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The evolution of a flat, spherically symmetric cosmological model, containing radiation and an
inhomogeneous scalar field, is simulated numerically to determine whether the inhomogeneity could
cause a “child” universe, connected by a wormhole to the external universe, to form. The gravita-
tional and field quantities were computed self-consistently by means of the techniques of numerical
relativity. Although we were unable to follow the process to its completion, preliminary indications
are that the “budding” phenomenon could occur under very general initial conditions, as long as the
scalar field is sufficiently inhomogeneous that the wormhole forms before the inflation is damped by

the expansion of the background spacetime.

I. INTRODUCTION

Observations of the microwave background provide
strong evidence for the large-scale homogeneity and isot-
ropy of the present Universe. Other observations indi-
cate that the dynamical value for Q, the ratio of actual to
critical energy density, is in the range 0.1 SQ <0.3. Un-
fortunately, the isotropy and homogeneity of the
Universe, and the surprising nearness of { to the magic
value of unity, are difficult to explain in the context of the
“standard model” of the evolution of the Universe
without severe constraints on the initial conditions. The
inflationary scenario! ™3 offers the promise of accounting
for these phenomena in a natural way.

The inflationary model requires that at some very early
epoch in the history of the Universe, the energy density
was dominated by the potential energy associated with a
scalar field ¢. Provided the field evolves sufficiently slow-
ly, the major contribution to the energy density for many
expansion times would be the potential V(g). In this
case the Universe would expand exponentially rather
than according to a power law. This “inflationary”
period, during which the volume of the Universe expands
by many orders of magnitude, ensures that locations on
the sky that are widely separated today were in causal
contact before the beginning of inflation, thus explaining
the observed high degree of isotropy in the microwave
background.

Unfortunately, this simple scenario actually begs the
question which we wish it to answer; although the
inflationary model is invoked to explain the isotropy and
homogeneity of the Universe, for the currently accepted
behavior of the potential, inflation is inevitable only in
spacetimes that are already homogeneous and isotropic.
In general, the requirement that V(¢) dominate the ener-
gy density is only occasionally satisfied. Random fluctua-
tions in the amplitude of the field, the contributions to
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the energy density of other components of the primordial
plasma, and the structure of spacetime itself, will usually
prevent inflation from occurring. The general case is
thus one in which a ‘“‘chaotic” spacetime evolves small
patches which inflate.*

It has been suggested’ that this process could produce
closed second-generation universes which would be con-
nected to the “mother” universe through a wormhole.
Analytic calculations of an idealized system, a spherical
region of false vacuum separated by an infinitesimally
thin domain wall from a region of true vacuum, have
been carried out by many workers.® While their results
are significant and serve to illuminate the process by
which “budding” of universes could occur,’ the process
should be studied with a more realistic structure for the
scalar field. Since analytic solutions are currently impos-
sible for general inhomogeneous cosmologies, such an in-
vestigation will almost certainly necessitate a numerical
approach. Kurki-Suonio, Centrella, Matzner, and Wil-
son® have studied numerically the behavior of an inhomo-
geneous scalar field, but they did not attempt to follow
the interface between the true and false vacua, as they
wished to determine only whether such a scalar field
would allow a global inflation to occur at all. If a “child”
universe is to be created, however, a small portion of the
Universe inflates while the rest continues to evolve as an
Einstein—de Sitter spacetime. An observer external to
the inflating region sees what appears to him to be the
formation of a black hole, which cuts off the communica-
tion between the ‘“child” universe and the external
universe. Inside the ‘“bud,” the total energy due to the
matter, excluding gravitational contributions, can greatly
exceed the energy of the wormhole. This region of space-
time-continues to evolve independently even though the
black hole rapidly evaporates; thus the wormhole
effectively creates a new universe, which by its inflation
could grow to account for our entire observable Universe.
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It is this phenomenon which we wish to study; this paper
is a report of the results of the numerical study of the
evolution of a spacetime containing a simplified but non-
trivial inhomogeneous scalar field. The gravitational
variables must be evolved along with the matter variables
for a consistent treatment, which requires the application
of the techniques of numerical relativity.

