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The quantum bound on specific entropy for free fields states that the ratio of entropy S to total
energy E of a system with linear dimension R cannot be larger than 2~R /Ac. Here we prove this
bound for a generic system consisting of a noninteracting quantum field in three space dimensions
confined to a cavity of arbitrary shape and topology. S(E) is defined as the logarithm of the number
of quantum states (including the vacuum) accessible up to energy E. An integral equation is derived
which relates an upper bound on S(E) to the one-particle energy spectrum in the given cavity. The
spectrum may always be bounded from above by a power law in energy whose proportionality con-
stant is the g function for the spectrum of the cavity. This last is not calculable in the generic case,
but it is here proven to be bounded by that for a sphere which circumscribes the actual cavity. Thus
the one-particle spectrum for all cavities that fit inside a given sphere is bounded by a generic for-
mula which can be computed given the field. With the help of this result the integral equation is
solved for a fictitious system whose entropy must bound that of the actual system. The resulting
bound on S(E)/E proves to be smaller than 2~R/Ac with R interpreted as the radius of the en-

veloping sphere.

I. INTRODUCTION

A common intuitive feeling is that there should be a
limit to the entropy that can be placed in a system of
finite size whose energy is limited. This is suggested by
the limited phase space available to the components of
such a system. In trying to formulate a quantitative
statement of this intuition a particularly interesting quan-
tity to focus on is the specific entropy, i.e., the entropy to
energy ratio S/E It is a me. asure of the entropy (or miss-
ing information) which has the advantage of being the
same for systems differing only in scale. A few years ago
one of us' conjectured a quantum bound on specific en-
tropy:

S/E ~2~R/Ac .

Here R stands for the radius of the smallest sphere that
circumscribes the system. Bound (1.1) has the status of a
supplement to the second law; the latter only affirms that
the entropy of a closed system tends to a maximum
without saying how large that should be. If true, bound
(1.1) would have varied physical consequences. For in-
stance, it is refl.ected in a limit on the rate at which infor-
mation may be transferred within a given energy budget.

The original argument for the bound' envisaged it as a
consistency condition between black-hole thermodynam-
ics and ordinary statistical physics to guarantee that the
second law is respected. But as Unruh and Wald
showed, the buoyancy of ponderable bodies in the vicini-
ty of a black hole can replace bound (1.1) as a consistency
condition (but see Ref. S). Nevertheless, bound (1.1)
turns out to be correct, and it is our purpose here to give
a proof of it in the context of the statistical mechanics of
noninteracting fields in Aat spacetime. This proof was

long overdue since it has been clear from the beginning'
that a bound of form (1.1) must be provable with no
recourse to gravitational physics.

Simple statistical arguments show that bound (1.1) is
obeyed by ordinary macroscopic systems with orders of
magnitude to spare. This is because most of the energy in
such systems is in the form of rest energy, and does not
contribute to the enlargement of phase space that would
tend to make S/E large. The universal validity of (1.1) is
thus best put to test in systems involving massless quan-
tum fields. The first extensive attempts to substantiate
the bound in this arena used the canonical ensemble. '

It was found that validity of the bound hinges on the
sign and value of the vacuum (Casimir) energy. If this is
positive and not very small on the scale of the typical
mode frequencies, then (1.1) is obeyed with the maximum
S/E occurring at low excitation energy. ' However,
field-theoretic calculations for various cavities and fields
frequently show that the vacuum energies are frequently
negative. Thus if the vacuum energy is included in E,
a violation of (1.1) can be arranged by choosing the field
system's temperature so that the thermal energy very
nearly compensates the Casimir negative energy. Bound
(1.1) has been criticized in this connection. ' Even if the
vacuum energy vanishes exactly, or if one chooses to in-
terpret the E in (1.1) as excitation energy above the vacu-
um, violation of (1.1) is possible at low temperature,
though the mean energy range over which the violation
occurs is extremely narrow. It has been argued that the
above problems may be avoided if one regards the walls
of the cavity confining the field as part of the system.
These walls are essential to define the Casimir energy and
inclusion of their mass in E seems to remove the viola-
tions of bound (1.1) in cases amenable to detailed
analysis. '

