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The first part of the paper formulates general conditions (independent of a particular gauge-
theoretic model) under which a cylindrical distribution of matter can be joined to a vacuum exterior
with a conical geometry and exhibits the relation between angular deficit and internal structure. To
bring out the relation to gravitational mass, the second part is devoted to a detailed study of solu-
tions of the initial-value problem for circular loops of string at a moment of time symmetry.

I. INTRODUCTION

M«, =pH;, X(length), pH;, =b.tt /Ssr, (2)

and the gravitational or Arnowitt-Deser-Misner (ADM)
mass M determined by the asymptotic field at spatial
infinity. Linearized theory, which one might reasonably
hope to be adequate for grand-unified-theory (GUT)
strings, which have

p-(Higgs-boson mass) —10

In general relativity, cosmic strings have gravitational
fields with distinctly non-Newtonian characteristics.
Their idiosyncrasies have been a snare for the unwary
ever since strings were first introduced into cosmology by
Kibble, Zel'dovich, and Vilenkin. This paper arose from
an attempt to understand more clearly the general nature
(irrespective of specific gauge-theoretic structural models)
of the relation between the near and far fields of a string
and its internal structure.

From close up, the string may be considered straight
and infinite. The exterior geometry is then conical, and
linearized Einstein theory yields the relation
b, P/gm = (inertial mass/unit length) for the angular
deficit hP. The curvature and the force required to hold
a test particle at rest both vanish. From the near-field
point of view, the effective gravitational mass of the
string is zero. The string is nevertheless a repository of
positive energy, which must make its presence manifest
in the total gravitational mass measured at spatial
infinity.

This suggests a schematic picture for the gravitational
field of a loop of cosmic string. There is a near zone,
whose size is small compared to the loop radius, in which
the geometry is locally Aat and conical; a far zone, where
the field is Schwarzschildean; and, sandwiched between
these, a transition zone, of thickness comparable to the
loop radius, in which the geometry evolves from one to
the other configuration. The relations between the fields
in these zones and the internal structure of the string can
be neatly formulated for a newborn or momentarily static
loop by defining three kinds of "mass": the inertial mass

M;„„,= I(—To)( g)' d x

the "Hiscock mass" (really a measure of angular deficit)

predicts that the "masses" M;„„„MH;„andM are equal.
Concerning the general relationship between them, how-
ever, very little is rigorously known. To explore this
question is one of the principal objectives of this paper.
Since only local and near-field properties are involved in
the definitions of M;„„, and MH;„ the idealization of an
infinite straight string may be used in studying their in-
terconnection. This is the subject of Sec. II, which is
concerned with stationary cylindrical distributions and
the conditions under which they can be joined to an exte-
rior vacuum having a conical geometry. To deal with the
gravitational mass M, the idealization of an infinitely ex-
tended source is ineffective, and in Secs. III—VI we there-
fore turn to a detailed study of the initial-value problem
for circular loops of string at a moment of time symme-
try. There is an infinite variety of solutions, depending
on the amount of incoming gravitational radiation
present on the initial time slice, a quantity that is difficult
to bring under complete control without access to past
lightlike infinity. However, it can be said in broad terms
that for small angular deficits our results corroborate the
equality

M =MH;, =M,„„, (5/~0) . (4)

But M dips below MH;, by a factor that grows to the or-
der of 2 as b,P rises towards m. Beyond this, the loop is
generally enclosed within a black hole.

Specific properties and relations of this kind lead on to
more general issues, of which the briefest mention may
suffice here, since they have recently received attention
elsewhere. Is the external geometry of a string a unique
diagnostic of internal structure —i.e., can a line distribu-
tion of stress and energy be uniquely inferred from exter-
nal properties such as angular deficit? ' Is a distribution-
al description possible at all in general for line sources,
stringlike or nonstringlike? In a preliminary reconnais-
sance of these questions more than a decade ago, one of
us concluded: "There exists no simple general prescrip-
tion, analogous to [the well-known surface-layer formal-
ism], for obtaining the physical characteristics of an arbi-
trary line source. " A careful mathematical analysis by
Geroch and Traschen reaffirms this pessimistic con-
clusion. The difficulty is that Einstein s theory is non-
linear, and a product is not definable for distributions
more singular than step functions. It is nevertheless pos-
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sible to isolate a subclass of "simple" line sources,
characterized by the condition

(radial stress) «energy density,

for which a distributional description is possible in the
limit of an infinitely thin source, and a line stress-energy
tensor can be defined that is uniquely correlated with the
near-field exterior geometry. In particular, for conical
geometries, this prescription can be used to assign to a
string with any given angular deficit an "equivalent" or
"effective" simple line-source structure that happens to
reproduce precisely the Hiscock mass:

effective tension =effective mass /unit length

=b,g/8~ .

Of course, this effective structure approximates the distri-
bution of stress and energy in the real (finite-thickness)
string only when that distribution satisfies the "simplici-
ty" condition (5). Studies of false-vacuum solutions to
the gauge-coupled massive scalar-Maxwell-Einstein equa-
tions, pioneered by Garfinkle, ' show, however, that
gauge strings are generally not simple sources; they have
a stress-energy distribution that is strongly model depen-
dent and well approximated by (6) only in the limit of
small b.t)It.

Beyond this loom more difficult dynamical and evolu-
tionary questions. Cosmological scenarios involving
cosmic strings generally assume that the smaller loops
evaporate by emission of gravitational and other forms of
radiation. If, however, an appreciable fraction were to
form black holes instead of evaporating completely, this
could lead to an unacceptably high y-ray background due
to Hawking radiation from mini black holes. It is thus of
great interest to secure an estimate of what this fraction
is. Hawking has recently made an initial assault on this
problem. He has also shown by an elegant argument'
that a circular loop collapsing with the speed of light (a
reasonable idealization, since the loop is rapidly ac-
celerated by its own tension) must form a black hole if
cosmic censorship is valid, with the loss of at most a-frac-
tion 1 —2 '/ =29.3% of its mass energy in the form of
gravitational radiation.

