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Self-consistent nonperturbative el'ect of string fragmentation on superstring mass spectra
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Using a simple model for soft self-consistent nonperturbative string fragmentation-
recombination loops, we find that, in an open-string theory, ground-state particles necessary for
the standard model either become tachyons or acquire large (Planck-scale) masses, making them

unacceptable for sub-Planck-scale phenomenology. No comparable di5culties are evident for
closed-string theories.

Because of its relative absence of mathematical patho-
logies and certain features of its ground-state mass spec-
trum, the superstring' is widely regarded as the most
promising approach to the unification of all the known
particle interactions. However, uniqueness continues to
be elusive, with several competing open- and closed-
string candidate schemes. Moreover, higher-order effects,
which involve string fragmentation and recombination,
are invariably treated perturbatively, even though super-
string theories are believed by many to be intrinsically
strongly interacting in nature.

By considering a simple continuum string frag-
mentation-recombination scheme which is nonperturba-
tive from the beginning, we find that, far from being a
negative feature, the strongly interacting nature of string
theories may in fact provide a way of helping to select the
correct theory. In particular, we find that energy minimi-
zation may in some cases necessarily lead to broken-
symmetry nonzero ground-state masses at the Planck
scale, making the corresponding theory unacceptable as a
candidate for the theory underlying sub-Planck-scale phe-
nomenology. So far we have only been able to exclude
open-string theories in our scheme, but, eventually, more
detailed treatments of this type may perhaps be capable of
excluding not only particular closed-string theories, but
particular symmetry-breaking and compactification sce-
narios as well.

Our starting point, or input, will be the (unfragmented)
superstring itself, which we assume to continue to give a
good description (by itself) of "hard" (short-distance)
phenomena. But, as our string is stretched to bigger dis-
tances, it becomes energetically more favorable for it to
fragment. With further stretching we get further frag-
mentation and end up with the "jet" production graphs of
Figs. 1(a) and 1(b) for open-string theories. Fragmenta-
tion implies recombination, and so, if planar graphs dom-
inate, we must have the fragmentation-recombination
string-end loop graphs of Fig. 1(c). These are equivalent
to the nonperturbative generalized infinite-ladder sum T
of Fig. 2 for a given particle (or string) process 12~ 34 in
the t channel, where t —= (p i +p 2) = (energy); p; is the
ingoing momentum of i, s=(p2+p4), u=(pi +p4),
T T(s, t ) for appropriate fixed (or averaged-over) values
of all the other independent (angular) variables (if there
are any), and the final planar-invariant amplitude is a
linear combination of T(s, t), T'(t, u), and T"(u, s). In

Figs. 2(b), 2(c), . . . , the upper and lower "ladder" ex-
changes should themselves have the form of the entire
sum of Fig. 2.

In an open-string theory, it can be argued that the pla-
nar graphs should always dominate over nonplanar ones,
even in the presence of fermions. For example, the prop-
agation of string ends for the planar one-loop string-
scattering graph of Fig. 3(a) can have N possible internal
string-end loops, whereas the corresponding nonplanar
Fig. 3(b) is constrained to only one possibility and there-
fore has a relative 1/N suppression factor; N is related to
the (large) number of string internal degrees of freedom
and is the analogue of the Ns, „„ofmesonic hadron phys-
ics. More generally, we have a generalized 1/N expan-
sion. Nonplanar (crossed-line) graphs may, of course, be
needed to cancel anomalies and restore unitarity when we
have zero-mass ground states. ' Planar dominance may
then be less obvious. We shall find, however, that energy-
minimization leads to situations with broken-symmetry
nonzero ground-state masses, for which this difficulty
should not arise.

The exchanges (a, . . .) in Fig. 2(a) have a (t-channel
short-range) high-s( & s, ) "hard" input unfragmented-
string contribution 0 to the "absorptive part"

A [=iT(s —ie, t) iT(s+ie, t—)l
of Fig. 2, and a (t-channel long-range) low-s( & s, ) "soft"
contribution L, for which string fragmentation recombina-
tion is taken into account self-consistently; similarly for
(b, . . .), (b', . . .), . . .. A 8(s —so) factor may be needed
for Fig. 2(b) to minimize double counting between Fig.
2(b) and L, where 8(x) =1 for x & 0, and 8=0 for x & 0;
similarly for Figs. 2(c), . . . . For inoderately high s, we
can make the asymptotic approximation