But there is no gainsaying the conceptual clarity
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gained when the bound (1.1) is regarded as applying to
the field in the cavity and only the field. This motivates
an alternative approach to bound (1.1) which abandons
the canonical method in favor of the microcanonical one
(entropy is the logarithm of the number of available mi-
crostates), interprets E as the available energy above the
vacuum state, and ignores the walls of the cavity. "' As
is well known, the equivalence of canonical and micro-
canonical ensembles holds good only for "large sys-
tems. "' However, S/E is found to be at its largest value
in states of low excitation' where the equivalence cannot
be relied upon. The second approach mentioned regards
the entropy calculated by microcanonical methods as
more basic than the canonical one.

This is not just a convenient point of view. The canon-
ical ensemble owes its popularity more to the conveni-
ence it affords in calculations (which are always more
complicated the microcanonical way), than to the convic-
tion that it gives a more "correct" entropy. Whereas the
microcanonical ensemble method relies only on very gen-
eral assumptions, like ergodicity, the canonical ensemble
may be deduced from it only on the basis of additional
hypothesis such as the validity of the saddle-point ap-
proximation, positivity of the specific heat, etc. ' Situa-
tions where these conditions are not satisfied are not rare
in nature, as witness the hydrogen atom which cannot be
canonically described. Therefore, microcanonical theory
appears to be the more primary theoretical framework.
It is thus natural, if difficult, to base a proof of the entro-
py bound on it.

Early microcanonical numerical calculations of the
specific entropy of free quantum fields confined to cavities
with simple shapes were carried out by Gibbons. " These
and later, more extensive ones, ' support the entropy
bound (1.1) in every case. Kahn and Qadir' have given
an analytic argument in microcanonical ensemble which
lends support to bound (1.1). This argument is, however,
limited by its use of the continuum approximation in
phase-space arguments. Since numerical calculations
show that S/E peaks at low excitation energies' where
one would expect the continuum approximation to be
very crude, the Kahn-Qadir argument represents a sug-
gestive piece of evidence, but not a proof of the entropy
bound. We note that Kahn and Qadir regard the bound
as valid only under such circumstances as also make the
continuum approximation a good one. It will be clear
from the rest of this paper that this pessimistic assess-
ment is unjustified: the bound is a rigorous quantum
bound for free fields.

Here we give, for the first time, a complete analytical
proof of bound (1.1) applicable to free fields confined to
cavities of arbitrary shape and topology which is based
on the microcanonical ensemble. In Sec. II we set a
bound on the number of quantum states accessible to a
field system with given available energy in terms of the
one-particle energy spectrum. In Sec. III the one-particle
spectrum for an arbitrary cavity is shown to be bounded
by a power law with a coefficient which depends only on
the properties of the one-particle spectrum for the sphere
which just circumscribes the cavity of interest. In Sec.
IV we put all these pieces together to formulate the proof

of bound (1.1). Our units are such that iri and
Boltzmann's constant k are unity.

II. MANY-PARTICLE NUMBER OF STATES
FROM ONE-PARTICLE SPECTRUM

If O(E) denotes the number of quantum states accessi-
ble to the field system with energy up to and including E,
then the microcanonical definition of entropy is

S(E)= lnQ(E) . (2.1)

In all that follows we shall have in mind mostly the boson
case; for fermions the exclusion principle reduces A(E)
below that corresponding to bosons, other things being
equal. Thus an entropy bound for bosons is automatical-
ly applicable to the analogous fermion system (when ad-
justment is made for differences in spin degeneracy fac-
tors).

As a first step we express A(E) in terms of Q„(E), the
cumulative number of n-particle states with energy up to
and including E:

Q(E) = g Q„(E) .
n=0

(2.2)

We shall assume a nondegenerate vacuum so that
Ao(E) =1. For n ~ 1 the 0„ is defined with the aid of the
one-sided Heaviside function 8(x) (this function vanishes
for x (0, is unity for x )0, and —,

' for x =0) in terms of
the one particle energy s-pectrum Ice,. I for the appropriate
(Neumann or Dirichlet) boundary conditions at the
confining cavity wall. For example, for a scalar field the
co; are eigenvalues of

V g;= —co;g; . (2.3)

n1. (2.4)

The disposition of the limits on the summation has the
effect of avoiding double counting of states which differ
only by an exchange of (identical) particles. The cumula-
tive number of one-particle states,

n (E)—=Q, (E)= g 8(E—to; ),
i=0

(2.5)

will play a key role in further discussion. In the absence
of zero eigenvalues, n (E)~0 as E—+0.

