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A probabilistic interpretation of the wave function of the Universe is proposed in which “proba-
bility”” and “unitarity” are inherently approximate concepts. Their validity is limited by the accura-
cy of the semiclassical approximation for the entire Universe. This approach (which is a logical ex-
tension of DeWitt’s) defines a positive-semidefinite probability distribution and satisfies the
correspondence principle with classical cosmology and with quantum mechanics. In particular, one
recovers the standard probabilistic interpretation of the wave function for a small subsystem of the

Universe.

I. INTRODUCTION

In quantum cosmology the Universe is described by a
single wave function ¢. This wave function can be found
by solving the functional differential equations derived by
Wheeler! and DeWitt? with appropriate boundary condi-
tions. However, the meaning of the cosmological wave
function is not well understood.

In conventional quantum mechanics, a quantum sys-
tem described by coordinates g; is characterized by a
wave function ¥(q;,?). The probability to find the system
in configuration-space element d (2, at time ¢ is given by

dP =|y(g;,0)’dQ, . (1)

If 4 is well behaved at infinity, then the integral of ||?
taken over the whole configuration space is independent
of time and can be normalized to one:

[ g, nlkda,=1. 2)

This follows immediately from the fact that |1|? is a time
component of a conserved probability current. It also
follows from Eq. (1) that dP = 0.

In quantum cosmology, the wave function of the
Universe is a functional, defined on superspace,® which is
the space of all three-dimensional metrics, h;;(x), and all
matter field configurations ¢ ,(x). Hence, we can write

¢[hij(x),¢A(x)] .

The most puzzling thing about this wave function i$ that
it does not depend on time. This leads to difficulties,
since time plays such a central role in quantum mechan-
ics.

At first one might think that the time independence of
1 means that the Universe is static. However, this need
not be the case. In general relativity time is an arbitrary
label, and physics should be independent of it. A physi-
cally meaningful time can be defined using some
geometric or matter variables. In other words, clocks,
"being parts of the Universe, are also described by the
wave function of the Universe.?

The question we shall be mainly concerned with in this
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paper is that of the probabilistic interpretation of ¥. The
question is what is the analogue of Eq. (1) in quantum
cosmology? A satisfactory answer to this question should
comply with the correspondence principle: one should be
able to recover Eq. (1) for a small subsystem of the
Universe. Moreover, in the classical limit, #—0, quan-
tum cosmology should reduce to classical cosmology, and
the probability distribution defined by the wave function
of the Universe should describe an ensemble of classical
universes. These are obvious requirements, but they seem
to have been overlooked in most previous discussions of
the problem. In Sec. II, I shall briefly review the previous
proposals for the interpretation of ¥ and indicate the
difficulties they are facing. My own approach is present-
ed in Secs. III and IV. In Sec. III it is developed in the
classical limit, when all the variables describing the
Universe can be treated semiclassically, and in Sec. IV it
is extended to the case when some of the variables are
essentially quantum. Unlike other proposals, this ap-
proach defines a positive-semidefinite probability distri-
bution and satisfies the correspondence principle. The
price one has to pay is that the definition of the probabili-
ty density becomes inherently approximate, its accuracy
being limited by the accuracy of the semiclassical approx-
imation for those degrees of freedom which are nearly
classical (e.g., the scale factor of the Universe). The uni-
tarity condition similar to Eq. (2) is also satisfied, albeit
only approximately.

II. PREVIOUS PROPOSALS

To simplify the discussion, I shall concentrate on
homogeneous minisuperspace models,>* in which the
geometric and matter variables are independent of x.
The action for such a model is

S= [dt{p,h *—N[g®pps+UMn]} , 3)

where £ % is a unified notation for superspace variables
(e.g., h;; and ¢ 4), p, is the momentum conjugate to 4%,
N(t)>0 is the lapse function, and g,z is the superspace
metric with signature (+,—, ..., —). The “superpoten-
tial” U (h“) is given by
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U=h'[V($)—"R], )

where h= |deth,~j|, V(¢ ,) is the potential energy of
matter fields, and *’R is the curvature of three-space with
metric h;;.