II. FORMALISM

The traditional approach to numerical relativity is the
Arnowitt-Deser-Misner’ (ADM) “3+1” formalism, in
which spacetime is broken down into spacelike hypersur-
faces, each of which is a level surface of the congruence
of timelike curves that specifies the time coordinate. The
general (ADM) metric can be written in the form

ds’= —(az—BiBi)dt2+2Bidx idt
+y,dx'dx/, 1)

where a, the lapse function, and B, the shift vector, ac-
commodate the 4 degrees of freedom due to general co-
variance.

We use one of our degrees of freedom to specify the
method by which the time-slice hypersurfaces are to be
determined. To do so, it is sufficient to fix the trace of the
extrinsic-curvature tensor, K =K/; this determines the
lapse function and hence the time slicing. For cosmolo-
gy, a natural choice is

K,9,K =functions of z only , (2)

a criterion known as constant-mean-curvature slicing.
The remaining degrees of freedom determine the gauge
conditions on the spatial coordinates. In analytic work
the condition B=0 is generally used; when taken in con-
junction with the requirement that a=1, the result is
known as geodesic slicing or Gaussian normal coordi-
nates. Unfortunately, such coordinates have proven un-
suitable for numerical work, as they tend to result in
coordinate singularities in strong-field situations.!® We
shall instead employ our gauge freedom to force the spa-
tial metric to be as simple as possible.!! In the case of
spherical symmetry, this leads to a radial coordinate
which is isotropic, and the final form for the metric is

ds’=—(a®>—p*)dt*+2Bdr dt
+ AXdr?+r2d0*+r%in20d¢?) , (3)

where B=/3" is the only nonzero component of the shift
vector.

We must now specify a stress-energy tensor for our
spacetime. We shall assume the matter in our cosmology
consists of two noninteracting substances, a relativistic
perfect fluid, which models the radiation content of the
early Universe, and a scalar field. Thus we may write

T,,=Thd+T1id )

We choose units in which G =c¢ =#=1; in these units, the
stress-energy tensor of the fluid is well known to be'?

T =phu,u,+Pg,, (5)
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where p is the rest-energy density of the fluid, u* is its
four-velocity, and 4 is the specific relativistic enthalpy,
defined to be

h=1+e+P/p . (6)

The internal energy density of the fluid is defined to be
PE, so € is the specific energy density. In the case of radi-
ation, for which p=0, € alone will have no meaning, but
it will always occur in combination with p in our equa-
tions.

If we assume the scalar field is a Higgs field, its stress-
energy tensor is given by

T894 =3,03,0—[ 13,030+ V(p) g,y » (7)

and we shall assume V(@) is of the Coleman-Weinberg'?
(CW) form

V(<p)=k(p4[ln(<p2/02)-—%]+%A04 . (8)

We must now carry out the 3+1 split of the Einstein
equations, inserting the above forms for the stress-energy
tensor, to obtain the gravitational equations. By means
of the Gauss-Codazzi equations, we obtain the constraint
equations; the gravitational evolution equations are de-
rived from the definition of the extrinsic-curvature tensor
and the gauge conditions.!*!> The results are displayed
below.

‘Before we write out our equations, it is convenient to
define

U=au®, (9a)
D=pU, (9b)
E=peU, (9c)
v'=u"/u®, (9d)
and :
K*=K!—1K , (9e)
v=412, (99

where u#=(u°u",0,0) is the four-velocity of the fluid.

One of the constraint equations involves the total ener-
gy density and hence is known as the Hamiltonian con-
straint:

L 8,(20,4)=—14°(87(D +E+PU)U—87P
-

+47[a”%d,p—B0,¢)*
+ A4 7%3,¢)]
+87V(p)++3K**— 1K)} .