Let us define the auxiliary quantities

The eigenvalues cu; may be taken as non-negative due to
the positive-definite nature of the operator —V . In most
of our discussion we assume that all eigenvalues are posi-
tive; the possibility and significance of zero eigenvalues
are discussed in Sec. V.

Let the one-particle levels labeled i„i2,. . . be ordered
by energy so that co; ~co; if i (ik (degenerate levels arej k

to be ordered arbitrarily). In terms of these we have

Q„(E)—=
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E E1 E n —1

Q„*(E)= f dE, f dE2 . f dE„,(dn IdE, )(dn IE2) . (dn IdE„,)n E —g Ek, n ) 1
0 0 0 k

and

Q'(E) —=6(E) .

(2.6)

The Q„*(E)may be easily evaluated from the definition of
n (E) by noticing that its derivative is a sum of delta func-
tions, each with support at an eigenvalue co;. Therefore,

I

Q„*(E)=
l1 l2 n —1

l1 l2 ' ' l

6(E co; co '' ' co )l
1 l2 l

8(E s; s '' s ).l
1 l2 l

Q„*(E)—= n(E —co, —co; —. —co, ),
1 '2 n —1

n —1

(2.7)

The last inequality is due to the fact that the last particle
(labeled i„) is not constrained to be in a level such that
co, ~su; . Therefore, there are more terms in the first

n —1 n

sum. Comparing with (2.4) we see that for n ) 1, Q„'(E)
overestimates the true number of n-particle
configurations Q„(E). Hence, for all n,

[note that Q*, (E)=Q, (E)j. We see that the ordering by
energy of the integrands in (2.6) induces an ordering by
levels in the sum (2.7), and thus precludes overcounting
of identical configurations.

Substituting (2.5) in (2.7) we have, for n ) 1,

Q„(E)&Q„(E) . (2.8)

Now suppose -we relax the "energy ordering" in the
defining expression for Q„(E). We then overcount states
so that the new counting functions

N„(E)=f dE, f dE2 . . f dE„,(dnldE, )(dnlE2) . (dnldE„, )n E —g Ek, n 1
0 0 0 k

and

No =6(E)
trivially satisfy

Q„(E)& Q„*(E)& N„(E),
the equality occurring for n =0, 1. Therefore, we have for the cumulative number of quantum states the bound

(2.9)

Q(E)= g Q„(E)& g N„(E)=N(E) .
n=1 n=1

Since n (E) vanishes for negative arguments, we may rewrite N (E) for E )0 as

OO E —E1 E—E1 — E„ n —1

N(E)—=6(E)+ g f dE, f dEz f dE„,(dn IdE, )(dn IE2) (dn IdE„,)n E—
1

0 0 0 k

(2.10)

and we see that N(E) =0 for E &0.
This expression may be recast in a very elegant form as

the integral equation

N(E) =8(E)+f N(E E')(dn IdE')dE' — (2.11)
0

as may be verified by iterating the latter. Therefore, we
achieved our goal of relating the number of accessible
quantum states of the field to the cumulative number of
one-particle states n(E) through Eqs. (2.10) and (2.11).
Since n (E) is related to the one-particle energy spectrum
which is not known in closed form for an arbitrary cavi-

ty, we now turn to investigate general constraints on the
latter.

