, r, and x "(r) are, respectively, the mass, proper
time, and position of the particle. This action has the
well-known in variance under the reparametrization
r~r'=f(r). In this sense the action Eq. (3.1) is an
analogue of the gravitational Einstein action which is in-
variant under the general coordinate transformation.
The canonically conjugate momenta

where we have chosen the operator ordering so that p = 1

in Eq. (2.12). As we have previously remarked, the loga-
rithm of the scale factor a plays the role of time while the
scalar field P does that of space. %[a,P] is now regarded
as a universe field in the minisuperspace.

The action which reproduces Eq. (3.6) is constructed to
be

S2= —,
' fdad/

2 2

(3.7)

Here we have assumed that the Universe is neutral scalar
though other possibilities cannot be excluded. At the
moment we do not consider the higher polynomial terms
in 4 which represent the interaction of universes. (See
Sec. V for the discussion of the branching of universes. )

It is straightforward to canonically quantize the system
Eq. (3.7). We impose the canonical commutation rela-
tions

are manifestly constrained as

p2 m2 —0 (3.3) (3.8)

—m P(x)=0, (3.4)

which is nothing but the mass-shell condition. When we
go over to quantum mechanics, the constraint Eq. (3.3) is
replaced by the condition on the state vector P:

2 Let Iu„[a,g]I be a complete set of normalized positive-
frequency solutions of Eq. (3.6). The normalization con-
dition should be
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8
l df up uq uq up 5pqBn BEL

(3.9)

the precise meaning of which will be fully discussed later.
Here the subscript p labels the mode function. In full
quantum gravity, presumably, p stands for all the charac-
teristics of the Universe: energy density, electron num-
ber, etc. We expand the Universe field in these normal
modes,

%[a,P]= g(c u [a,P]+c u*[a,(t]), (3.10)
p

where c and c are annihilation and creation operators,
respectively, whose commutation relations are deduced
from Eq. (3.8) as follows:

[ i„cq]= ~q, (3.1 1)[c,c ]=[ct,ct]=0 .

The Universe Fock space is spanned by the vectors

Ict ct . . lo) I,Pl P2

with the ground state
l
0 ) being defined by

c~lO) =0 for all p .

(3.12)

(3.13)

The state l0) represents the state of nothing, where even
space-time does not exist.

In the following sections, we apply this formalism to
the calculation of the average number of the created
universes due to the potential term in Eq. (3.6), and to the
response of a detector of the Universe field.

IV. CREATION OF THE UNIVERSE FROM NOTHING

In the previous section, we constructed the quantum
field theory of the Universe along the standard procedure
of the second quantization. One of the most conspicuous
features of the field theory is that the particle number can
change. The Universe can also be created and annihilat-
ed according to the law of the field theory. In this section
we try to apply this theory to the creation of our
Universe from nothing, the state of literally nothing,
where even space-time does not exist. From the stand-
point of the classical theory of general relativity, there is
no reason for one special space-time to appear from noth-
ing.

Quantum field theory of the universe is very similar to
ordinary quantum field theory in curved space-time
where, in general, the global vacuum state cannot be
defined. Therefore in general particles (in our case
universes) are observed to be created due to the
discrepancy between the initial vacuum state and the final

one. This is indeed true in our case. Since the potential
term in Eq. (2.12) is obviously time (a) and space (P)
dependent, universes are created from nothing. More-
over there is no room to replace the form of the potential
Uz in Eq. (2.12); it is strictly fixed from the Einstein ac-
tion which we have chosen at the beginning of our con-
sideration. Thus the creation of universes from nothing
is an inevitable consequence of our theory. The produc-
tion rate is explicitly obtained by calculating the Bogo-
liubov transformation coe%cients between in fields and

(8 —B~+2V e Vo)%(a, g)=0, (4.1)

where a=lna, and Vo is a constant part of the p field po-
tential. The normal-mode function u[a, p] is expressed
in terms of the Bessel function by

u [a,P] =A'Z —+2Voe3V
(4.2)

where v = i lp l

/3—. The positive-frequency in-mode
functions are defined to be

u'"[a, P]=
1/2 —1/2

sinh e V4'