The Wheeler-DeWitt (WD) equation corresponding to
the action (3) is

(V2=U)y=0, (5)

where
2.0 — [ — 1 Vi 0B,
VY=V, V% Ve (V' gg™aph ,

g =|detg 4|, 3,=3/3h%, and V,, is a covariant derivative
in metric g,5. The factor ordering in Eq. (5) has been
chosen so that it is invariant under general coordinate
transformations in superspace. This guarantees that the
form of the equation is the same for all choices of super-
space variables. (For example, we could use #**V'h in-
stead of & ,5.) We can still add a term £R to the operator
V2 in Eq. (5), where R is the curvature of superspace.
Misner,* and more recently Halliwell,’ have argued that
the parameter £ should be chosen as £=(n —2)/4(n —1),
where n is the minisuperspace dimensionality. With this
choice, the Wheeler-DeWitt equation is invariant under
scale transformations

8up—S8opy VST, U—f'U, (6)

where f (h%) is an arbitrary function. These transforma-
tions correspond to redefinitions of the lapse function,

We now turn to the definition of probability in super-
space. The most straightforward extension of Eq. (1) is®’

dP=|y(h*)|*V'g d"h . )

Although this equation looks similar to Eq. (1), it is in
fact very different, since “time” is now included among
the variables 2%, and so V'g d"h corresponds to d Q.de. It
is not clear how one can recover the conservation of
probability and the standard interpretation of quantum
mechanics for small subsystems in this approach. Anoth-
er problem with Eq. (7) is that in all models considered so
far the integral of [i|?> over the whole superspace
diverges,

[tV dh=oo ®)

and so the distribution (7) is not normalizable. The origin
of this divergence is easily understood if we note that Eq.
(8) is analogous to

[ 1¥(g, )2, dt =, 9)

which follows directly from Eq. (2).
An alternative approach to the interpretation of v, first
suggested by DeWitt, ? is based on the conserved current

v,i%=0, (10)
ja=_égaﬁ(¢*vﬁ¢_¢vﬁ¢*) . (11)

[Note that the WD equation (5) is just an n-dimensional
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Klein-Gordon equation with a variable mass, and the
current (11) is the corresponding Klein-Gordon current.]
The probability distributions are defined on (n —1)-
dimensional surfaces, which play a role similar to that of
constant-time surfaces in conventional quantum mechan-
ics. The probability to find the Universe represented by a
point in a surface element d X, is

dP=j%ds, . (12)

The conservation of probability is ensured by the conser-
vation of the current. Another attractive feature of Eq.
(12) is*> that it is invariant under scale transformations
(6). The problem with this approach is that dP defined by
Eq. (12) can be negative. For example, if dP is positive
for a certain wave function ¥, then it is negative for the
complex-conjugate wave function ¢’ =v¢*. This is the old
problem of negative probabilities in the Klein-Gordon
equation. DeWitt’s®> has shown, in a minisuperspace
model, that this difficulty can be avoided by an appropri-
ate choice of equal-time surfaces. However, it remained
unclear how his approach could be extended to a more
general situation.

In the following sections I would like to suggest an in-
terpretation of ¥ which is also based on the current (11),
but does not suffer from the negative-probability prob-
lem.® My approach is a logical continuation of
DeWitt’s.? The main new ingredient is that the super-
space variables are divided into two classes: classical and
quantum. As we shall see, the presence of classical vari-
ables is crucial for assuring the positive semidefiniteness
of the probability.

III. CLASSICAL UNIVERSES

The point that has not been much discussed in the con-
text of quantum cosmology and that I would like to em-
phasize here is the essential role played by classical
measuring devices in the interpretation of quantum
mechanics. All realistic devices are not exactly classical,
but have some quantum uncertainty. Taking a clock as
an example, there is always a nonzero probability that the
clock will run backwards. The bigger the clock is, the
smaller the quantum fluctuations are; in this sense the
best clock is the entire Universe. The size of the Universe
imposes a bound on the accuracy of quantum measure-
ments, and in particular on the accuracy of clocks.? In a
small universe, subject to large quantum fluctuations, the
concept of time cannot be introduced, and it appears that
the wave function for such a Universe cannot be given
any meaningful interpretation. Hence, we shall try to in-
terpret the wave function of the Universe only in the
domain where at least some of the variables 4 are semi-
classical.