)
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FIG. 1. (a) The propagation of string ends when open strings
fragment; (b) the corresponding multiparticle (or multistring)
production graph 24 anything in the s channel; and (c) the
fragmentation-recombination string-end loop graphs implied by
(a). Our string ends are the analogues of the quarks at the ends
of gluon Aux tubes in hadron physics.
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specific scheme. Now if we set H 0 for the moment, so
A A, a aL, and Jb) Jbp bl. pr2p34 in Fig. 2, we
can relate Eq. (3) or Fig. 2(a) to Fig. 2(d) through the
"soft"-dynamics finite-energy sum rule (FESR)

fO

ds [r(t)b(s —s, ) bL, (—t) v" ' 8(v) e(s s)]—v"
FIG. 2. Generalized infinite ladder sum for 12 34 in the t

channel generating an "output" Regge trajectory a(t). =0, (4)

v=s+ t —gtn;2 2, (2)

H(s, t) =bp(t) v"" 8(s —s, ),
where ap(t) is the highest unfragmented-string Regge tra-
jectory, bp PI2P34 is the corresponding factorizable cou-
pling function, and v is the familiar crossing-symmetric
variable (s —u)/2, or

where n =0 for the lowest-moment planar-graph FESR,
which is based on s-plane T analyticity and expresses the
average "duality" or equivalence between low-s states
such as a and the high-s factorizable Regge bL v" extra-
polated to low s. We combine (similar) duality (between
b, . . . ; b', . . . ;. . . and factorizable Regge behavior) with
the usual approximate contractability of the b, . . . ; b',
. . . ;. . . exchanges to kinematically factorizable "con-
tact" interactions for (even moderately) high s in general
graph theory (see pp. 132-136 of Ref. 10 with s~t).
This leads to the factorizable form

where the m; and S; are the masses and spins of the exter-
nal particles i =1,2, 3,4 of Fig. 2, ordered so SI+S2
~S3+S4. If we make a single-state s=s, (=m, ) &s,
narrow-peak approximation,

AJ =LJ+L kLi" +LJ kLi'"kL '

+LJkL~'"kLq"'kL~" + . (5)

L(s, t) =r(t)S(s —s, ) . (3)
for the Mellin-transform "partial-wave" projection

:DC:)C: aC,:
t CI) (&)

FIG. 3. The propagation of string ends for an (a) planar and
(b) nonplanar one-loop string-scattering graph.

For a given set of internal quantum numbers, a t-
channel partial-wave (or Mellin-transform) j projection
of Fig. 2 gives at least two j-plane Regge poles: one at
j ap in the vicinity of the "input" j=ap of Eq. (1), and
one at j a near the j aL, pole that would arise if we set
H=O for (a, . . .),(b, . . .), . . . in Fig. .2. If ap~ aL, level
repulsion leads to j poles at a(& at. ) and ap(& ap); ap
gives a tachyon ground state, since the input ap gives a
zero-mass ground state in a superstring theory. In the
event that the corresponding ap residue vanishes, however,
the ground state would then arise from an a & ap j pole,
and therefore necessarily has a Planck-scale mass, making
it inconsistent with the phenomenological sub-Planck-
scale mass spectrum. In either case we would have to re-
ject such a theory.

On the other hand, with ap & aL we again have a tach-
yon, arising this time from a(& ap) itself. If its residue
vanishes the ground state would then arise from ap. In
simple models, where a and ap are the only poles, this
state would have a small positive mass. Since ap is not the
highest trajectory, however, this mass could vanish in a
more accurate model, particularly if lower-lying Regge
"daughter" trajectories and deep string symmetry proper-
ties are taken into account. Without a more detailed
treatment, there would thus be no reason to reject this
kind of theory.

To see whether we have ap~ aI. or ap & aL, , we need a

A~(t)-„, dsAL(s, t)v ' (6)

of Fig. 2(a), 2(b), . . . in our H~ 0 limit (see p. 151-157
of Ref. 10). Since L~LJ" =LJ LJ

', Eq. (5) can be summed
to give

Ap =L~/(1 —AJ/LJ ), (7)

where A~(=LJ kLJ") is given by Fig. 2(b).
When planar graphs dominate, the usual double-Regge

exchange "Amati-Fubini-Stanghellini" (AFS) singulari-
ties arising from the Regge behavior of the "ladder" ex-
changes in Fig. 2(b) are well known to be absent on the
physical sheet (see pp. 163-164 of Ref. 10 and p. 102 of
Ref. 11). Figure 2(b) then falls off rapidly for large s and
A(s, t) is, therefore, peaked in s. Nonplanar effects would
give A(s, t ) a weak 1/N-suppressed high-s tail.