II. INTEGRAL FORMULAS
FOR STATIONARY CYLINDRICAL DISTRIBUTIONS

AND INFINITE STRAIGHT STRINGS

Internal structures for cosmic strings, "normal" and
superconducting, "have been worked out by a number of
authors on the basis of various field-theoretical models in-
volving one or more gauge-coupled boson or fermion
fields. In the case of infinite straight strings the field
equations are stationary and become more-or-less tract-
able, and only this case has so far been considered. This
section contains little that is essentially new. Our princi-
pal objective is simply to assemble, with concise deriva-
tions, some of the more useful integral formulas that re-
late the exterior geometry and gravitational field of an
infinite straight string to its internal distribution of
stress-energy. These formulas follow solely from the

which are compatible by virtue of X&n =0. Then

f ~PZb(a, g)dr= f PZ~(a, g)( —g)'"d'x . (8)

Latin indices refer to three-dimensional intrinsic coordi-
nates of X; K, is its extrinsic curvature and our sign con-
ventions follow Misner, Thorne, and Wheeler. '

We brieAy indicate the simple steps of the proof. From
the definition of extrinsic curvature, '

It.bye g= „ IPg~gg PIPn— (9)

The Gauss divergence theorem now yields, noting the
skew symmetry of g

f EPl~(()Z)n. dr = f Pl~ (()P)( —g)'/'d'x, (10)

which reduces to (8) on applying the Ricci commutation
relations.

For later reference we digress for a moment to a
bounded distribution in an asymptotically Aat spacetime
which admits a timelike Killing vector g'(t). The surface
integral in (8) is then easily evaluated in the asymptotic
region. Factoring out the t integration and deploying the
Einstein field equations, one arrives at the well-known
Tolman formula

M = f ( —T'+T')( —g)' d x
x =t =const

for the gravitational mass of a bounded stationary distri-
bution. Its simple interpretation in the weak-field limit in
terms of Newtonian potential tI) and gravitational energy
Q is worth recording. Restoring the constants 6 and c,
setting dr=( 'g'/ d x, —T,'=pc, M;„„,= fpd rnot-

ing that

Q= —,'G fpPdr= —f T;dr (12)

by the Newtonian virial theorem, and that

( )1/2 (3) 1/2( tt) —1/2

—(3)g1/2( 1+y/ 2)

we recover from (11) the expected Newtonian result for
the total energy through overcompensation by the stress
contribution for the red-shift of the volume element:

E =M „„c=M;„„,c +20—0+O(c ) . (13)

We turn now to stationary axisymmetric cylindrical

gravitational field equations; no particular source struc-
ture is assumed.

Several of these formula may be derived most con-
veniently as special cases of a general integral identity,
due in essence to Tolman and to Komar, ' valid for any
spacetime admitting a Killing vector. Let V be a space-
time domain bounded by a closed or cylindrical three-
space X with unit normal n: n n =a=+1 or —1 ac-
cordingly as n is spacelike or timelike. Suppose that V
admits a Killing field P (timelike, azimuthal, or cylindri-
cal) which generates and is tangent to X. Define a scalar
g ( = t, P, or z) by the conditions

PB /= 1, n () (=0,
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a+b+g=a (15)

The identity (8), applied to the timelike Killing field
and a cylindrical slice of unit coordinate length, yields

f (T; T,')( —g—)' d x= —,'kc . (16)
hz=1

Thus, —,'kc may be termed the "Tolman" or "gravitation-
al" mass of the cylinder per unit (coordinate) length.
This also measures the force required to hold a test mass
stationary in the field (14), given by the absolute deriva-
tive

distributions with three commuting Killing vectors g~, ~,

P&~, P~, ~. If the distribution is radially bounded, the
metric of the surrounding vacuum has the Kasner form

(ds ) =dp2+k p~'dP +p bdz p'd—t

(0~/~2~) . (14)

The constant k could have been scaled to unity by giving
up the standard (0,2n ) convention for P; a, b, c are con-
stants subject to the Kasner constraints

vacuum exterior field to be "stringlike" can then be stat-
ed in several equivalent forms: (i} The exterior geometry
is boost invariant (assuming b& , ); —(ii) the exterior
geometry is conical; (iii) the gravitational or Tolman mass
[given by (16)] vanishes and a&0; (iv) the "C-energy"
[given by (19)] vanishes; (v) the integal (17) vanishes (as-
suming b & ', ); (v—i) the integral (18) vanishes and a &0.

In the static cylindrical models for the interior struc-
ture of current free strings with Abelian gauge fields, only
the azimuthal components A&(p) of the (one or more)
vector potentials cannot be gauged to zero. Structures
with this property are clearly boost invariant, so that
vanishing of (17) follows trivially from the local form
T,'= T,'. However, Tt'+ T~&&0 in general: the integral
condition (vi) specifies when it is possible to join the
string to a surrounding vacuum, at least in an asymptotic
sense. Its meaning is clarified by the equation

B~[(—g)' (K'+3K&~) 'Tt']= ——'( —g)' (Tt'+T&&),

$2p
R p= const

8 ln( —g„)'
Bp

where

K =K'= ——'8 ln( —g) K&= ——'Q lng2 p 2 p

Applying (8) to g~,i and P~, ~
gives

(T —T )( —g)i~ dix= &k limp(K —K )
hz=1 p~ 00

=
—,'k(c b) . — (17)

and p is proper radial distance from the axis. Equation
(22) follows from the cylindrical Einstein field equations
in the case of boost invariance. Condition (vi) thus re-
quires the radial stress to approach zero strongly enough
at the boundary p=po (finite or infinite) to make

From (16), (17), and (15}

(Tt'+ T~ )( —g)' d x = ,'kb, —

f [2(Tt' —T~)+T; T,']( —g)' —d x= —,'k(1 —a) .

(18)

(19)

either a=1, b=c=0 or a=
3

'b c
3

1 — —2

1

The first alternative implies that the exterior geometry is
locally fiat (i.e., the Riemann curvature vanishes), with an
angular conical deficit given by

6/=2m. (1—k) . (21)

The second alternative cannot represent a "stringlike"
object in an expansive environment because of the anom-
alous behavior of azimuthal circles, and we follow con-
ventional practice in disregarding it.