III. .THE ONE-PARTICLE NUMBER OF STATES

Calculating n (E) in detail for arbitrary cavity shape is
a hopeless task, but is also unnecessary. Instead, we shall
establish a simple constraint on the corresponding g func-
tion. This is defined as

g(k)= g co,. ",
i=1

(3.1)

where the co, are the energy eigenvalues [defined, for ex-
ample, by Eq. (1.5) with the appropriate boundary condi-
tions]. Degenerate co; enter the sum separately. In ac-
cordance with our exclusion of zero eigenvalues, all terms
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n (E) ~ g(k)E" . (3.2)

This is useful only for k) 3. We now prove in two
different ways that the g function for a general cavity is
bounded from above by that for its smallest circumscrib-
ing sphere.

in the sum in (3.1) are well defined. Because the number
of eigenvalues up to co increases as co for large co, the
g(k) converges only for k )3. Note that if one multiplies
g(k) by E", there are a total of n (E) terms in the sum in-
volving a factor (E/to;)" larger than unity. Since there
are further positive terms in the sum we see that n (E)
satisfies the g inequality

X;I»= —4(x) Vq';I» . (3.5)

Next, assuming that the deformation is small, we expand
this equation to first order in the displacement vector
g(x). On the right-hand side (RHS) the factor (cv; —0;)
is already of first order; hence the integral multiplying it
may be replaced by unity (normalization). It follows
from the boundary condition (see Fig. 1) that

y, ~„=y,~„+g(x).V+, ~„+O(g') =0,
where we have exploited the fact that the difference be-
tween V%'; and Vg; on BS is already of first order. Thus
to first order

A. Local theorem on the g function

Intuitively we would expect (say, on the basis of the
uncertainty principle) that the energy eigenvalues are the
larger the smaller the cavity. A precise statement of this
is that as a given cavity S is deformed into another one X
entirely contained within it, all the eigenvalues increase
and, therefore, the g function is the smaller for X. Figure
1 clarifies the relation between the two cavities showing
q, the normal to the surface of the original cavity, as well
as g, the vector along the tangent to the deformation
paths.

Let g;(x) be that normalized eigenfunction [in the
sense of (3.3)] in the deformed cavity which develops out
of the (normalized) eigenfunction of the original cavity as
the latter is deformed. Concentrating on the case of the
scalar field with Dirichlet boundary condition we may
write

(V' +0;)4;(x)=0, 4;~»=0,
(V +co; )y;(x) =0, y, isz=0 .

(3.3)

FIG. 1. Illustrating the cavity X, its circumscribing cavity S,
the normal g, and the deformation vector g'.

Here BS means the sphere's exterior boundary, etc. We
assume that the definition of g;(x) is smoothly extended
to the region between BX and BS. Let us multiply the ad-
joint equation for 4, by y;, the equation for g, by 4,*,
subtract the results, and integrate over the interior of S.
Use of Green's theorem and the boundary condition for
4'; leads to the result

f g;(x)V%',*(x) dS=(co; —0;)f 4';(x)y;(x)d x .

(3.4)

With this result in Eq. (3.4) we have, up to the first order
111 (x),

co, —II, = —f [g(x) V%;]V%, dS+O(g~) .

But the derivative of 4; tangential to S vanishes, so

',
—n', = —f (q g)(ae, ca~)'~dS~+O(g'),

(3.6)

(3.7)

where B%;/Bg is the normal derivative of 4; at BS. If the
original cavity is slightly deformed into one entirely con-
tained within it, g g'+0 (see Fig. 1) so all the energy ei-
genvalues grow and the g function obviously decreases.

The argument given does not really depend on the
sphericity of the original cavity. Hence we can imagine
regarding a large deformation of the cavity as composed
of many small ones. To each of these we may apply the
theorem so that the result applies also to a deformation of
arbitrary magnitude, provided the final cavity has the
same topology as the initial one.

Some cavities which may not be obtained by deforming
a spherical one may be handled by slight modifications of
the above argument. Suppose, for example, that X is
toroidal with its handle nearly centrally located. We
would again start with a sphere S circumscribing X. As
is well known, the scalar eigenfunctions 4';(x) for the
sphere may be chosen in spherical coordinates as
j;(cv;r)y, (8,$) where j; is the spherical Bessel function
and y &

the spherical harmonics. Now if we exclude from
the list of eigenfunctions those with m =0, all the
remainder vanish along the polar axis (8=0,vr) Thus.
they satisfy the boundary conditions appropriate for a
sphere pierced by a thin tube along its axis. We may de-
form continuously such a pierced sphere into our torus.
Then our theorem may be applied to show that the co; for
the torus are all larger than the corresponding ones for
the pierced sphere. Since the spectra of the whole sphere
and the pierced one differ only in that the latter lacks the
eigenvalues with m =0, we may conclude that g(k) for a
torus is smaller than the corresponding g(k) for a cir-
cumscribing sphere.