If AJ =Lt, Eq. (7) will give a j-plane output Regge pole
at j aL(t) with residue bl, (t), which corresponds to
AL(s, t) =bLv" through Eq. (6). If we also use Eq. (4)
we can then eliminate all couplings 3'.nd obtain

aL+ 1 —Sl —S2

=lnyI+ yI (k —
aL,

——', ), (8)
aL +1—S~ —S2 gp

where y =v/v„y =v/v„y; =v;/v„and v, v; are given by
Eq. (2) at s=s, s;. We have expanded y ~ ' about the
s =sr A-peak position in AJ/L~ =fdyG(y)y ~ and
dropped higher (n & 2) finite-width A-peak moments
g„=fdyy G(y)(y —y&)", with A, such that gr =0.
Since g2/gp is itself then found to have only a small effect
on aL, even with a fairly large A width, ' this should be a
reasonable approximation.

Now Figs. 2(a), 2(b), 2(c), . . . , and hence the terms in
Eq. (5), correspond to an increasing average number of
loops in the s channel (where Ms=energy). This in turn
is related to an increasing production multiplicity M in
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the sense that the loop graphs of Figs. 1(c) and 2 were im-
plied by the production graphs of Figs. 1(a) and 1(b), as
we have seen. But the inverse of the Mellin transform of
Eq. (5) gives peaks at v= v„(v~/v, )v„(v&/v, ) v„.. . ,
since L, A are peaked at v= v„v~. ' ' If we, therefore,
require s& (or v&) to take on the lowest value capable of
consistently giving a solution for aL from Eq. (8), we then
in eA'ect maximize the breaking of our string, since we
maximize the average M in any given energy band in the s
channel. Since the energy of an unbroken string rises
quite rapidly with length and it is energetically more
favorable for it to fragment, such maximal breaking cor-
responds to a minimization of the average energy in the s
channel. We then obtain

aL, =Si+S2—1+ (9)
lny ey & (lny)

with y ~
=y'+ 0( I x I ) and I x I (and, therefore, s & ) as

low as possible consistent with other Fig. 2 processes.
This result continues to hold even if we add to L (s, t ) an
s & s(& s, ) contribution bt, v 8(s —s)8(so —s), which
approximates the higher a, . . . states of Fig. 2(a) in the
average-"duality" sense of Eq. (4); but then y &

-yoy' '+«Ix I).
If we now include a factorizable short-range Eq. (1)-

type HWO contribution to (a, . . .), (b, . . .), . . . in Fig. 2,
we must modify Eq. (5) by replacing L~ L+H, L'+H',
etc. If we then sum the resulting series, we must modify
Eq. (7) by replacing 1~LJ"/(LJ" +HJ"). We then have
aj =a Regge j pole when A-L AH'"/L"'. S—ince the
original H-0 Eq. (7) gave a j=aL, pole when A =L, we
obtain, to first order in 8,

a =aL+ bL,H',"/L,',"L...
J

(10)

where Eq. (1) can be related to the lowest s-channel ao-
spectrum state through an FESR resembling Eq. (4).

Our 12 34 results can be generalized in the usual
way to "Reggeized processes" a&a2 a3a4 in Fig. 2, with
S;=a;(m; ) for i =1,2, 3,4 and with mt taking on positive
or negative values.

If x 0, Eqs. (9) and (10) give an a(t) with spurious
branch points at v, =0, s, —s, s, —s ~, etc. , which arise be-
cause our approx'imations break down in the regions
where they occur. ' Away from these regions, however,
our a(t) can be well approximated by the large- I v, I form

a(t) =S)+S2——,
' +2a'(v, +x()

with x~ =0, where we have dropped a p~ v, '+p2v,
+'. correction. Now the same a(t) arises from an
infinite set of "processes" aia2 a3a4, with a continuum
of m; values. Then the linear-a(t) Eq. (11) continues to
apply even in t regions where the original Eqs. (9) and
(10) fail, since it is always possible to find another process
(with another PmP value) for which Eqs. (9)-(11) are
valid in these t regions, and since there is also an overlap t
region within which the linear a(t) given by Eq. (11) is
valid for both processes and the coefficients of (11)can be
made exactly consistent with each other. ' We conclude
that we can always use Eq. (11) for any t. For xaO pro-
cesses, we can get the same a with x =x

~ v, '

+x2v, + . and x~&Oin Eq. (11).
If we now simultaneously minimize Ix~ I in Eq. (11)

for all possible leading-a; processes a~a2 a3a4, we are
led to a universal a', since any changes in m& or m2 are
exactly compensated for by changes in S~ or S2. Without
a universal a', indefinitely large changes in m &

or m2 lead
to indefinitely large changes in I xi I, which would there-
fore not be minimal, as it has to be for I x I to be as low as
possible.