In this section we shall consider the case when all the
variables are semiclassical. Then 1 is a superposition of
terms of the form

Pp=A(h)eS" (13)

where the classical action S(A4 %) is assumed to be a real
function of A% The semiclassical character of the vari-
ables 4 “ is manifested in the existence of a small dimen-
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sionless parameter A, proportional to #, so that the WKB
expansion is an expansion in powers of A. The superpo-
tential U (k%) is of the order A~ 2 and the action S(h%) is
of the order A~!. Substituting ¥ from Eq. (13) into the
Wheeler-DeWitt equation, we find, in the lowest order in
A, the Hamilton-Jacobi equation for S:

gV S)VpS)+U =0 . (14)

In the next order we obtain an equation for the amplitude
4,

2VA-VS+ AViS=0, (15)
which expresses the conservation of the current (11):
je=l4?ves . (16)

The action S (4) describes a congruence of classical tra-
jectories; there is a trajectory through each point in su-
perspace (except in classically forbidden regions where S
becomes complex). The momentum on the trajectory at
point &% is ps=VgS(h %), and the “velocity” is

he=2NV°S . (17)

In order to find A % one has to specify the lapse function
N (t). The trajectories can begin or end at the boundaries
of superspace which represent singular three-geometries
and matter field configurations. Closed trajectories
without ends are not possible if S(4) is a single-valued
function on superspace. We shall assume that the super-
space variables are chosen so that S is single valued. The
trajectories can also begin or end at points where VS =0
and the semiclassical approximation breaks down. For
example, the wave function specified by ‘“‘tunneling”
boundary conditions® !° defines a congruence in which all
trajectories begin on a surface with VS =0, at the bound-
ary between classically allowed and classically forbidden
regions.

We shall define probability distributions on (n —1)-
dimensional surfaces, which play the role of equal-time
surfaces. We can choose any family of surfaces such that
each surface is crossed once and only once by all the tra-
jectories of the congruence, as illustrated in Fig. 1(a). It
is clear from the figure that all the surfaces are crossed by
the trajectories in the same direction. The mathematical
expression of this fact is that & *d2, has the same sign
for all surface elements dX,. The choice of this sign is
arbitrary (since the sign of d =, is arbitrary), and we shall
choose

hedz,>0. (18)

The probability density is given by Eq. (12), and from
Egs. (16)-(18) we see that it is positive semidefinite. The
normalization of 1 should be chosen so that

Jiwdz,=1. (19)

It should be emphasized that the positive semidefiniteness
of the probability is due to the inequality (18) which fol-
lows from the fact that the trajectories are not allowed to
recross the equal-time surfaces. If a surface = were
crossed more than once ' by some trajectories of the
congruence, as illustrated in Fig. 1(b), then dP =;j%dX,
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would have opposite signs in regions where = is crossed
by the trajectories in opposite directions (e.g., in regions
AB and BC).

An example of a possible choice of equal-time surfaces
is given by the surfaces of constant S which are orthogo-
nal to the congruence of trajectories. We can also make a
coordinate transformation in superspace choosing h, =t
as one of the coordinates. Then Eq. (10) takes the form

§B+a Je=0, (20)
ot é

where J®=ph ¢ and the index a takes values from 1 to
(n—1). We can interpret p(h°¢t) as the distribution
function for an ensemble of classical universes. The

(a)

(b)

FIG. 1. In this figure solid lines represent classical trajec-
tories in superspace and dashed lines represent (n —1)-
dimensional surfaces. Figure (a) illustrates a possible choice of
equal-time surfaces for a congruence of trajectories. In (b), X is
not a legitimate equal-time surface, since some trajectories cross
it more than once.
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phase-space distribution function is given by!! ™13

f(h%p,,ty=p(h%,t)8" ~V(p,—3,S) 21
and satisfies the continuity equation‘

of L Of yay Of . _

=+ —"h°+—>=p,=0. (22)

a  ant | op, b

The (n —1) superspace coordinates #? can be chosen so
that they remain constant on the trajectories defined by
S. Then J?=0 and 3p /9t =0. This choice of coordinates
is similar to comoving coordinates in general relativity:
the variables % are used as labels for trajectories, and
p(h?) gives the probability density for the Universe to
evolve along the trajectory labeled by 4 °.