We conclude that the g function with k ) 3 of the scalar
field with Dirichlet boundary condition in a cavity is
smaller than the corresponding one for a circumscribing
spherical cavity if the former cavity is obtainable from a
spherical one by shrinking, namely, by a series of deforma
tions such that at each stage the interior of the deformed
cavity is completely contained in that of the cavity of the
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B. Global theorem on the g function

Consider now any free quantum field which is de-
scribed by a Hermitian, positive-definite Hamiltonian H.
Simple examples are the scalar, electromagnetic, and
Dirac fields (the negative eigenvalues for the latter are, of
course, interpreted as positive eigenvalues corresponding
to antiparticles). We shall suppose it confined to a cavity
X of arbitrary topology about which we draw the cir-
cumscribing sphere S. The confinement is reAected in
some boundary conditions specified on BX. Analogous
conditions may be specified on BS. Thus discrete spectra
IQ;} and Ice;} appear together with the corresponding
sets of eigenfunctions Iy;(x)} and t4;(x)} (we suppress
vector or spinor indices). As clear from the example of
the pierced sphere, there is not in general one-to-one
correspondence between the two spectra. Thus our ap-
proach here will deemphasize comparison of specific ei-
genvalues in contrast with our previous approach.

In order to handle uniformly both fermion and boson
fields, we shall only invoke H (whose spectrum contains
squares of frequencies). For example, for the scalar field
H = —V while for a spinor field H would be the square
of the usual Dirac Hamiltonian operator. A particular
eigenfunction yk(x) is defined over X; we extend its
definition to the whole of S by stipulating that it vanishes
in the complement of X within S. It will be important for
us that the set of %',.(x) for the outer cavity is complete,
i.e., that any function of the appropriate spinorial or ten-
sorial form defined over S may be expanded in these func-
tions. In particular this applies to the y;(x) which we ex-
pand as

yk(x)= g Ak;4;(x) . (3.8)

From the orthogonality of the haik(x) (a consequence of
Hermiticity of H) it follows that

Ak; =f %,*. (x)gk(x)d x . (3.9)

Now apply H " (n is an arbitrary positive integer) to
both sides of (3.8) in the interior of X. Assuming the
eigenfunctions may be differentiated an arbitrary number
of times this gives

0~k"yk(x) = g Ak;co;"4;(x) (3.10)

(at BX the correct result is to be understood as a limit
from the interior of X since gk is not differentiable at the
boundary itself). For any function F(z) whose Taylor ex-
pansion converges for all z )0 we may thus write

F(peak )yk (x)= g Ak;F(pro; )4; (x), (3.11)

where p is any positive constant with dimensions of (en-
ergy)

previous stage. The same is true if one may start from a
spherical cavity pierced through its axis. The extension of
this result to other fields, boundary conditions, and topo-
logies may be had from the following theorem.

Now the functions y;(x) are orthonormal in X; hence
by multiplying (3.11) by gk(x) and integrating over X we
get

(9+k ) rf Aki AkiF(p~i ) (3.12)

Summing over k gives

y F(pn~g ) = y y I Ak; l'F(p~,'),
i k

(3.13)

where the interchange of the order of summation is predi-
cated on the assumed absolute convergence of the series
in the RHS of (3.12) for fixed p. Of course our result
makes sense only if the sum in the left-hand side (LHS)
converges, which necessitates that F(z) decrease asymp-
totically faster than z ~ (since the number of eigenval-
ues up to 0 grows as 0 for large Q).

Now Iy; } is not a complete set for S since the func-
tions are naturally associated only with the subspace X.
Suppose we try to represent a 4, in X in the form

'Ii;(x)= yB;krak(x), xcX .
1

(3.14)

The best expansion, the one which differs least from 4,. in
the least-squares sense, ' corresponds to choosing
B;k = Ak; [see (3.14)]. By Bessel's inequality' the incom-
pleteness of Iy; I translates into the strict inequality
Xk ~B,k ~

(1. In view of this and the relation B,k= Ak, , .