(10)
Note that the quantity (J{[(3,¢p—fB0,p)/a I?
+(3,p/ A)*} +V(@)) plays the role of the energy density
of the field.

In the case of spherical symmetry, there is only one in-
dependent momentum constraint. This equation applies
only on a specific time slice, and is effectively a first-order
ordinary differential equation which can be analytically
reduced to a quadrature:
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K*= PERE

J 438, (a3, 9(8,p—B0,@)1}dr .

(11)

The equation for the shift variable is given by
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Like the momentum constraint, this is a simple quadra-
ture on a given time slice.

The next equation is that which specifies the lapse
function. It is obtained from the equation for the evolu-
tion of the independent component of the extrinsic curva-
ture tensor (K;), but we take the viewpoint that K and

B=—21r wa_K_*_dr, . (12) 9,K are predetermined, and the lapse is computed from
e them:
J
r—lza,[r’!a,(oup)]=%oup5 87(D +E +PU)U 3—% +40mP +28ma %3, — B3, @)
—417'A—2(8,¢)2—4O7TV(<p)+%K*2+%K2}+¢5(BB,K—B,K) . (13)

An evolution equation can be written for the metric
variable A; it takes the form of a “transport” equation:

3,4~ —03,(r?4%)=—aK4®. (14)
r

Now we lack only the matter equations. Since we as-
sume that the field does not couple to the fluid, the equa-
tions of motion of the two kinds of matter can be derived
independently. The fluid equations of motion are ob-
tained from

T4 =0 (15)

by means of appropriate projections with the fluid four-
velocity. !
Particle-conservation equation:

1

3,(DA*)+—3,(DA%TH)=0. (16)
¥

Energy equation:

A(EA) + 3, (EA%r?)
r

=—P

at(UA3)+iza,<UA3v’r2)] Cam
r
Momentum equation:

3,(5, 4%+ La,(5, 4%7?)
r

=—aqAd3|3,P+(D+E+PU)
X |Ud,Ina
1
+ F_U a,InA

+5,43%,8 . (18)

The fluid velocity v” and the generalized boost factor U
are calculated from the normalization condition on the
four-velocity.

The equations of motion of the field are obtained from
T in an exactly analogous manner; the calculations
have been carried out by Park,!” and the result is

[
a,(A3(p)+%a,[r2(—2B)A3<p]
N 3 1
—a—r—z—-—A @(B9,Ina+aK) (19)

and

BZ
T2

9,m=9, [ozA3r2 9,¢

A2

2
+airp (o, | B | —pr+2B- 1 By
ar a

2
+2B.3 1n4
a

]—aA3r2V’(cp) ,
(20)

where 1, the conjugate momentum of the field, is defined
by the equation

__a BArp | BA3?
a,q7~~——-—A3r2 7+29, p” @O, R

(21)

A factor of sin@ has been absorbed into the definition of
ar; this is natural for spherical symmetry, but in higher-
dimensional three-geometries, the factor of 432 would
be replaced by 4 *r%siné.

To complete the specification of the problem, we need
only determine an equation of state for the pressure P.
This pressure is due to the fluid only, and since the
“fluid” is radiation in our case, the appropriate equation
of state is

PU=1E . (22)

Boundary conditions are specified by demanding that
all variables must take the values appropriate to a
radiation-dominated Einstein—de Sitter model. In isotro-
pic coordinates, the Robertson-Walker metric takes the
form
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dsi= —dt2+ 1 z(dr2+r2d02+rlsin29d¢2) ,
1+ 1kr

(23)

from which we immediately obtain our ‘‘zeroth-order”
boundary conditions for the metric quantities. We shall
also require that, at the outer edge of the mesh,

$Yp=0, (24a)

d,¢=0, (24b)

9,¢=0, (24c¢)
and

=0 . (24d)

Dy and Ep are obtained from the usual Friedmann-
Robertson-Walker (FRW) relationships by the formulas