The condition necessary and sufhcient for a cylindrical

In the theory of time-dependent cylindrical fields, expres-
sion (19) is sometimes referred to as the "C-energy" per
unit length. '

Within the general class of cylindrical fields, the string
as a "topologically trapped region of false vacuum, " is
characterized, assuming that it is not carrying a current,
by invariance under boosts in the (z, t) plane. The exteri-
or vacuum geometry possesses this property if and only if
b =c, which means

lim [(—g)'~ (K+3K&~) 'Tt]=0 .
P Po

(23)

These results shed light on a paradox encountered in
studying the vacuum polarization due to a cosmic string.
If the string is idealized as a thin filament in a conical
spacetime, vanishing of the local curvature implies that
the renormalized vacuum stress tensor T„ is traceless for
a conformal massless field. Conformal scale invariance
further requires T„~p . Finally, boost invariance and
the conservation identity imply T,'= T,', 3TP+ T~& =0,
leading to the diagonal structure

(Tt', Tp~, T;, T,')=yacc(b, p/2m)p (1,—3, 1,1).(24)

in which the dimensionless parameter y is characteristic
of the field and has been computed explicitly for various
fields. ' The paradox is that the vacuum stress energy
(24} appears to imbue the string with a nonvanishing (in
fact, negative) gravitational mass according to (16}. Thus
boost invariance appears to be broken by a boost-
invariant effect. The resolution, from (23), is, of course,
that (24) diverges so rapidly near the axis that
( —g)' (K +3K ], ) 'T~ ~ p fails to vanish when p~0,
i.e., when one approaches the boundary of the filament
from the outside. It is not permissible to ignore the
strongly curved interior of the string [where vacuum
stresses do not have the form (24)] when assessing the in-
tegrated efTects of vacuum polarization.

The quantity of primary observational interest is the
angular deficit of the conical exterior space and its rela-
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tion to the internal structure. A convenient form of this
relation, which holds for any boost-invariant string, is
Cxarfinkle's formula (derived originally in the context of
a specific gauge model):

X — X X —Xsuitably adapted coordinates)
(a =1,2, 3).

On the three-space of time symmetry x =0, (30) im-
plies

2

pH;, =bglgrr=p, + f f dp R dP
1 dV

8~ dp

where

(25)
~0gab 0g 00 go, =0 (x =0) . (31)

The ADM initial-value constraints G =Sm T for thisP P
hypersprface therefore reduce to

p, = f f ( —T,'}dpR dP, (26)
' 'R = —16~T, T, =O (x =0) . (32)

and V, R are defined by (28) below.
A general proof of (25) follows at once from

SrrR T,'=R "+(R V')'+ R V' (27)

We next impose the requirement that the field also be
axially symmetric. The three-metric of the time-
symmetric slice is then reducible to the standard (Weyl)
form

which is the form of one of the gravitational field equa-
tions in the case of boost invariance, when the interior
metric is reducible to

d$2 e2(v —x)(dp2+dz2)+ p2e
—2kdy2 (xo 0) (33)

with A, and v functions of p, z. The explicit form of (32) is
now

ds =dp +R (p )d P +e '~'(dz dr —)
We obtain the desired result from (27) and

b, P/2m. = 1 —R'( ca )= —f R "(p)dp,
0

V'( ~ )= V(0) =0 .

(28) 7 A, ——'[(V'A. ) +hv]=4me '" '( —To)

with the notation

2/2 +p 1g+g2gg2+g2
P p z~ —

p z

(V'A, ) =(c) A, ) +(c) A, )

(34)

III. TIME-SYMMETRIC INITIAL-VALUE PROBLEM
FOR A CIRCULAR LOOP OF STRING:

GENERAL FORMULATION

The analysis of the previous section for an infinite
straight string is able to give a good account of local
properties, such as the conical angular deficit hP, and
their relation to internal structure, but entirely fails to
capture global properties of a finite string, especially the
gravitational mass. For a straight string, as we noted, the
gravitational mass per unit length vanishes.

The ensuing sections present the results of a first at-
tempt to come to grips with the gravitational properties
of finite loops of string. We study a circular loop of
string at a moment of time symmetry. This may be con-
sidered an idealized or approximate representation of a
newborn circular loop just before it begins to collapse, or
of an oscillating loop at a moment of maximal expansion.
Our considerations are confined to a single spatial three-
slice of spacetime. Since we have no access to past light-
like infinity, the clearcut formulation of a condition to ex-
clude incoming gravitational radiation presents a basic
difhculty, to be addressed in detail in Sec. IV.

Time-symmetric gravitational fields' are in general
characterized by invariance of the geometry

g~ (x)dx"dx =g„(x')dx'"dx' (30)

under the point transformation x"—+x'", where (in

For weak sources (Gp/c « 1), the integrand in (25) is
of second order, and p is nearly the inertial mass p;„„,
per unit proper length given by

p,„„,e~'"'= f f ( T,')evdpR—dy (29)

so that we recover the linearized result hP =S~p.

Acceptable solutions of (34) for a bounded source must
satisfy the condition of asymptotic Aatness,

v=O(r ), A, = M/r, —r—:(p +z )'~ ~00, (35)

which fixes the ADM mass M; and also the condition
that the geometry (33) be free of conical singularities on
the axis of symmetry p=0 ("elementary fiatness"):

v=a v=o (p=o) .
P (36)

Particularizing further to the case of interest to us, we
assume that the material source is a circular ring p=a,
z =0, momentarily at rest at time x =0. At this point it
is convenient to pass from the coordinates p, z to toroidal
coordinates o, P defined by

p =aN sinhcr, z =aN sing

with

N(o, g}:(coshcr——cosf)' (0&cr & ~, —m. &P&~) .

so that

r =(p +z )'i =aN '(cosho+cosg)' (37)

The metric of the Euclidean background associated with
the cylindrical coordinates p, z, P then becomes

(ds )E„,&=dp +dz +p dP

=a N (do. +dP +sinh cr dP ) . (38)

The geometrical meaning of the coordinates cr, g is de-
picted in Fig. 1. We note that a surface of constant o. is a
torus with circular cross sections of radius a cscho; the
central axis of the tube forms a circle of radius
p=a cotho. in the plane z =0. The ring p=a, z =0 cor-
responds to the limiting torus o.= ~.



1088 V. P. FROLOV, W. ISRAEL, AND W. G. UNRUH 39

The integral of (34), with the boundary conditions (41)
and (35), therefore, give the ADM mass

M =2ma»„, ae '+(8m) ' J (VA, ) dr,

where

27M phy
2m.ae (45)

is the physical circumference of the string loop.
We note, incidentally, that on the singular source

o.= ~, hv is a two-dimensional delta function which
must integrate to a value equal and opposite to (43) by
virtue of (35); thus,

6v~~ o= —4a5(p)/p . (46)

FIG. 1. Toroidal coordinates o, P, P. The figure shows the
extension of a half-plane {t =const in Euclidean space. A and B
are the points at which the equatorial circle p=a intersects this
plane. For any point P(cr, g, g), o =ln( AP/PB), and f=+( a-n

gle APB), with sign equal to the sign of z.