We now consider the case when ¢ is a superposition of
several WKB-type terms:

Y=Y, ¢'k=AkeiSk . (23)
%

All functions S; (h*) are solutions of the Hamilton-Jacobi
equation (14) with different integration constants. We
shall assume that all sets of constants are sufficiently
different, so that the corresponding trajectories are ma-
croscopically distinct. Suppose first that the congruences
of trajectories defined by the actions S; admit a common
family of equal-time surfaces (this will not, in general, be
the case). Then the distribution function p(h%¢) defined
by the total wave function 9 can be written as

p=3pi +(cross terms), (24)
k

where p; is the probability distribution corresponding to
.. All cross terms contains rapidly oscillating factors of
the form exp[i (S, —S; )] and average out to zero when p
is integrated with any smooth function. [One expects in-
tegrals to be ~ exp(—b/A) with b ~1 (Refs. 14 and 15).]
Within the accuracy of the semiclassical approximation
these terms can be dropped. In other words, for classical
universes the interference between different WKB terms
in (23) is unimportant, and the difference between pure
and mixed states disappears. The distribution functions p
and f are given by the sums

p(h%,0)=Sp,(h%1),
k

(25)
f(haspayt)=2fk(ha’Pa’t) .
k

If the actions S, do not admit a common family of
equal-time surfaces, we can use a different choice of sur-
faces for each S). In fact, this may be more convenient
even if there is a family of common surfaces. For exam-
ple, one may want to consider the probability distribution
for homogeneous cosmologies as a function of the proper
time 7. Then the constant 7 surfaces would of course be
different for different S;,. The total probability distribu-
tions can still be defined by the sums (25). These distribu-
tions describe an ensemble of universes consisting of su-
bensembles described by p, and f;. The probability for
the Universe to belong to the kth subensemble is

. the superspace variables are semiclassical.
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fj,‘:dEka, where jZ=|A4,|?V%S, is the current con-
structed from the wave function v¥,. For the distribu-
tions to be properly normalized, we should require

S [ifds,=1. (26)
k

The total probability is conserved simply because it is
conserved for each subensemble separately.

IV. SMALL QUANTUM SUBSYSTEMS

We now turn to a more general situation, where not all
We shall
preserve the notation 2% (¢=1,...,n —m) for the semi-
classical variables and introduce the notation g¢g"”
(v=1,...,m) for the quantum variables. Indices from
the beginning and from the middle of the greek alphabet
will be used for the classical and quantum subspaces, re-
spectively. We shall assume that the effect of ¢* on the
dynamics of £ “ is negligible; in this sense the variables ¢"
correspond to a small subsystem of the Universe. The
Wheeler-DeWitt equation (5) can be written as

(V§—Uy—H, =0 . 27

The operator H,=V3— U,(h) is the part of the Wheeler-
DeWitt operator obtained by neglecting all quantum
variables ¢¥ and their momenta, p,= —id/3dq”. The
smallness of the subsystem is mathematically manifested
in the existence of a small, dimensionless parameter €,
such that H,¢¥/Hy)=0(e). Here, we shall assume that
€~A, so that H, =0(A"!). This is a reasonable assump-
tion, since the semiclassical character of the Universe and
the smallness of the subsystem are both due to the fact
that the Universe is large. However, there may be cases
where one has to distinguish between the two parameters.
The superspace metric tensor can be expanded in
powers of A. We shall assume that the variables 2 and
q" are normalized so that the leading terms of the metric
are of zeroth order in A. The metric tensor components
with indices in the classical subspace can be written as

8aph,q)=g'R(h)+0() , (28)

where g\ ~ 1. The Laplacian V3 in Eq. (27) is construct-

ed using the metric ggﬁ(h). It will be assumed that the
subspaces defined by 2% and q” are approximately or-
thogonal, that is, g,, =O(A). This condition appears to
be necessary for a clean division of variables into classical
and quantum.

The wave function of the Universe can be written as

k

where ¥, are given by Eq. (23). Let us first consider one
term of this sum:

P=A(h)eSMy(h,q)=1vsx . (30)
The wave function (k)= AeS satisfies the equation
(V3—Uy)y=0 (31)

and ‘we obtain, like in the previous section, Egs. (14) and
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(15) for S and A. The equation for the wave function of
the subsystem Yy has the form

Vox +2[Vo(ln 4)1Vox +2i(VoS)Vox —H,x=0 . (32)

The first two terms are of higher order in A than the third
term and can be neglected; this gives

2i (VoSIVoy=H, X - (33)

