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Glenn Decker and Jiunn-Ming Wang
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York l1973

(Received 15 December 1986; revised manuscript received 2 September 1987)

The problem of cumulative beam break-up for a coasting beam in a linac with periodically placed
acceleration cavities and transverse focusing units is treated using a general technique. The equa-

tions of motion for a series of equally spaced pointlike bunches are reduced to a single Hill s-type

differential equation, from which a transfer matrix for a single period is derived. The technique is

applied to the special case of a single resonance impedance, yielding a result which is in agreement

with that derived elsewhere. The case of two nearly degenerate resonances is investigated using

saddle-point integration, in the limit of strong focusing.

I. INTRODUCTION

Gluckstern, Cooper, and Channell' (GCC) considered
the following model for cumulative transverse beam
break-up in a linac.

(i) The linac consists of a series of external betatron-
focusing units and cavities placed periodically from z =0
to 0D with period L.

(ii) The beam bunches are pointlike.
(iii) The cavities are the only source of the defiective

beam impedance.
(iv) The cavities are of negligible length. This thin-lens

approximation is valid if the change in the transverse po-
sition of the particle in passing through a cavity is negli-
gible.

Using an elegant technique, GCC solved the model for
the special case where the defiective beam impedance
consists of only one normal mode.

In this paper we introduce a new method of treating a
periodic linac. We shall apply the method specifically to
the above model and solve it for the general case of an ar-
bitrary cavity impedance. Here, we treat only the case
where the beam is not accelerated; the case with accelera-
tion will be discussed elsewhere.

The paper is organized as follows: in Sec. II we reduce
the problem of a periodic linac to a differential equation
of Hill's type. Then in Sec. III we solve the correspond-
ing initial-value problem by finding the transfer matrix
for a period L. In Sec. IV we show how our result
reduces to that of GCC in the special case of a single res-
onance impedance. In the Appendix we introduce an ex-
tended problem and show how our method is related to
the eigensolutions of the extended problem.

II. EQUATION OF MOTION AND HILL'S EQUATION

If we ignore the beam-induced deflective force, the
equation of motion of a particle in the Mth bunch is

xsr+K(z)xsr(z) =0, g&0, (2.2)

xsr(z)+K(z)xM(z)=Fsr(z), z &0, (2.3)

where Fsr is related to the transverse wake function G(r)
by

ao oo2

Fsr(z) = g g 5(z NL)Ssr x—(z),
m =ON=0

(2.4)

with Nz being the number of particles per bunch, yo the
beam energy in units of rest energy, and

Ssr ——G((M rn)~) . —

From the causality condition

G(r)=0 if r (0,
we have

(2.5)

(2.6)

where x'(z)=dx/dz, and the periodic function K(z),
K(z+L)=K(z), describes the effects of the external
transverse focusing.

The following notation will be adopted; v is the beta-
tron tune associated with Eq. (2.2}, vP is the betatron
phase, @=2~v is the betatron phase advance per period,
P, a, y are the Twiss parameters, and P„a„y, are the
Twiss parameters evaluated at the cavity. P is in units of
meters.

We now include the effects of the transverse cavity
wake field induced by the beam. Let us assume the cavi-
ties to be located periodically at positions z =NL,
N =0, 1,2, . . . . Then the equation of motion including
the wake field force F(z) is

z =ct —Mcv, M =0, 1,2, . . . , ~, (2.l)

where M labels difterent bunches, ~ is the bunch separa-
tion in seconds, and c is the speed of light.

Consider a linac with pointlike bunches moving along
the positive z direction according to

S =0 if m(0.
In terms of the Courant-Snyder variable

Eq. (2.3) becomes

(2.7)

(2.8}
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e NzvP,
g 5(P 2—re)S~ g (P),

m =ON=0

(2.9)

where (sr(P)=dg (P)/dP. This equation defines the
model completely. We reduce this equation below to a
Hill's-type differential equation.