To ensure that the material source on this ring is
"stringlike, " we must impose the condition that o.= ~ is
a conical singularity of the physical metric (33), i.e.,

ds =a N e [e (do +dg )+sinh o dP ], '
(39)

provided k(cr, P) remains regular and bounded as cr ~ oo,
which implies that it approaches a constant value

A(ao, f)=ko ', (40)

and, further, that v(o, g) has an asymptotically linear
form

v=4acr+const= —4ain(p/2a)+const (cr~ ~ ) (41)

with the definition

a = b,P/8m (42)

and where p = [(p—a ) +z ]' represents Euclidean dis-
tance from the ring.

Using these boundary conditions, it is easy to derive an
explicit formal expression for the ADM mass M of the
string. Integrate (34) over the vacuum space exterior
to a narrow tube o =o

&
enclosing the string, using

as "volume" element the Euclidean expression
dr=dpdz pdP. Write bv=V v —p 'c) v and observe
that the second term integrates to give pure boundary
contributions which vanish in the limit o.&~ Oo, since the
divergent part of v becomes constant on o =o., in this
limit by virtue of (41). Accordingly,

lim Av d~=16m aa .
o. (a&

(43)

From the asymptotic form of this metric as o.~~, one
sees readily that 0.= ~ is indeed a conical singularity
with angular deficit

5$=2rr —lim e I e ' ~' dcr'

According to (34), this implies that the ring source has
energy density

To
2(x —v) 5(p) a ~(iuphys )

2~p 1 —4a 2~pphys
(47)

where pphy measures geodesic distance from the string in
terms of the physical metric (39).

We conclude this section with some remarks of a gen-
eral and heuristic character. It is obvious from (44) that
for weak fields (i.e., for small values of the angular deficit
8m.a, and A, everywhere small), the gravitational mass of
the string per unit length is well approximated by a and,
according to (47), by its inertial mass per unit length.
This validates what is generally assumed in estimating
from linearized theory the gravitational radiation emitted
by an oscillating loop.

However, when 4a becomes comparable with unity, or
if A, becomes of order unity anywhere, the first-order esti-
mate

M=MH;, (4a((1), MH;,
—= (2ma h, )a, (48)

V g+ ( —,
' b,v)$=0 . (49)

It is instructive to compare this situation with the
Newtonian analogue of (44). Since there are no gravita-
tional waves and only a single potential P in Newtonian
theory, the ring source now affects P only through its
inertial mass Mo. Although {t is the analogue of A, for
weak fields in general, this analogy breaks down near the
string, where {() (unlike X) diverges logarithmically. We
shall suppose the Newtonian ring replaced by a tube of
nonzero thickness, so that the potential $0 on the tube

is modified by the appearance in (44) of the function
A, (p, z), which may be considered, in view of (35), as the
"Coulomb potential" of the gravitational field. All ma-
terial forms of energy are direct sources for A, via (34).
Superposed upon this is an indirect coupling to "nonma-
terial sources": gravitational-wave packets (see Brill'
and Sec. V) and conical geometries [see (46)] may be con-
sidered to act directly as sources for the "auxiliary poten-
tial" v(p, z )—they form islands where Av is locally nega-
tive; b,v then reacts secondarily on the field t)'j—=e
through (34), which in matter-free regions takes the
Schrodinger form
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IV. CIRCULAR STRING LOOP:
A CLASS OF PARTICULAR SOLUTIONS

The procedure for finding the gravitational field of a
circular loop of string at a moment of time symmetry has
been formulated as the following boundary-value prob-
lem: solve the vacuum equation for the field outside the
string,

V A,
—

—,'(VA, ) = —,'b, v (o&~), (50)

subject to the boundary conditions (35), (36), (40), and
(41).

Since (50) is a single equation for two unknown poten-
tials A,(p, z ) and v(p, z ), the solution of this problem is far
from unique. This reAects the circumstance that bound-
ary conditions on one spatial slice cannot exclude the
presence there of arbitrary amounts of free gravitational
radiation —radiation that might have been emitted by the
loop in its past history or simply come in from past null
infinity.

There is a conceivable way out of this impasse. That it
may be possible to control free gravitational radiation by
imposing restrictions on v(p, z) is suggested by the fol-
lowing result, essentially due to Brill. ' A space that is
everywhere clear of material energy contains gravitation-
al radiation (i.e., has nonvanishing ADM mass) at a mo-
ment of time symmetry if and only if Av is not identically
zero. This result is an easy consequence of (50) or (49),
taking the boundary conditions (35) and (36) into ac-
count.

At first sight, this suggests that Av=0 might be quite
generally deployable as a condition to supplement (50)
and as a prescription for excluding free gravitational
waves from a hypersurface of time symmetry, which
works at least in the vacuum exterior region even when
material sources are present. When the source is a string,
however, (43) shows that the condition is not enforceable
in quite this form: the region surrounding a string must
function as a positive source for Av, even in the absence
of waves, to quench the negative effect (46) of the conical

stays bounded. The Newtonian potential energy is

0= —(8vrG) ' J(VP) dr= —,'G Jpgdr= —,'GM0$0 .

The total mass energy can thus be expressed in a form
that closely resembles (44) (we set G =c = 1):

M =MD+0=MD(1+$0)+(8m) ' f (Vp) d~ .

The Newtonian result M=MD+0(MO leads to the
conjecture that the first approximation (48) to the gravi-
tational mass of a string loop may be an overestimate in
the general-relativistic case also, at least when the initial
hypersurface x =0 has been swept clear of free gravita-
tional waves. In the following sections we shall examine
a wide-ranging class of exact solutions which lend sup-
port to this conjecture. At the same time, they indicate
that (48) should remain a very tolerable estimate, good to
within a factor 2 or so, even for large angular deficits, for
the field configurations that could reasonably be expected
to develop around a real oscillating loop.

4a(o —o 0) (o )o 0),
0 (cr (oa), (51)

vertex by something akin to isostatic adjustment.
These considerations lead us to the following schematic

picture for the behavior of hv in a space containing a
momentarily static string loop and no free gravitational
waves. On the string itself, b,v is given by (46). In the
immediate surroundings, and extending over a distance of
the order of the loop radius, is a "near-zone" where the
geometry is locally fiat and conical, v is given by (41), and
Xv=0. Further out, one passes through a transition zone
of comparable thickness in which the geometry evolves
from its conical near form to the Schwarzschild-type
form characteristic of the far field of a compact source.
The principal contribution to the integral (43) must origi-
nate in the transition zone, where Av is positive. Beyond
this, Av again vanishes, reAecting absence of gravitational
radiation in the "far zone" extending out to infinity.