> (25)

where n denotes the nth time step. R (¢) and its time
derivatives are obtained from

R=— i‘is,’iR [p+pe+3P+2(3,9°—2V(p)]  (26a)

and

R 2=ST7TR2[p+p6+%(a,(p)2+ V)] . (26b)
When 9,9 and V(g) are zero, these obviously reduce to
the familiar equations for a FRW spacetime. Since these
conditions will hold in our case, and our background is
the Einstein—de Sitter solution, we obtain, with an ap-
propriate choice of the constants of integration, R =¢!/2,
The code numerically integrates Eqs. (26) to find the
value of the expansion parameter on a given time slice;
checking its results against the known solution confirms
that this computation is extremely accurate.

III. NUMERICAL CONSIDERATIONS

A. The code

The code used to solve Eqgs. (10)—(14) and (16)-(20) is
based on a general-purpose, spherically symmetric
cosmology code.!® To adapt the code to the inflationary
cosmologies, all that was necessary was the insertion of
the scalar-field terms in Eqgs. (10)—(13), and the addition
of the subroutines needed to evolve the scalar field and its
conjugate momentum. Briefly, the code is an explicit,
Eulerian code which solves the Einstein equations by
means of finite-differencing algorithms; the differencing is
carefully constructed to reduce or eliminate the problems
due to the coordinate singularities that occur in curvilin-
ear coordinates.!” Equations (11) and (12) are simple
quadratures and are solved by the trapezoid method.
The hydrodynamic equations (16)—(18) are solved by
means of a modern, highly accurate transport algo-
rithm.?® The scalar-field evolution equations are solved
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by methods similar to those used for the other equations;
since Eq. (19) is in the form of a transport equation, it
was treated by the same techniques employed for the hy-
drodynamical transport. The conjugate-momentum
equation (20) was solved by a straightforward differencing
technique. For both the scalar-field equation and the
conjugate-momentum equation, it was found that stabili-
ty was greatly enhanced by the use of a multistep
method, in which the final solution on a time step is com-
puted from a weighted sum of the new (nth) time level
and the previous (n-1st) solution; the particular multistep
technique employed is usually known as the second-order
Adams-Bashforth algorithm.

Numerical cosmology is a young field, and many fun-
damental questions are not yet resolved; it is not even
known what is the most appropriate choice for the time-
slicing criterion. The behavior of the present code is in-
dicative of marginal stability, but the cause of this prob-
lem is not well understood. In the case of the FRW solu-
tions, precise cancellations occur in the sources of Egs.
(10) and (13); it is possible that such cancellations might
suppress spurious exponential solutions which could lurk
in this time slicing. For example, if we ignore the spatial
term in Eq. (14), we note that the equation resembles that
for a growing exponential (recall that K <O in this slic-
ing) regardless of the energy content of the Universe; only
the specific time dependence of K prevents such a solu-
tion. In any event, we have found that we have been
forced to use extremely small spatial and time steps, mak-
ing the code quite expensive to run. When the code’s
limitations are respected, however, it is capable of pro-
ducing very accurate results, as our code tests indicate.

Because of the numerical problems, a thorough ex-
ploration of parameter space was not possible. We select-
ed values deemed reasonable and watched the evolution
of the spacetime, but we were unable to carry out enough
runs to classify the results based on parameter values. It
is not clear that such a classification would be particular-
ly meaningful, at any rate. As we shall explain later, the
range of parameters thought to be “realistic” for the po-
tential was beyond our capabilities; moreover, the form
we chose for our initial scalar field was arbitrary and was
meant only to indicate the behavior of an inhomogeneous
field with a reasonably smooth amplitude function.

B. Code tests

The gravitational and hydrodynamical aspects of the
code have already been tested.?! For our current pur-
poses, we have performed several tests of the scalar-field
aspects of the code.