3

XJ —+2Voe (4.3)

where J is the Bessel function of the first class. This form
is chosen because it reduces, for 0.—+ —~, to

i(ptt) —
~p ~a)

21pl
(4.4)

which is a natural positive-frequency mode function as an
out-going mode. The normalization is determined by Eq.
(3.9). Thus the universe field 4 is expanded as

%[a,P]= g (c'"u'"[a,P]+H.c. ) . (4.5)

Accordingly the in vacuum l0, in ) is defined by

c~"lO, in) =0 for p ER . (4.6)

On the other hand, the positive frequency out-mode func-
tions are given by

1/2

u '"'[a, y] = —— e ~~~~ 6e '&AH~2~ —Q2 V

(4.7)

out fields. In the equation for the universe field, Eq.
(2.12), we notice that the potential term U2 decreases
asymptotically in the past: a~ —~. Thus it is possible
to set up a natural in-vacuum state by defining the
positive-frequency mode function as proportional to
exp(ip P i c—oa ).

The out vacuum is also uniquely set up by defining the
positive-frequency mode function as outgoing. Note that
this is also an cigenstate of the momentum operator
p = i B—lda with negative eigenvalue. This mode classi-
cally corresponds to the expanding universe as is seen
from Eq. (2.6). We have to stress that the creation of the
universe is not caused from genuine interaction of the
universe field but just from the mismatch of the in and
out vacuums.

For simplicity of demonstration, we are going to use
the model of spatial Aat minisuperspace and of finite posi-
tive cosmological constant in this section. (The negative
spatial curvature model goes essentially in the same way
as the present calculation. )

The field equation becomes in this case
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where H' ' is the Hankel function. This form is chosen
because it reduces, for o.~ + ~, to

The classical Universe with constant p satisfies the equa-
tion

3(x ~ 3a~ exp — —&'e

2
(4.8)

8~G
a — a

3

2

+ Vo =0
2V2a6

(4.17)

q'[a, p]= g (c~'"'up"'[a, p]+H c ).. .
p

(4.9)

which is asymptotically an out-going mode. Note that it
is also a negative eigenstate of the momentum operator:
p = i c}—/da Th. us, from Eq. (2.6), this mode classically
corresponds to the purely expanding universe. The nor-
malization is also determined by Eq. (3.9). In the same
way as in the previous in-modes, the Universe field %' is
alternatively expanded as

The asymptotic solutions are

a(t) =

' 1/6
12m Gp

3V

2

t for a&(
2 VV0

' 1/2

aoexp

1/2
8mGVo p

2

t for a))
3 0

(4.18)
1/6

Accordingly the out vacuum
f 0, out ) is defined by

c~"'fO, out) =0 for p&R . (4.10)

Thus the distribution Eq. (4.15) of created universes
represents the average number of these universes which
are labeled essentially by the matter density.

Now we calculate the Bogoliubov transformation
coefficients between these in and out fields. This is an

easy task if we use the following relation between Bessel
functions:

H' '(z) = . [e' J (z) —J „(z)] .
sin~v

Then the Bogoliubov coefficients c, (p, q) defined by

(4.1 1)

c, (p, q) =

cz(p q) =

1

e
—2~lpl /3~

1

e 2~1 pl/3~

' 1/2

~pq

(4.13)

They surely satisfy the probability conservation condi-
tion: fc, f' —fc, f'=1.

From the above, we can calculate the average number
of the produced universes from nothing (the in vacuum).
The average number of universes in the pth mode X is
defined to be

N =(O, infc, „,(p)c,„,(p)fO, in),
which becomes

N = fc2(p, p) f

—(e lul 1

(4.14)

(4.15)

Note that this form precisely coincides with the Planck-
ian distribution of temperature proportional to
c =&8m.G/3.