{While this represents our intuition concerning the be-
havior of the solution for a real string in a space initially
swept as clear as possible of free gravitational waves, it is
perhaps arguable that the class of models considered in
this section, which are based on the idealization of an
infinitely thin transition zone, do not entirely bear out
this picture. The point is that the ADM mass of these
models approaches its minimum value (zero) in the limit
where the transition zone embraces the loop as tightly as
possible [see (74) below]. This result is not easy to under-
stand if one holds to the view that a tight-fitting transi-
tion zone can be created by focusing a toroidal gravita-
tional shock wave inward upon the loop, since that would
require injection of positive energy. This question needs
further investigation. }

The detailed specification of initial data needed to shar-
pen this picture depends on aspects of past history not ac-
cessible to our approach. All we can do here is to ana-
lyze a class of idealized initial conditions that is hopefully
broad enough to encompass the range of configurations
that are physically relevant.

The principal goal is to determine how the ADM mass
M, defined by the far field, depends on loop radius aphys
and angular deficit hP =8~a, parameters defined by the
near field. The transition zone, which is of secondary in-
terest for this purpose, will be idealized as the thin wall of
a torodial tube enclosing the string loop. Our hope is
that this idealization adequately represents the real phys-
ics. It will be assumed that (50) continues to hold (in a
distributional sense) within the tube wall, which therefore
contains no material energy [cf. (34)]. For moderate an-
gular deficits, the wall might be regarded as a place where
an imploding gravitational shock wave and its time-
reAected image, an exploding shock, collide at time
x =0. Of course, conditions at x =0 by no means en-
force this interpretation, and it would in any case fail un-
der conditions so extreme that the collision leads to self-
focusing singularities in the future and past of t =0.
(Compare Sec. V.)

Mathematically, this idealization is encoded in the an-
satz
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which satisfies Av=0 except on the tube wall o.=o.
0 and

on the string 0.= ~, and trivially satisfies the boundary
conditions (35), (36), and (41).

One may regard (51) as the solution of a two-
dimensional electrostatic problem in the p, z plane. Since
o.= 1n—(BP/AP) (see Fig. 1), v can be interpreted as the
potential due to a charge 2a at B enclosed in the earthed
circular conducting shell o =o.

p (the image charge is at
A). Evaluation of the charge density induced on the shell
gives

I (n —m+ —,')
cmn ' ' I( + +i)sm nr

2

1 (n =0),
2 (n =1,2, . . . ) .

(61)

The axial and equatorial symmetries of our problem
imply that

where 0 & and o.
& denote the lesser and greater of

(o, op.) .The numerical coefficients are

bv=(4aN /a )5(o —op) (0& o & oo ) . (52)
V(r)= V(o, g)= V(o, —P) . (62)

Of course, this value automatically satisfies the constraint
(43), since that stems from the same boundary condition.

To obtain A, , it is convenient to recast (50) as an in-
tegral equation. Returning to three dimensions, we
define

Hence only the m =0 term survives integration when (60)
is inserted into (55}. We obtain the Fourier expansion

V(o, ltd ) = (a/2ir )(sinho p)

y
—A, /2

r

so that (5) takes the form

V V= —
—,'(1+ V)hv .

(53)

(54)
where

XN g s„a„P„»z(cosh&a & )
N=O

X Q„,&2(cosho & )cosng, (63)

With b,v given by (52), and V regular for o = co, (54) has
the formal solution

a„=f [1+V(op, gp)]Np 'cosnQpdQp . (64)

1+V(rp)
V(r)= f,

~

NpdSp .
4+a I

r —ro
(55)

The first part of (64) is a standard integral:

f Np 'cosngpdgp=2 Q„,&2(cosho. p) . (65)

The integration is over the torus o. =o.
O, we abbreviate

N(rp)=(coshop —cosgp)'~ =Np and "lengths" and
"areas" refer to the Euclidean metric (38), so that

In the second part, if one replaces V(op, gp) by its
Fourier expansion (63), only the nth term survives in-
tegration,

dSp=a Np sinhopdgpdgp . (56) f V(crp, gp)Np 'cosngpdPp=a„b„a, (66)

M =(a/2vra) f [1+V(rp)]NpdSp .

Expressed in terms of the Hiscock mass

(57)

MH;, =(2vra~h„, )a, a~h~, =a [1+V(o = ~ )], (58)

this becomes

The ADM mass M can now be read off from (55) and
the asymptotic condition V= —,'M/~r~ ( ~r~ ~ ~ ):

where

b„=(sinho p)P„,&2(cosho p)Q„ i &&(cosho'p) .

From (64)—(66) one finds explicitly

a„=2' 'Q„,~,(cosho. p)/(1 ab„)—
so the solution can finally be written

21/2
V(o, g}= (cosho —cosP}'~

(67)

(68)

M/MH;, =[1+V(o=~)] (2ira)

X f [1+V(rp}]NpdSp . (59)

aEb„P„~2(1cosho' & )xg
p 1 ab„P„,zz(co—sho. p)

XQ„,&z(cosho. & )cosn g . (69)

We turn next to the explicit solution of the integral
equation (55). The Green's function has the following ex-
pansion in toroidal harmonics

Equations (53), (69), and (67) explicitly determine A, in
the metric (39). We have thus obtained the complete
family of solutions for which v has the special form (51).

It is now straightforward to infer the explicit form of
(59). From (65),

=N(r)N(rp) g c „cosm(P —Pp)cosn(g —gp)
p m, n =0

so

lim NQ„ & ( 12shco)=o2 ' m5„p, (70)

XP„,&2(cosho &)

XQn 1/2(cosho'& ),
1+ V(o = oo ) =(1 abp)—

(60) The value of the integral in (59),

(71)
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M/MH;, =(1—abp)

X 1+2+ sinhcrp g [ab„/(1 ab„—)]
n=0

X [Q„ i/z(coshcrp) ]

(73)

V. PROPERTIES OF THE SOLUTIONS

The unwieldiness of the solutions (69) has deterred
complete exploration of their geometry. However, some
broad features can be delineated, and are summarized
below and in Table I.