Note that this equation is consistent with the assumption
that H,=0(A™ ).
Using the classical relation (17), we can rewrite Eq. (33)
as
.0X _
ey NH_ x . (34)
This is the Schrodinger equation for the subsystem in the
background defined by h%t). [Note that due to the
time-reparametrization invariance dt can appear only in
combination N (¢)dt. This explains the presence of N (t)
in Eq. (34).] The derivation of the Schrodinger equation
from the Wheeler-DeWitt equation has been discussed in
Refs. 2, 16—18, and 13.
To find the probability distribution defined by the wave
function (30), we note that the leading term in the WKB
expansion of the current (11) is

J=IxPl41PVES =j§p, (3s)
for the components in the classical subspace and
== 1PV V) =1 4y (36)

for the components in the quantum subspace. Here,
j&=|A1*VES is the classical probability current for the
variables A% Using the conservation of the total current
V. j*+V,jv=0 and of the classical current V,j§ =0, we
obtain'®

dp, /3t +NV,j} =0 . (37)

The probability distribution corresponding to Eq. (35)
can be written as

p(h,q,)=py(h,t)|x g,k (2),2)|* . (38)

Here, py(h,t) is the classical probability distribution for
the variables £ ¢ and p,=| x|? is the probability distribu-
tion for quantum variables ¢” on the classical trajectories
h4t). If we represent the surface element d3 on the
equal-time surfaces as d2=d2,dQ,, where d3, is the
surface element in the subspace defined by A% then
polh,t) is normalized by

[ pedzo=1 (39)
and x(q,h,t) can be normalized by
JIxPaa,=1. (40)

Here, dQq =|detg,,|'/?d™q. Hence, we have recovered
the standard interpretation of the wave function for a
small subsystem of the Universe. I find this a strong ar-
gument in favor of using the definition of probability
based on the current (11).
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If ¢ is a superposition of the form (29), then, following
the lines of the previous section, we obtain

p(h,q,)=T por(h, DXk (g, h,1)|* . 41)
k

The division of variables into classical and quantum
needs not be the same in different regions of superspace
or for different terms in the sum (29) (Ref. 20). Because
of various instabilities, quantum fluctuations in some of
the variables can grow with time, so that at late times
these variables become semiclassical with a high accura-
cy. A good example of this kind of behavior is given by
inflationary scenarios, where the dynamics of the
inflation field ¢ is initially dominated by quantum fluctua-
tions, then it becomes essentially classical, and eventually
has a significant effect on the dynamics of the scale fac-
tor. When one of the quantum variables g* becomes
semiclassical, the corresponding terms in (29) turn into
sums:

Ui ()X (hq)— Db X', q") (42)
=

Here, the set of quantum variables {g’] contains one
variable less than {q}, and the set {A’} contains one clas-
sical variable more than {h}. The solution of the
Hamilton-Jacobi equation Sy;.(A’) also has an extra in-
tegration constant compared to S;(h), and different
terms in Eq. (42) correspond to different values of that
constant. Physically, the transition (42) corresponds to
branching of each classical trajectory A %(¢) into many
trajectories A '*(t) with different initial conditions for the
new classical variable.
The unitarity condition

[igds =3 [ idZia (43)
2

is satisfied, as long as the cross terms can be neglected.
Here, the surface 2, crosses the trajectories before
branching and the surfaces 3, cross the corresponding
congruences after branching. Since the relation (43) is
only approximate, unitarity is an approximate concept in
quantum cosmology.®?!

V. CONCLUSIONS

The interpretation of the wave function of the Universe
suggested in this paper is approximate by its nature. It
holds that the probability for the Universe (or its part) to
be in a certain state can be calculated only approximate-
ly, with an accuracy not exceeding the accuracy of the
semiclassical approximation for the entire Universe.?
(The actual accuracy can be much smaller than this
bound. It is determined by the accuracy of the WKB ap-
proximation for all the classical variables 4% and by the
accuracy of the assumption that the quantum variables
g" have no effect on 2% ) For a Universe of Planckian
size, the semiclassical approximation breaks down, and
probabilities cannot be calculated. In this approach, uni-
tarity is also an approximate concept. Obviously, the
probabilities cannot (at least should not) add up to one
with a greater accuracy than they themselves are defined.
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I do not think that the approximate nature of this ap-
proach is a great disadvantage. In fact, it agrees well
with the standard interpretation of quantum mechanics,
in which an essential role is played by classical measuring
devices.