1. The homogeneous case

The obvious homogeneous test cases are the known
solutions utilizing the Coleman-Weinberg potential for
the scalar field. Two exact solutions will be considered:
that for which ¢=o0 everywhere, and that for which
@=0 identically. In both cases, the fluid content of the
spacetime is pure radiation (D=0, PU=1E). For the
homogeneous tests we shall start from initial conditions
to=1, Eqg=3/32m, and Ry=1.
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First we treat the case ¢=o0. This solution does not
inflate. This test also confirms the ability of the code to
maintain the background FRW values of the gravitation-
al and fluid quantities, since they should be unaffected by
the presence of the scalar field. Input parameters were
chosen to be o=0.1, A=0.01, V=0, Ar=0.1, and
At=0.02Ar.

The results of this test were excellent; after 50 000 time
steps, the time had advanced from t=1 to t=101, an in-
crease of more than a factor of 100, yet the error in the ¢
field was no more than a few parts in 10 000; specifically,
it was correct to within 0.02%. The radiation energy
density was accurate to 0.5%, while the metric variable
was correct to within 3.5%, and the lapse to 0.02%. In
this case, we were able to run the code with relatively
large step sizes, with 100 zones covering the spatial grid.
In light of the marginal stability of the code, these step
sizes are quite generous; they are made possible by the
fact that A does not change rapidly in either space or
time.

Similar results were obtained for the case ¢=0, al-
though with a much more severely restricted spatial step
size. This case inflates rapidly; it can be shown that the
exact solution for the expansion factor is given by

172 1/2
E R} 327V,
3

2:

sinh , 27)

0

where E,, R, and V|, are, respectively, the initial values
of the energy density, scale factor, and potential. This
solution resembles that for an ‘ordinary” k=—1,
radiation-dominated, FRW cosmology, which is not scale
free. It is simplest, however, to set initial conditions for
to <<1, in which case we can set ¢, arbitrarily and allow
R, and E to take their Einstein—de Sitter values of, re-
spectively, ¢’ and 3/327R¢. Unfortunately, under
these circumstances a very small initial time results in a
large difference in scale between the relatively small ex-
pansion parameter and the very large initial energy densi-
ty; the code then has great difficulty in picking out the
solution to the constraints, especially in an inflationary
case. Nevertheless, the error resulting from the use of
approximate initial values should not be serious even for
larger ¢, provided it is not roo large, so we used the same
values for these initial parameters as for the previous
homogeneous test case. The other parameters needed
were given initial conditions as follows: o=1, A=0.01,
Vo=A0*=0.005, Ar=0.01, and At =0.1Ar.
We found at =31, after 30000 time steps, that

R,.m=626.0 . (28a)
This should be compared to the analytic value
R,,=629.3 . (28b)

The value of A4 varied across the grid by approximately
0.06% (it should be strictly constant), while E is homo-
geneous to 0.05%. The value of E is correct to 0.2%, and
the lapse is accurate to 0.03%. The shift and the
extrinsic-curvature variable K*, both of which should

HOLCOMB, PARK, AND VISHNIAC 39

vanish identically in any FRW spacetime, are approxi-
mately 10~ 13 or smaller in magnitude, well below the lev-
el of the noise.

2. The inhomogeneous case

An inhomogeneous test solution can be obtained for
the scalar field, if some simplifying assumptions are
made. If we assume a free scalar field (¥ =0), and, fur-
ther, assume that the scalar field does not act on the grav-
itational field (but the gravitational field does influence
the scalar field), and then take the gravitational field to be
given by a pure k =0, FRW, radiation solution, then we
may obtain an analytic solution to Egs. (19) and (20).
This solution is, with suitable initial and boundary condi-
tions,

@(r,t)=jo(2(¢ /t5)V ) jo(Ror /tg) (29)

and

m(r,t)=1R3(t/t5)"r sin(Ror /1)

X {cos[2(t /tg) 2 ]—jo(2(t /t)VH)} ,  (30)

where j, is the spherical Bessel function of order zero.
Note that we solve for 7 /72 rather than for 7 itself; the
latter never appears explicitly, and evolving 7 /72 helps to
minimize problems at the origin.