(3.13) is equivalent to

QF(pQ; ) ( QF(pro; ) . (3.15)

where k is a positive number to be further constrained
presently. Now, as a function of p, the series of exponen-
tials is uniformly convergent essentially because of the
rapid decrease in magnitude of the terms as the eigenval-
ues grow large. The sum and integral may thus be inter-
changed. After rescaling and evaluating the integral we
get

yII —k& y —k (3.16)

We thus discover that k )3 is a necessary condition,
since otherwise the resulting sums do not converge. ' In
view of definition (3.1) the result shows that the g func-
tion of X is smaller than that for S. In particular the g
function of order larger than 3 for a field conftned to a
cavity of arbitrary shape and topology is smaller than the
corresponding g function for a spherical cavity which corn

Let us take F(z)= exp( —z); this function certainly
satisfies the conditions of convergence of the Taylor
series, and decreases faster than z . Since inequality
(3.15) is valid for all p & 0, we may multiply both sides of
it by the same positive function of p, and then integrate
over the same range of p, and the result must preserve
the sense of the inequality. For example,

f dpp" ~ ' +exp( —pQ;)
1

( f dpp" '+exp( —pc@;),
0
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n (E) & nk" (E)=g, (k)E", k )3, (3.17)

where g,z(k) is the g function for the sphere just cir-
cumscribing the cavity X. %'e shall make use of this im-
portant result forthwith.

IV. THE BOUND ON SPECIFIC ENTROPY

Return now to the integral equation (2.11). Suppose
that n (E) for the cavity of interest is there replaced by
nz (E) defined in (3.17). Then the solution of the modified
integral equation, call it Nk (E), corresponds to a ficti-
tious system with more one-particle states up to a given
energy than the true system. Thus N (E) & Nk (E).
Therefore,

Q(E) &Nk (E), k & 3 . (4.1)

Let us now convert the integral equation for Nk*(E)
into a more convenient, algebraic, equation by taking its
Laplace transform. Denoting the Laplace transform of a
function f (E) by f(s) we have

1
N i', (s)=

s[1—snj, (s)]

It follows from (3.17) that

(4.2)

pletely circumscribes it.
In view of the g inequality (3.2), our theorem tells us

that

n k(s)=I (@+1)g, (k)s (4.3)

where I (k+1) is the usual I function. In all that fol-
lows we limit our remarks to the case of integral k, so
that I (k + 1)=k!. Substitution of (4.3) into (4.2) gives

(4.4)

k

Nk(E)=k ' g expIcr„[k!g, (k))'~"E]I .
n=1

(4.5)

Since the g function is only defined for k )3, let us
choose k =4 and set X—:[4!g,„(4)]' [some refiection
shows that this leads to the tightest bound on Q(E)].
Then by exploiting various trigonometric and transcen-
dental identities we have

k —1s
N k(s)= s"—k!g(k)

Now N k(E) is the inverse Laplace transform of N k(s):
namely, the integral of N k(s) exp(sE)/2rri along a con-
tour parallel to the imaginary s axis to the right of the k
poles of N k(s). These are distributed uniformly along a
circle in the complex s plane whose radius is
[k!g,~(k)]' ". Their phases correspond to the k distinct
kth roots of unity, o.1, o.

&, . . . , -o.k. It is convenient to
translate the contour to large negative s while indenting it
to avoid the poles in the manner illustrated in Fig. 2 for
the case k =4. In this way only the pole residues contrib-
ute to the inverse transform; the contribution of the verti-
cal part of the contour, labeled C, vanishes in the limit.
In view of all this

N4 (E)= —,'[exp(XE)+ exp( XE)+ exp(—iXE)+ exp( iXE)]—
=

—,
' [cosh(XE)+ cos(XE)] &

—,
' [cosh(XE)+1]= cosh (XE/2) & exp(XE) = exp I [24(, (4)]'~ E ] (4.6)

S (E)/E & [24(„(4)]'~' . (4.7)

I

I

I

I

I

s plane

FIG. 2. Illustrating the contour for evaluation of the inverse
Laplace transform of N I*, (s). Crosses mark its poles.