To calculate probabilities in a domain where the
Universe is semiclassical, one has first to represent the
wave function in the form

¢=§k‘,¢k)(k =2 Ai(h)e
k

iSk(h)Xk(haq) , (44)

where the semiclassical variables A® are described by
WKB wave functions. Y, (k,q) are the wave functions for
the quantum variables ¢" in the background of 2%, and it
is assumed that the effect of ¢* on the dynamics of 2¢ is
negligible. The probability distributions are defined sepa-
rately for each term in the sum (44). The distribution for
the kth term is defined on a family of hypersurfaces X, (¢)
which are crossed by all classical trajectories of the action
S in the positive direction [see Eq. (18)]. These hyper-
surfaces play the role of constant time surfaces. The
probability for the variables 2 %,¢q" to have values within a
surface element dX; , is

dP,=jidZ, , (45)
where
JE=14, PV xi P =& Ixa 7 (46)

is the current (11) calculated for the wave function ¥, x.-
With d3;,=dZq,dQy,, Eq. (45) takes the form

dP, =dPy|x;|*dQy 47

Here, dP, is the classical probability distribution for the
variables 4% and |x, | is the usual quantum probability
density. Equation (47) is clearly in agreement with the
correspondence principle.

We note that it is not necessary to include all the mac-
roscopic variables into 2% For example, Schrédinger’s
cat can be described by quantum variables g, as long as

the effect of the cat on the dynamics of the variables 7

can be neglected. The division of superspace variables
into A% and ¢" is, to a large extent, arbitrary.

Before one can calculate probabilities using Eq. (45),
the wave function (44) should be properly normalized.
The normalization condition is

> [iwdz,~1, (48)

where the summation is over all independent congruences
of classical trajectories. To avoid double counting, one
should not include trajectories resulting from branching
(see the end of the previous section) if the original, pre-
branching congruence has been included.

As an example, let us consider normalization of the
wave function defined by the “tunneling” boundary con-
ditions.”!® The classical trajectories corresponding to
this wave function begin in the vicinity of the hypersur-
face Uy(h*)=0 with VS =0, so that the WKB approxi-

mation breaks down. The dominant part of the trajec-
tories begin in a small part of this hypersurface corre-
sponding to nearly spherical three-geometries with
matter fields near the maximum of V(¢). If V(¢) is
sufficiently flat near the maximum, then the initial parts
of the trajectories describe inflationary universes. These
universes start out with a single classical degree of
freedom —the scale factor, with the remaining degrees of
freedom describing quantum fields in de Sitter-invariant
states. In that region of superspace the wave function is
given by a single term of the form (30), and the normali-
zation condition is simply

Jids,=1. 49)

All the classical trajectories describing later evolution
branch off the initial congruence of inflationary universes.
The classical trajectories end at the boundaries of super-
space corresponding to singular geometries or matter
fields. (There may also be some trajectories ending on the
surface Uy,=0 with VS=O0. Such trajectories may
represent universes undergoing quantum tunneling to
another classically allowed configuration, possibly with a
different topology.)

It should be emphasized that the analysis in this paper
involves a number of simplifying assumptions. The most
important one is the restriction to homogeneous minisu-
perspace models. An extension to the inhomogeneous
case is not trivial and deserves separate study. There are
several other issues that need clarification.

(1) We have assumed that the classical trajectories cor-
responding to different terms of the sum (44) are macros-
copically distinct, so that the cross terms in the probabili-
ty distribution can be neglected. This is not always
satisfied (for example, when the sum is replaced by an in-
tegral over a continuous parameter). It appears that one
has to divide the trajectories into macroscopically dis-
tinct classes. This would be similar to coarse graining in
statistical physics.

(2) The assumption that ¢g* have no effect on the dy-
namics of 2% can be relaxed by using a self-consistent ap-
proach similar to the Hartree-Fock approximation. Such
an approach has been discussed in Refs. 13, 23, and 24,
where it has been shown that, with some additional as-
sumptions, it is equivalent to using the expectation value
of T, as the source in classical Einstein equations.

(3) It would be interesting to study the general proper-
ties of the congruences of classical trajectories defined by
actions S (A4) and to investigate possible topological ob-
structions for the existence of a family of equal-time sur-
faces.

(4) Finally, I should mention the semiphilosophical is-
sues arising when one attempts to apply a probabilistic
theory to the Universe, of which one has only a single
copy. Here I made no attempt to deal with these issues
and took a simple-minded approach that the theory de-
scribes an ensemble of Universes. For a recent discussion
and references see Ref. 25.
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