For our run, the initial conditions were set up with
t,=100 and R,=10, and the evolution was carried out
for 36 000 cycles, to t=7300. In this case, Ar =2 and we
used 500 zones. The results are displayed in Fig. 1. Fig-
ure 1(a) is a plot of the scalar field, while Fig. 1(b) shows
the conjugate momentum 7/r2. Agreement is excellent
for the scalar field itself; on the scale of the plot, the ana-
lytic and numerical curves are indistinguishable. The
ability of the code to follow the field’s oscillations so well
for so many time steps is particularly striking. The con-
jugate momentum shows a much larger error. Obviously,
the error in the conjugate momentum is largest near the
origin. We have applied all the regularization techniques
employed in other parts of the code, as well as absorbed a
factor of 1/r? into the definition of ; these techniques
drastically reduced the coordinate error, but did not
eliminate it. Further work is necessary to find the ap-
propriate regularization technique(s) for this equation.
Fortunately, this error propagates into the scalar field
only very slowly, and since the other variables (in partic-
ular, the gravitational variables) see only ¢, they should
be relatively unaffected by this problem.

It is difficult to cite a relative error in this case because
of the tendency of a numerically evolved wave to develop
a phase error with respect to the analytic solution. A
zone-by-zone comparison is thus misleading and tends to
overestimate the error in the amplitude. However, this
type of error is small near the origin; there the relative er-
ror in @ is less than 2.5%, whereas the relative error in 7
is approximately 18%. It is obvious from the plots in
Fig. 1 that these figures represent upper bounds for the
relative error on this time step.

It should be pointed out in connection with these test
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cases that the critical parameters in determining stability
for a code of this nature are not the absolute values of Ar
and At, but rather the ratios At/Ar and Ar/r,,. For
the test cases, we have found that we must restrict these
ratios roughly as

At

— $0.02 (31a)
Ar
and
Ar
<0.01 . (31b)
7 max
0.01600
O.
a)
1
]
L —0.01600
¥
<
.l —0.03200
<
O
n
—0.04800
—0.06400 L | 1 L 1 L0 1
O. 200. 400. 600. 800. 1000.
RADIAL COORDINATE
3. T T T 1 T T T
b
. i (b) |
I}
= 1. —
4
wl -
>
O —1. H
>
E H
-3 it —
O
5 4
3
4 —5. i —
(0]
O - 4
—7. 1 | 1 | 1 | { | 1

0. 200. 400. 600. 800. 1000.
RADIAL COORDINATE

FIG. 1. Inhomogeneous-field test case. The background is
assumed to be a pure Einstein—de Sitter spacetime, which is
unaffected by the presence of the scalar field, although the field
is influenced by the background. For this run, we used 500
zones, with Ar=2. We started from an initial time = 100; the
results are displayed at t=7300, after 36 000 cycles. The solid
curve is the analytic solution, given by Egs. (29) and (30), while
the dashed curve is the numerical result. (a) The scalar field.
The relative error is less than 2.5%; phase error is virtually
nonexistent despite the large number of wavelengths contained
within the grid. (b) The corresponding conjugate momentum.
An error near the origin leads to a large (approximately 18%)
relative error there, but farther out, the results are excellent.

For our circumstances, the appropriate speed for the
Courant-Friedrichs-Lewy (CFL) criterion is the speed of
light; since we take that to be unity, the CFL condition
alone requires that Az < Ar. Clearly, (31a) is far more res-
trictive than this. The very small time step, as well as the
small spatial step size, was necessary in order to keep the
gravitational solvers stable; the scalar field alone could be
evolved with a much larger time step. As long as these
limitations are respected, however, we can scale our mesh
to whatever values are appropriate for our problem.