Now we consider the meaning of the mode functions
labeled by p. Suffix p is an eigenvalue of the momentum
operator p&, which is classically given by Eq. (2.6). Thus

p is related to the matter energy by

u„'"'[a,P]= g [c&(p, q)u~"[a, P]+c2(p, q )u~"'"[a,k] I

q

(4.12)

are given by

V. INTERACTION AND DETECTION

S"'=f dt K(t)%1(a(t),P(t)) . (5.1)

So far we have studied a free field theory of the
Universe with a scale-factor-dependent potential but
without any self-interaction of universes. In the previous
section we have found the multiple production of
universes. However a natural question may arise: how
can we observe them? To answer this question we have
to take account of interaction of universes: namely, the
interaction vertex at which the Universe branches off. At
present, however, our technology of field theory of the
Universe is too primitive to fully formulate interaction
terms. (Remember, even in a much simpler case of string
field theory, vertex construction is highly nontrivial. )

Roughly speaking, the interaction may have a form + .
We just assume as a not-yet-justified approximation that
our mother Universe is classical and only the baby
universe is quantized. Accordingly, the interaction 4
reduces to 0 mother+baby and the factor % mothe 1S rePlaced
by 2X2 matrix corresponding to universes of detector
states "up" and "down. " Namely, we consider a hy-
pothetical device which clicks when the baby universe
plunges into our mother Universe.

Precisely, let the trajectory of our mother Universe in
the minisuperspace be a(t) and P(t) with t being the
proper time of a comoving observer. The observer is sup-
posed to be equipped with a device which can observe the
baby universe field %b,b„at the point a (t), P(t) in the
minisuperspace. The device is similar to the DeWitt-
Unruh detector in the quantum field theory in curved
space-time. Namely, the detector, which consists of a
two-level atom, counts the rate of transition from the
ground state to the excited state of the atom whenever a
universe is observed. The simplest interaction which
mimics this sort of detector will be

2
p

2V2 3
(4.16) Here the operator K which characterizes the detector is

the 2 X 2 matrix with the following elements:
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& 1lK(r)l0& = &OlK{t)l I &*=ge

&ol~(r)lo& =
& Il~(r)

I » =0, (5.2) F(E, t, ) =g dp 1 1

e 2rrlpl /3 I 2( 2+ 2 V V2 6a(t) )1/2
0

F„,(E)=g f f dt e ' 'u"'"(X(t))dp (5.3)

where X(t) collectively stands for a (t) and P(t). The in-
coming base u '" is in our present case given by

1/2 —1/2
~lpl0 = slnh

p 3
e IP4

Xj )r /3 +2VPeV 3'
3

(5.4)

Introducing the mean time r, =(t+t')/2 and t/,
=r —r', we can rewrite (5.3) as

with E being the energy difference of the two levels
l

1 &

and l0 &, g the small coupling constant.
Let us compute the transition rate in the model dis-

cussed in Sec. IV, a spatially flat model with a cosmologi-
cal constant. The total transition probability is simply
the absolute square of the amplitude:

X[27r5(E —a(p +2VOV e '")'/ —pP)

+2mo(E+a(p +2V V e '")'

p j)ez r~rp~/3) (5.8)

Here we have chosen the expanding phase for the scale
factor a and the decreasing phase of the scalar field r)).

Hence the second term inside the square brackets in Eq.
(5.8) vanishes. A straightforward computation gives us
the transition rate per unit volume:

F(E t, )/« =g,
~

~, ~(E 2VO«)1 1

277jP* ~/3

In Eq. (5.8), a(t) and P(t) give a classical trajectory of our
Universe and satisfy the equation of motion

1/2

6 +2V0
V2~6

(5.9)
(q)0) .

F„,(E)=f dr, F(E, t, ), (5.5) (5.10)

where F(E, t, ), the transition rate at the cosmic time t, is
given by

F(E, r, )=g2f dt/, f e u'"(X(t, +tz/2))

Xu*'"(X(r, r~/2)) . —(5.6)

Q
in

p

1/2 —1/2

sinh
3

X e'p& 1

0

a(t) 2 5a 1/2 ~ ~PXcos da(p +2V V e )' +i

Let us assume that E is suKciently large so that the im-
portant contribution comes from the small-tz region in
the t/, integration and that X(t), namely a(t) and P(t),
are slowly varying functions of time for a large value of
r, . We may use the asymptotic (WKB) form for the
Bessel function in Eq (5.4) to get

where

(E2 4V2V2 6)l/2
0

p*=eq/m +')/q +m V a ')/e /m —1,
with e and m being the energy density E/Va and 2V0,
respectively. In particular, for the de Sitter mother
universe (q =0), we have

F (E, t, )/Va =g 1 1

E /T
(5.11)

where T is an effective temperature 3+2VO/2n, three
times the standard Hawking temperature. To summarize
we have essentially obtained the Planckian distribution of
baby universes.