Typically, an open-superstring-theory spectrum would
have ground-state fermions (f~,f3) and bosons (bo, b~, b2)
with spins (2, —', ) and (0,1,2), respectively, with the last
arising in the usual way from the nonplanar closed-string
sector of the theory and, therefore, not participating in the
purely planar equations we have been considering (see pp.
146, 188-189, 215-218 of Ref. 2). We now apply Eq.
(11)to

b)b' bob", b(b' b(b", bob' bob" (12)

for a given r, (lowest-mass) internal a, external bosonic b',
b", and output a =ab in Fig. 2; b," is either a ground-state
b; or a given rth Regge "recurrence" (or orbital excita-
tion) of b; on the same a, where r can be either positive or
negative if we consider a~a2 a3a4 processes. For r~0 it
is always possible to have the same internal a in each of
the processes in Eq. (12). We then find that there is al-
ways some r ro for which the maximum I x ~ I for Eq.
(12) can attain its lowest possible value, and that we must
then have

mb,
—mb, =1/2a .

Any deviation from Eq. (13) will also increase the max-
imum Ix~ I, either for any given r(&ro) for which this
x~ &0, or for any r(&ro) for which this x~ &0, or for
both. (Iff3 were to arise in the planar open-string sector,
we would also have mj, —mj, =1/2a' from fb~ fb; our
final conclusions are unchanged. )

Now a complete self-consistent dynamical calculation
based on Fig. 2 is always possible with t ~ 0 and m;2 ~ 0;
the resulting amplitude can always be analytically contin-
ued to t & 0 and m; & 0 after completing such a calcula-
tion. Therefore, we will make the energy-minimization
requirement that, for each (a, a-output) combination, the
lowest I x~ I be as low as possible for the a~a2 a3a4 pro-
cesses with m3+m4 ~0. We find that this is attained
with positive nonzero mj„mb, (=0), and mb, (=1/2a'),
so that a(0) ~ ao(0) for ag, and ab, , a(0) ~ ao(0) would
require much larger Ix& I. The small I/¹uppressed
nonplanar high-s A(s, t) tails do not change these con-
clusions. We conclude that open-string theories must be
rejected.

In the case of closed-string theories, nonplanar graphs
dominate and Fig. 2 must be extended to take crossed-line
exchanges into account. We are again led to Eqs.
(1)—(7), but this time with modified symmetrized ampli-
tudes T and "signatures" n =0 or n = 1 in Eq. (4) depend-
ing on that symmetry. Since the double-Regge-exchange
AFS singularity is now on the physical sheet, a peak ap-
proximation is no longer valid for Fig. 2(b) (see pp.
164-168 of Ref. 10 and p. 104 of Ref. 11). We will there-
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G(y) =By"'&(y ytt)— (i4)

in At/L~-fdyGy J '. Herej =a«may be either the
leading (rightmost) AFS j-plane singularity, so att= a&Fs, or an average effective singularity with
art=aAFs —

q and q&0. Instead of Eq. (8), we now
have'

aL+1+n —Sl —S2

aL+1+n —5~ —52

Vg=ln y +
~0 QL Q~~

(IS)

where we must have sit ~ so or vtt ~ vo if we are to avoid
any L —A double counting. Equation (10) then again
gives a small (a —

aL, ).
If we now require s~ to take on the lowest value con-

sistent with sg ~ so and with other processes, we again

fore, instead, approximate it by an average effective
double-Regge behavior ec v"', which we assume to persist
down to an effective threshold at s =sg, ' so that we now
have

maximize the breaking of the string and so minimize the
energy in the s channel.

If there are any processes for which the leading AFS
singularity dominates Fig. 2(b), att=ap, Fs and Eq. (15)
gives an approximately linear highest aL trajectory at, (t)
when gm; is such that we can attain stt so. We then
have att(t) =2ap, (0) —p+ ta/, /2, where p depends on the
dimensionality of our space; p 1 if D 4.

As in the planar case, we require that the lowest
sit( so), which plays the role that s& (or I x~ ~

) played
earlier, is attained with I; ~ 0. We then And that, if we
are to have a & ao, as required for an acceptable theory,
we must have p+q ~ 2. But, in the absence of a more de-
tailed calculation, there is nothing to exclude any q ~ 0.
We conclude that we cannot exclude any closed-string
theory at this preliminary stage.
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