IV. RESULTS

Our purpose was to determine whether an inhomo-
geneous scalar field, the form of which met certain cri-
teria but was otherwise arbitrary, would cause the space-
time to evolve to form a “child” universe. We took as
our ansatz for the field that initially

(32a)
(32b)

@o=0{1—coexp[ —(r/c;)*1} ,
7o=0,9=0,

where ¢, and ¢, are constants. This form has the proper-
ty that, for reasonable values of the parameters, it goes to
a constant at the boundary sufficiently rapidly to satisfy
the demands of the code. It approaches the false vacuum
near the origin and the true vacuum near the outer
boundary, and it makes a smooth transition between the
two; since we have no knowledge of the actual shape the
scalar field might take in the early Universe, this form is
as reasonable as any.

We must also make a choice for the initial energy den-
sity of the radiation. For a spacetime containing a scalar
field on a strictly Einstein—de Sitter background, the to-
tal energy density, including that due to the scalar field, is

3
E= o +{1[(3,9)*+(3,@/R ]+ V(p)} , (33)
where
E =—3 (34)
d 32

is the energy density due to the radiation energy density
alone. Because of the expense of running the code, how-
ever, we must choose a spacetime that is initially
sufficiently inhomogeneous that we can hope to see the
effect in a feasible running time. For the cases attempted,
initializing the total energy density based on (32) and (33)
resulted in the failure of the Hamiltonian-constraint
solver to converge. Some of the initial inhomogeneity
must be carried by the radiation energy density. It was
found that when we set the radiation energy density to be

_ 3
w302

E —1Q,9)—V(p), (35)

we were able to obtain successful runs. The form of (35)
was chosen in order to “flatten” the total initial energy
density so as to ensure convergence of the Hamiltonian
constraint, while still allowing inhomogeneous initial
conditions. This expression also approaches the
Einstein—de Sitter solution at the outer boundary, as it
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must to meet the boundary-condition requirements of the
code.

The parameters of the CW potential were set to the fol-
lowing values:

o=0.1,
A=0.01.

(36a)
(36b)

These values are not entirely consistent with current be-
liefs about the magnitude of the potential in the early
Universe; arguments based on the theory of galaxy for-
mation indicate that the limits on these parameters
should be gy ~1, Ay=~10"", and to4~10%. Unfor-
tunately, our code was unable to perform runs with these
values. For such input parameters, the potential is

Vie~5X10""% near the origin, while A4=10% This

56. T T T T T T T

(@) |

48.
40.

32.

METRIC VARIABLE

24.

16.

O. 200. 400. 600.
RADIAL COORDINATE

800. 1000.

20. LIS N B IR B )

—20. | —

—40. -

—60. —

CONJUGATE MOMENTUM

—80. 1 1 1 | 1 1 L I 1
O. 200. 400. 600. 800. 1000.

RADIAL COORDINATE

difference in scale was simply too great for the code to
handle; the Hamiltonian constraint solver was unable to
converge to the correct initial data. This is disappointing
but not too surprising; the plane-symmetric code used by
Kurki-Suonio, Centrella, Matzner, and Wilson?? was also
unable to deal with such values of the parameters.?

In all our “production” runs, we used

(37a)
(37b)
(37¢)

¥ max = 1000 (1000 zones) ,
t,=100,
R,=10,

At=0.02Ar . (37d)
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FIG. 2. The results of a run which did not form a ‘“child” universe. In this case we used 1000 zones, with Ar=1. Initially
@=0{1—0.9exp[(r/500)*]}. Results are shown for t=500. (a) The metric variable. The error near the origin is beginning to prop-
agate into this variable, but its effect is still quite small. (b) The scalar field. The spike near the origin is a numerical error, but may
result from domain-wall formation, which our code cannot resolve. The small error evident near the outer boundary is probably due
to the imposition of “zeroth-order” boundary conditions at the edge of a finite mesh. (c) The conjugate momentum. (d) The proper

radial distance, defined such that the distance along the curve is the proper arc length, versus the Schwarzschild radius Ar

isotropic *
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For all cases we chose for the field parameters [cf. Eq.
(32a)]

¢, =500, (38)

while ¢ varied.