Needless to say, our detector so far discussed is a hy-
pothetical one. The threshold energy may be gigantic. It
is likely, however, that we can find a completely different
kind of detector, which mimics a telescope and does not
detect other universes directly but may exhibit an in-
direct consequence of the quantum era of our mother
Universe.

(5.7)

When we apply Eq. (5.7) to Eq. (5.6), we make a further
approximation

a(r, +r, /2) =a(r, )+ a(r, ),
2

p(r, +r, /2) =p(r, )+ p(r, ) .C

We obtain

VI. SUMMARY AND DISCUSSIQN

In order to overcome the problem of probabilistic in-
terpretation of the Wheeler-De&'itt equation in quantum
gravity, we have proposed the second quantization of the
Universe. In a minisuperspace model, we have explicitly
demonstrated that there is multiple production of
universes, even if we start from nothing. Moreover the
universe production is an inevitable consequence of the
field theory of the Universe since the gravity couples to
everything and therefore the matter part of the Hamil-
tonian acts as a time-dependent potential. For a spatially
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Aat model with a positive cosmological constant, we ob-
tained a Planckian distribution for the produced
universes. Subsequently, we have introduced a hypotheti-
cal detector which can count the baby universe which
plunges into our mother Universe. There, only the baby
universe is second quantized. For the above model, we
have obtained the Planckian distribution of baby
universes with almost the Hawking temperature.

It is conceptually straightforward to go over to the
second quantization of full quantum gravity from our
minisuperspace model. For this purpose, we have to de-
velop techniques such as the Becchi-Rouet-Stora-Tyutin
formalism in string field theories to write down the action
of field theory of the Universe. Here lessons we have
learned from string field theory will be valuable.

The reader may be mystified by the words second
quantization of the Universe. Are we forced to swallow a
fancy theory which is completely different from the ordi-
nary well-studied quantum field theory? This is not the
case; if we confine ourselves to our single Universe in a
short time period, our theory is equivalent to the ordi-
nary quantum field theory.

Let us roughly sketch the idea. If we ignore the
branching off of universes, the action becomes a bilinear
form:

S= g 4g, +g, (6.1)

S;„,= g %g, %g, (6.2)

We expand the Universe field + in normal modes which
may look like

where & is the Wheeler-DeWitt Hamiltonian and the
functional integrals are over three-geometry g and over
the spatial configuration of matter field P. Let us closely
look at the effect of the interaction term in the &, say
fP, in the usual sense of field theory. The interaction
term in our action is

q'=c(lo&)e(~0&)+ pc(~p &)q(~p &)

+ g c(lp&,p2&)+(~p&,p, &)+ . . +H. c. (6.3)

Note that the expansion is over the Fock space in the or-
dinary quantum field theory. For example, c ( ~

0 & ) an-
nihilates a universe which is in the vacuum state. c ( ~p & )

creates a universe which contains a single particle with
momentum p. The normal modes are configuration rep-
resentations of the vectors in the Fock space which func-
tionally depend on the three-geometry. Therefore the in-
teraction reduces to

if the dominant three-geometry is the Oat space. This
equation reads that the universe which contains a single P
particle changes to the one with two P particles. We may
convince ourselves that we can compute the S matrix in
this way. We have not yet proved that the result is iden-
tical to the standard one if the geometry is effectively Hat.
It seems very plausible though.

During the course of our study, the papers by Hawk-
ing, ' by Coleman, " and by Giddings and Strominger'
came to our attention. It seems that all of them point to
the second quantization of the Universe. However, their
emphasis is on the effect of baby universe through the
wormhole instanton.

After completion of this paper, we became aware of the
recent papers by Banks' and Giddings and Strominger. '
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