Solutions exist if all denominators (1 ab„) —in (69) are
nonzero. Because b„decreases with n, it is sufficient that
o,bo &1. Now, bo is conveniently expressed in terms of
complete elliptic integrals, in the form

bp = (4/m. )tanh —,'trpK'(tanh —,'o p)K(sech —,'o p)

with the asymptotic behavior

o pin(8/t7p) (0'p~O),
ho= '

crp+ln4 (op~ ~ ),
so this constraint limits cro to the range

8vrlhg (bP~O),
2.625 (b,/=2~) . (74)

In particular, a solution exists for all angular deficits if
the torus o.=o.

o on which the defect is healed has
o.o(2.625. As a rough guide to the relation between o.

o
and the physical dimensions of the healing torus, we men-
tion that the ratio of its greater and lesser equatorial cir-
cumferences (equal to coth —,'op in fiat space) declines
steadily from 16.7 to 8.2 as b,P varies from 0 to 2~ with
o.o held at 0.5; for 0.0=1, the range is from 4.7 to 2.25,
for o.0=2.5, from 1.39 to 1.012. In all cases, the cir-
cumference of the string loop is not far from the

J [(1+V(rp)]NpdSp

=2vra sinhcrp f [1+V(rp)]Np ~dl(p, (72)

follows at once by term-by-term integration of (69). The
final result is

geometric mean of these equatorial circumferences.
A measure of the degree of external intervention need-

ed to force sudden extinction of the conical defect on the
torus o. =o.

o can be obtained by imagining this torus re-
placed by a static material wall, and deducing the surface
stresses S, . [The surface energy density vanishes, be-
cause (50) holds distributionally. ] A straightforward cal-
culation shows that the stresses are pure shear, and given
by

S&~= S&~ =—(a, /4vra )[1+V(op, g)] (cosho p
—cosg) .

(75)

The stresses are maximal along the inner equatorial cir-
cumference g=+~, and the dimensionless number

a~h~, ($~&),„(listed in Table I) is a measure of the extent
to which the idealization of instant healing departs from

00the natural order. It is asymptotic to ae '/8vr for large
o.o. It would seem natural to suppose that the wall actu-
ally represents an instantaneous collision of ingoing and
outgoing gravitational waves. After the initial situation,
which is all we can study, one would have one gravita-
tional shock traveling in toward the core of the string and
another expanding away from the string.

The tabulated values of the expression (73) for M/MH;,
show that it declines gradually and steadily from unity as
b, (() increases from zero for each fixed harp. However, for
moderate values of o.o, the estimate M/MH;, —1 remains
good within a factor of 2 even for angular deficits as large
as m.

For fixed angular deficit b,(t, M/MH;, declines steadily
from unity to zero as o.o increases from 0 to its maximum
possible value (74). We do not understand the nature of
this zero-mass limit, whether it is due to the crudeness of
our model or could represent a genuine feature of more
realistic models.

The final column of the table lists values of
p M /27M phy the gravitational mass per unit proper
length, This rises with angular deficit, at first like
@=AD/8m. The rise slackens off, but remains monoton-
ic, for each fixed ao smaller than 1. If 0.0) 1, p reaches a
maximum for a value of b,P depending on crp, and des-
cending steadily from 2~ as o.

o
—1 increases. For reasons

expanded upon in Sec. VII, we believe this behavior may
signal formation of an apparent horizon at or near the
critical value of b,P. Although the complexity of (69) has
hindered us from checking this in detail, it is easy to

TABLE I. Properties of circular string loops with "instant healing" on the torus o. =o.o. For each of three selected values of o.o,
the columns list as functions of angular deficit AP (i) the ratio M/MH;, given by (73); (ii) the gravitational mass p, per unit proper
length (given by bP/8' times the entries in the previous column); and (iii) the dimensionless maximal effective stress a~h„, (S~&)&=
given by (75) and (58).

AP /2m.

0.2
0.4
0.6
0.8
1.0

M/MH;,

0.9201
0.8412
0.7635
0.6870
0.6119

o.0=0.5

0.046 00
0.084 12
0.1145
0.1374
0.1530

phys max

0.006 84
0.0109
0.012 8
0.013 2
0.012 5

M/MH;,

0.8853
0.7718
0.6594
0.5482
0.4385

o.o= 1

0.044 27
0.077 18
0.098 90
0.109 65
0.109 62

phys max

0.007 50
0.010 8

0.011 1

0.009 67
0.007 28

M/MH;,

0.806 0
0.612 1

0.418 5
0.225 1

0.032 02

o.0=2.5

0.040 30
0.061 21
0.062 78
0.045 03
0.008 006

phys max

0.017 9
0.020 1

0.013 7
0.005 12
0.000 125
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show that an apparent horizon certainly exists when o 0 is
large and close to the upper limit (74)—more precisely,
when

1 «o.,«(1—ab, ) (76)

because higher terms drop off exponentially with oo. At
large radii (0 +it —+0) we then find, recalling (37) and
the identity

—,
Im.g, iz(cosho )/P»2(cosho )

=K(tanh —,'o )/K(sech —,
'o. ), (78)

where K is the complete elliptic integral, that V has the
asymptotic form

P'= ,'M/r, —ds2=(1+,'M/r—) (dr +r dQ )

M =2maabo(1 abo) —'(oo+In4)

(r ))a ), (79)

(oo)) l, abc (1) . (80)

This clearly reveals a "throat" at r =
—,'M, provided this

radius falls within the domain of validity of (79), i.e., pro-
vided M ))a. According to (80), this will be so if
(1—abc) '))pro, thus confirming the presence of a hor-
izon under the condition (76).

However, as oo becomes of order (1—abc) ', we have
not been able to find evidence of an apparent horizon. At
this stage, M/MH;, is still very small, and of order b,P for
small b,P. Although the model has now become physical-
ly ridiculous, as the ratio of the healing radius to the loop
radius is of order e '=e ' ~ which for physically
reasonable b,P 5 10 is well within the core radius of the
matter making up the loop, the result still poses a puzzle
we have been unable to resolve. How, apparently by
merely changing the amount of gravitational radiation in
the initial state, is it possible to reduce the ratio of gravi-
tational mass measured at infinity to the local (Hiscock)
mass by such a large factor, especially in the limit of very
small b,P? Is this a true violation of our intuitive convic-
tion that the condition of minimal radiation implies a
smooth transition region of size about the radius of the
loop, or is it, as we suspect, a consequence of the artificial
model we have chosen?

To show this, we note that for o.o&&1 and abo & 1 the
series (69) is dominated by its first term,

abc Q, &2(cosho o)
V(op) = N P»z(c osho)

1 ab—o P &&2 coshoo

(cr & ac»1), (77)

toroidal surface enclosing the loop. In this section we
shall obtain a solution for which the healing is smooth.
By its manner of construction and simplicity of form, this
has claims to be considered the most natural way to ex-
tend the field of a straight string to the case where the
shape is circular.