In all cases studied, we found that the scalar field tend-
ed to quickly develop a rapid change, almost a discon-
tinuity, near the origin, as shown in Figs. 2(b) and 3(b).
While the “spike” itself is clearly a numerical artifact, we
consider it likely that it may have a physical instigator,
such as the formation of a domain wall between the re-
gion of false vacuum and true vacuum; this behavior
would be consistent with that observed by Kurki-Suonio,
Centrella, Matzner, and Wilson.?* The possibility merits
investigation; unfortunately, the present code is inade-
quate for such a task. In order for the details of the for-
mation of a wall to be clarified, a new code would have to
be developed whose purpose was specifically the study of
this process; it would probably be necessary to develop a
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technique analogous to the artificial viscosity of classical
numerical hydrodynamics, and/or an adaptive-mesh ap-
proach which could rezone the mesh in regions of large
gradients, for the equations which evolve the scalar field
and the conjugate momentum.

We found that the global behavior of the spacetime
was different for different values of ¢,. For c¢,=0.9, we
were unable to see any “pinching” behavior. The results
of this run are displayed in Fig. 2 at t=500, after 20 000
cycles. It is obvious that we are at or beyond the limit of
our resolution for the scalar field, yet, as Fig. 2(d) shows,
no throat has formed; it is unclear whether the wormhole
would have formed had we been able to extend the run
further, but it appears that inflation is faltering by the
time the run was terminated. Similar results were ob-
tained for those cases studied with ¢, <0.9.

The situation was quite different for ¢, =0.95, the re-
sults of which are displayed in Fig. 3. The plots show the
evolution at 12000 cycles, corresponding to t=2340; the
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FIG. 3. A run in which a throat did form. In this case, the initial scalar field was given by ¢=0{1—0.95 exp[(r/500)*]}. Once
again, 1000 zones were used. These plots represent the results at t=340. (a) The error near the origin is noticeable in this case also,
but is still small. (b) Like Fig. 2(b). (c) Like Fig. 2(c). (d) Like Fig. 2(d), but here we see the initial stage of the formation of the

“child” universe.
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run continued well beyond this, but by this point we are
losing the ability to resolve the scalar field. (It should be
noted, however, that there are 100 zones between the ori-
gin and the first minor tick mark, so we still have some
resolution of the scalar field quantities there.) Already a
throat appears to be well on its way in forming. Even
with good resolution of ¢, we would probably not be able
to follow the development of the wormhole much farther
than this, however, because of a problem with patching;
as York has pointed out,?® an inconsistency will develop
in the slicing before the throat is fully formed. This
occurs because the appropriate slicing for the external
universe is the constant-mean-curvature criterion, but
near the throat we should use maximal (K =0) slicing.
This conjecture deserves further investigation if more de-
tailed studies of the behavior of an inhomogeneous scalar
field are to be carried out.

V. CONCLUSIONS

We have computed the first stages of the formation of a
“child” wuniverse in a spherically symmetric, k=0
cosmology which contains a nonidealized inhomogeneous
scalar field, thus demonstrating that such a phenomenon
might occur under quite general conditions in an
inflationary universe. It should be pointed out that no
particular ““fine-tuning” of the parameters was required
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to obtain the effect; the only restrictions placed on their
values were those resulting from numerical considera-
tions. The problem warrants more realistic simulations,
which would require the development of a new code. The
current code is not sufficiently robust to follow the evolu-
tion for long periods, nor is it 'able to follow the details of
the interface between the true vacuum and the false vacu-
um. Moreover, there are theoretical problems associated
not just with the scalar-field aspects of the code, such as
the patching problem discussed above, but also with nu-
merical cosmology in general, which must be addressed
before substantial further progress can be made. When
these issues are resolved, however, the study of the evolu-
tion of inhomogeneous cosmologies could add much to
our understanding of the early Universe.
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