In light of (4.1) we conclude that the microcanonical en-
tropy S= in[A(E)] obeys

In previous work [Ref. 12, Eq. (37)] we had already
suggested that g(4)'~ provides a good estimate of the
maximum S/E. What we have shown here is that there
is no need to consider each cavity separately; if all that
we want is to set an upper bound on S/E, it suffices to
look at the spherical cavity. The g function g,~(4) has
been numerically calculated elsewhere' for several mass-
less fields which represent (apart from the question of rest
mass) most of the elementary fields seen in nature. The
results are given in Table I.

It is clear from Table I that the entropy bound is
respected for the three fields considered and for all cavi-
ties, simply connected or not, of whatever shape. The ad-
dition of rest Inasses can only reduce the phase space
available at a given energy, so that massive fields are sub-
ject to bounds tighter than those displayed in Table I. If
a variety of fields can exist in the cavity, the appropriate
bound is obtained by replacing g, (4) in (4.7) by the sum
of g functions of all species concerned. This is because in
our argument the identity of the one-particle levels is of '

no consequence. Since the g function appears in the
bound to such a low power, it is evident that many ele-
mentary fields can be introduced without violating bound
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Field

Scalar
Electromagnetic
Spinor

g,p(4)

0.0417R
0.266R
0.0832R

[24(„(4)]'"
2mR

0.159
0.253
0.189

(1.1) [for example, up to 244 vector fields or 1564 scalar
fields can be accommodated in inequality (4.7)]. Thus,
with due reserve it is clear that, in the absence of interac-
tions, we have obtained p fairly general proof of the en-
tropy bound.

V. SUMMARY AND ASSESSMENT

We have proven that the microcanonical entropy of a
system of free quantum field governed by fairly general
Hamiltonians and confined to a cavity of arbitrary shape
and topology is subject to bound (1.1). The strategy has
been to first relate the number of quantum configurations
accessible up to a given energy to the number of one-
particle levels up the same energy via an integral equa-
tion. This stage does not depend on the way the field is
confined, but only on the assumption that interactions are
negligible (except for those which confine it and are ex-
pressed as boundary conditions). Next, the one-particle
spectrum for the real cavity was bounded by that for the
circumscribing sphere with the help of a very general
theorem relating the g functions of the two cavities. Fi-
nally, the integral equation for a fiducial system which is
related more to the sphere than to the actual cavity is
solved, and a bound set on the entropy. This latter bound
is stronger than (1.1) for all fields we meet in nature, and
so establishes its validity.

Throughout we have assumed that there are no zero
one-particle energy eigenvalues. The existence of such
"zero modes" formally causes the g function to become
undefined, and would seem to invalidate the above pro-
cedure. This, however, is not a loophole in the proof. It

TABLE I. g function for free fields confined to a sphere of ra-
dius R.

must be realized that a zero mode formally allows one to
construct an infinity of different states of the field with
like energy by just adding quanta in the zero mode one at
a time. In this case the microcanonical entropy seems
not to be well defined (infinite). However, zero modes are
generally associated with some symmetry of the system
(usually translations) and do not represent dynamical de-
grees of freedom. ' They are commonly regarded as asso-
ciated with a "condensate, " i.e., the classical part of a
quantum field in the theory of symmetry breaking, or the
condensate in a superAuid. ' When a field possessing
zero modes is second quantized, creation and anhilation
operators are associated only with modes other than the
zero modes (above-the-condensate particles). Therefore,
in our approach it is justified to ignore zero modes.

Still clamoring for attention are field systems with in-
teractions. Two detailed examples' ' show how difBcult
it is to violate bound (1.1) even with the help of interac-
tions. It is plain that in the presence of interactions the
additivity of particle energies used in the first part of our
program must be given up. The proof must thus proceed
along a rather different path. Progress in this direction
will be reported elsewhere.

All the above presupposes Hat spacetime. One exam-
ple ' has been given showing how the wave character of
particles helps to protect the bound in the presence of
strong gravitation. It is a pressing matter to convert
these insights into a general approach for dealing with

strongly gravitating systems. One goal is obviously to
clarify the ultimate relation of bound (1.1) to black holes,
a relation which first suggested the bound' and is still
reAected in the numerical factor appearing in it.
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