The basic idea of our procedure is easy to explain. For
a straight string, as is well known, the conical exterior
geometry can be constructed by removing from Euclide-
an three-space a wedge extending from the string, and
then identifying the exposed edges. For a circular loop
(supposed imbedded in Euclidean space) we employ a
similar method. We remove a pair of spherical caps, mir-
ror images of each other, spanning the loop (Fig. 2). Al-
though the exposed spherical faces have the same intrin-
sic geometry, their extrinsic curvatures have opposite
sign; if we try to glue them together, we cannot avoid in-
terposing a (surface layer) discontinuity. However, it is
possible to apply a conformal transformation which (i)
reduces to the identity at infinity and (ii) flattens the ex-
trinsic curvatures of the faces, in effect reducing them to
a pair of disks spanning the loop, which now can be
identified. (Because the conformal transformation pro-
vides only a single disposable function, the only extrinsic
curvatures that can be equalized in this way are those
determined by a single function, which then must neces-
sarily be the mean curvature. ' Thus, our conformal
trick cannot be extended to nonspherical caps and non-
circular loops. ) The conformal factor is uniquely defined
by the boundary conditions (i) and (ii), and the require-
ment that the conformally Hat space be empty: this
reduces to the single ADM constraint ' 'R =0 at a mo-
ment of time symmetry.

To implement this program, we fix an arbitrary angu-
lar deficit 6$=8rra(2m. Starting with the flat toroidal
metric (38), we restrict P to the range —(m. ——,'hP)
(f(n. —,Ib,g, identif—y end points of this interval, then

apply a conformal factor (coN) . This gives the physical
metric

I

I

I

I
I

I

I

I

I

I

I

I

I

r

VI. CONFORMALLY FLAT TIME-SYMMETRIC
CIRCULAR LOOP

The solutions considered in the two preceding sections
had the contrived feature that healing of the conical de-
fect of the space around the string happens abruptly on a

FIG. 2. The conformally Aat geometry of the circular string
loop, located at p=a in this Euclidean map, is constructed by
confortnally squeezing the two spherical caps t(I=+{m.——'bp)
to become, in eFect, equatorial disks spanning the loop, and to-
pologically identifying them.
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ds =(coN) (ds )„„=cods, ,

where

(81) g (cosha ) =2 ' (cosh' —coshcr )P 0

X ')"+ ' '~d (89)

ds, =a (do +dP +sinh cr dP ) (82)

(cr +g )'~ =2a/r~0 (83)

by (37). Also, since it merely excises the segment
~z~

~ a tan —,'b, P, it introduces no conical singularity on the
axis of symmetry o.=0. Accordingly, defining

represents locally the geometry of a three-cylinder whose
sections /=const are pseudospheres with negative curva-
ture ' 'R = —2/a

Excision of the wedge ~m. —g~ —,'b, P has no effect on
the geometry for small g, and hence on the asymptotical-
ly Rat form of the metric, since spatial infinity corre-
sponds to

After inserting this in (88), summation of the series is ele-
mentary:

1 ~ d r sinhgr
cosh' —coshg- 'i cosh'~ —cosy

(90)

Together with (81) and (82), this gives the final form of
the metric for a conformally flat string loop with arbi-
trary angular deficit b,/=2m. (1—i1 ').

Because N is given by the integral (90) with rj re-
placed by 1, it is easy to verify that the expression

(91)

rj=2~/(2~ Ap), — (84) can be reduced to the integral

if co(o, g, ) is chosen as a smooth function, periodic and
even in g„and such that the function coN is (i) regular
for cr =0, (ii) asymptotically constant at spatial infinity,
and (iii) unity on the string loop cr = oo, then (81) will
represent an asymptotically Aat space that is conical in
the immediate vicinity of the loop, with angular deficit
b,P (Fig. 2).

In the conformally transformed geometry (82), the
faces f~=+ir that we are gluing together already have
vanishing extrinsic curvature. It therefore remains only
to adjust the further conformal factor co so as to evacuate
the physical three-geometry (81):

I(r)) = f cschx(g cothi)x —cothx )dx .
0

Thus, recalling (83) and (81),

(92)

i)coN=1+(2a/vr)I(rI)(p +z )
i~ =1+ ,'M/r h„, —

(r~ oo ),
where

r „„,=(coN) (p +z )'~ =rj r

is the physical asymptotic distance from the origin. This
identifies the ADM mass as

' 'R =co (R, —8co 'V, co)=0, (85) M =(4a/m)i1 I(il) . (93)

where starred quantities of course refer to the three-
metric (82):

From the boundary condition co%—+1 as o.—+~ and
(81) and (82) we find

R = —2a
—2

i|C

a V, co=(sinhcr) 'c) (sinhoc) co)+i1 c)& co .

a„h„,=a, MH;, =Zma h„,cc=-,'ma(r) —1)/i)

so that

(94)

Equation (85) is a linear differential equation for co, of
Legendre's form. The general solution periodic and even
in 1t, and such that coN is bounded as cr~ oo has the
form

co(cr, g, ) = g a„e„g„„,~2(coshcr )cosn P, ,
n=0

with c„as in (61). By comparing this with the expansion
OO

N '=(&2/n. ) g E„g„,&2(coshcr )cosng,
n=0

(87)

which follows from (65), one sees that the choice

co(cr, itl, ) =(&2/ir) g E„g„„,zz(coshcr )cosnP, ,
n=0

satisfies the boundary conditions (i) —(iii).
Our solution (88) can be reduced to a more convenient

integral form by deploying the identity'

I(rl) .
~2 rj(i1—1)

(95)

and leads, for integer values g=n, to
n —1

co=(1/n) g [coshcr cos(g+—2k'/n )] '~ . (i)=n) .
k=0

(96)

For half-integer values, Teshima has shown similarly
that (96) generalizes to

When q —.-1, this ratio tends to unity as it should.
If rj is an integer or half-integer, the integral (90) can

be evaluated in terms of elementary functions. The
elegant way to do this (kindly pointed out to us by Teshi-
ma) makes use of the partial fractions expansion

sinhn ~ 1
n —i 1

sinhr(coshnr —cosng) n k o cosh' cos(P+2kvr/n)—
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Xarctan
cosh —,

' o +cos ,' ( —g+ 4k sr/m )

cosh —,'o —cos —,'(/+4k+/m )

(g= —,'m) .

4 m —1

co= g [coshc7 —cos(/+4k' /m)]
7TPl k 0

(97)

Similar behavior has long been familiar in spherical
systems with strong gravitational binding. The closest
analogy involves a ball of uniform density po at a moment
of time symmetry. The three-metric is

ds = [1—2M (y)/r] 'dr +r d Q, ,

M (r) = , nr—po. (interior) .
The integral (92) is reducible to elementary form for ra-

tional values of g. Here we merely record the result for
integer values:

4 "-' k~g csc (rl=n =2, 3, . . . ) . (98)
MH;, urn(n —1) i, i n

Setting r =a sing, with boundary at g=go, one recog-
nizes the geometry as that of the cap 0(y pp of the
three-sphere

ds =a (dy +sin y d Q ), a = ( —3rrpo)

VII. CONFORMALLY FLAT LOOP:
NATURE OF THE SOLUTIONS

immersed in a Schwarzschild exterior solution of ap-
propriate mass. As yo increases from 0 to ~, the inertial
mass

ps„„=M/2n a ~h„,
= (2m. )r) l(rI ), (99)

which has the "conventional" value b,g/8' for small b,P,
rises at first, to a maximum of 0.0827 for g=2. 55 (i.e.,
b,/=1. 216m), then falls steadily to zero. Since we expect
Hiscock mass to be positively correlated with inertial
mass (Sec. II), we are driven to conclude that adding
more mass to the string leads, after a certain stage, to
reduction of its gravitational mass.

Numerical results derived from the preceding formulas
are summarized in Table II.

The first point to note is that the ratio of gravitational
mass to Hiscock mass remains quite close to unity for
small angular deficits b.P, but declines steadily, reaching
2/m for hP =n and falling off as (4/~)lnr)/g as
rl=(1 —b,P/2m) '~OD. At the same time the gravita-
tional mass per unit length,

M;„„,=4rra poj sin y dy
0

rises steadily to a maximum 2m a po. However, the grav-
itational mass

M =M(r =a sinyo)= —', na posin yo

peaks at go=~/2, thereafter falling to zero. The ex-
planation is, of course, that the gravitational energy that
can be mined as work in lowering additional layers of
density po onto the surface comes to exceed their rest-
mass energy once the inertial mass exceeds -po ', and
the gravitational mass begins to decrease.

Since, for yo) rr/2, the circumferential radius r is de-
creasing outwards at the surface g =go, an imbedding di-
agram for the spherical three-geometry would show a
bulbous form, with a minimal two-space, a Schwarzschild

TABLE II. Properties of circular string loop with conformally Bat three-geometry. Successive
columns list values of (i) g = (1—b P/2'); (ii) M/MH;, given by (95); (iii) gravitational mass p per unit

proper length; (iv) 6 „,given by (100) with 3 defined as the area of the maximal torus (note that this
surface does not exist for g 2, and that 5,„ is negative); (v) 5, given by (100) with 3 defined as the
area of the apparent horizon (this exists only for g )2). For g =2. 55 these areas have not been comput-
ed.

1

1.1
1.2
1.3
1.4
1.5
2.0
2.25
2.5
2.550
2.75
3.0
3.5
4.0
5.0
6.0

M /MH;,

1

0.9387
0.8864
0.8412
0.8016
0.7665
0.6366
0.5901
0.5514
0.5444
0.5185
0.4901
0.4433
0.4062
0.3505
0.3102

0
0.021 33
0.036 93
0.048 53
0.057 25
0.063 87
0.079 58
0.081 96
0.082 71
0.082 725
0.082 48
0.081 68
0.079 16
0.076 16
0.070 10
0.064 63

—106 „

0.066 30
0.249 9

?
0.509 2
0.815 4
1.504 3
2.239 0
3.726 2
5.1640

104'

0
0.5726
1.0054

?
1.1300
1.1022
0.9117
0.7181
0.4522
0.3033
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"throat, " at r =2M, and all of the matter inside the bulb,
i.e., inside a black hole.

t

Peaking of the gravitational mass is thus associated
with formation of an apparent horizon in the case of
spherical distributions. One might conjecture that such a
correlation holds quite generally, at least in a loose sense.
For the conformally Aat loop we find, indeed, that ap-
parent horizons are formed once b,P reaches m. , not far
from the mass-peaking value of 1.216m.

On a time-symmetric slice, an apparent horizon always
corresponds to a minimal surface: the area of a surface
element is stationary under all Lie displacements-
timelike, spacelike and lightlike —normal to such a two-
surface. For the string geometry (90), closed minimal
surfaces, having (necessarily, by a theorem of Gibbons ')
spherical topology, exist for all values of g~2 that we
have tested (Fig. 3). Their areas A satisfy the Gibbons-
Penrose inequality'

(100)

in accordance with a general result of Ludvigsen and
Vickers. If cosmic censorship holds, the quantity 5,
tabulated in the last column of Table II, gives an upper
limit to the fraction of the initial mass M that can be ra-
diated gravitationally as the black hole settles down to its
final Schwarzschild form: it never exceeds 0.01%.

All of this is actually trivial for the case g =2 (hP =m ):
according to (96) and (37), the metric (81) can now be ex-
pressed as

ds =
—,', (1+a/r)"(dr +r dQ ) .

Upon rescaling r ~4r, this becomes, remarkably, the
Schwarzschild metric for a mass M =

—,
' a on a slice

t =const. For htti=vr, the string loop initially sits on the
equator of the horizon r =a. For larger angular deficits,
the loop is born inside the horizon (Fig. 3).

A curiosity which may be of interest to note is that
each geometry with b,P ) n. also admits a closed maximal
surface, having toroidal topology and enclosed within the
minimal surface. Its area exceeds the minimal area by a
few percent and satisfies the sign reverse of inequality
(100) (see Table II).

VIII. CONCLUDING REMARKS

In dealing with the gravitational effects of cosmic
string 1oops, it has been customary to take a "bifocal"

z/a

2.5—

2.0

1.5

1.0

0.5

0 l I I 1 P/8
0 0.5 1.0 1.5 2.0 2.5

FIG. 3. Euclidean map of an azimuthal section of the confor-
mally fiat geometry of a loop (located at p/ =a1) with 6(()= ~4m. .
The circular arc P= ,' nreprese—nt. s what is in reality a section of
the equatorial disk g„=+min physic. al space. The physical
space contains a maximal surface (a torus) enclosed within a
minimal surface with spherical topology —the apparent hor-
izon.

view. For near-field effects (e.g. , gravitational deAection
of electromagnetic waves) one treats the string as a coni-
cal defect having zero gravitational mass. When treating
far-field effects, such as emission of gravitational waves
on the basis of covariant linearized theory, one considers
the source to be massive. The exact solutions described
in the preceding sections validate this dualistic view, and
show how it can be integrated into a coherent picture.
They confirm that the conventional assumptions of
linearized theory are a good approximation for small an-
gular deficits b,P, at the same time bringing out exotic
features, such as black-hole formation, that appear when
AP becomes comparable with unity.
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