The variables M and P in Eq. (2.9) can easily be
separated. Define

b(8) . 1
cosp+ sinp —sinp

—v sin1M+ b, (8) cos1M cosy

(3.2)

Note that det(T)=1; hence, T can be written in a stan-
dard form

cosp+ c7 sinp
—y sinp

P sinP

cosp —a sinp
(3.3)

The transfer matrix T(8) over a period which relates
(:-&+1,=&+, ) to (:-~,:-~) can be calculated from Eq.
(2.14) by an elementary method. It is

or, equivalently,

(2.10)
with Py —a =1. P, a, P, and y are all complex func-
tions of 8; they are given in terms of tu and b, (8) by

also

(P)= f d8:-($,8)e

b(8)=b g S e™
m=0

(2.1 1)

(2.12}

cosy = cosp+ sinp,
2v

P= sin1u/(v sinP),

a =b sintu/(2v sinP),

y =v(sintu —b, costu/v)/ sinP .

(3.4)

(3.5)

(3.6)

(3.7)

and

e NzvP,b=
VO

Then, from the above equations and Eq. (2.7),

(2.13)

Note that P is dimensionless.
We shall call v(8)=P(8)/2m. the coherent betatron

tune of the mode 8; the reason for this is explained in the
Appendix.

Using

:-($,8)+v =($,8)=b,(8) g 5(p —21rN):-($, 8) .
N=0

(2 14)
where

1V

N

zN
~O

(3.8)

This is a differential equation of Hill's type with period
2m. The focusing function including the effect of the
beam-induced force is

cosNp+ a sinNp
z N

—y sinNp

we have

P sinNp

cosNp —a sinNp
(3.9)

K($,8)=v 6(8) g 5(P——2nN) .
N=0

(2.15) sinpcosNp+ AC1v 1(cosp) p2v
This is a complex function since 6 is complex.

Equation (2.14) is equivalent to Eq. (2.9); once the solu-
tion of Eq. (2.14) is found, we can obtain the solution of
Eq. (2.9) by using (2.11).

III. INITIAL-VALUE PROBLEM

sinp+ CN —1(cosp) 0
V

:"1v= —(v sing —6 cosy)C&, (cosp):-0

(3.10)

The initial-value problem of Eq. (2. 14) can be solved
completely; that is, given "(0,8) and:-(0, 8), one can find
:-($,8) explicitly for P & 0. (We adopt a shorthand nota-
tion x =x —e, with e being a small positive number. )

However, we shall only find the expression relating =~(8}
and:"z(8) to =o(8) and:"0(8), where =z(8) is the value
of:-($,8) at the Nth cavity:

+ cosNp AC&, (co—sp)
sinp
2v

(3.11)

gM 1v=gM(2nN), gM ~ $M(2mN) . —— .(3.12)

where we have introduced the Gegenbauer polynominal
Cz 1(cosx)= sinNx/sinx.

Let us define, in analogy to (3.1),

:-~(8)=:-(2vrN, 8), :-~(8)=:"(2mN, 8} . (3.1) Then, from Eqs. (3.10), (3.11) and (2.10), (2.11),

2m.

d 8e' ' cosNP+ AC', (cosM ) g + ~ C', (c spo)g2& 0 0 2v V
(3.13)
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oo 2%' ~ ~

d 8 e' ' —(v sing —b, cosp)CN, (cosp)g o+ cosNp — b,CN, (cosp) g o . (3.14)
2~ m=o 2v

Note from Eq. (2.12) that b,(8) has only Fourier components corresponding to a non-negative Fourier-conjugate in-
dex m. The terms within the square brackets in Eqs. (3.13) and (3.14) can be expanded in power series in 6; hence those
terms cannot have components with negative index. As a consequence, the integrals in these equations vanish if m & M.
We conclude that we can make the replacement

m=0 m=0
(3.15}

in Eqs. (3.13) and (3.14).
By utilization of Eq. (2.8), Eqs. (3.13) and (3.14) with (3.15) can be transformed into equations relating xM z and x~ z

to xM 0 and xM 0, where

xM, x x~(NL } xsr, x

The result is

(3.16)

2~
xM z —— g d8e' ' x o cosNp+ sinp a, + Cz &(cosp) +x' op, sinpC& &(cosp) . ,2~ m=o 2v

(3.17)

M

277 0 0 C

—(1+a, ) sing+ —(cosy —a, sing) C~, (cosp)
V

+x' o cosNp sing a,—+ Cz ~(cosp)
2v

(3.18)

Let us close this section by taking the above two equations in the limit of no external focusing, K(t))) =0. This limit
amounts to setting @~0,a~0, and Pp~L. We obtain

and

2~
xMN —— g d8e' ' [x 0[cosNp+mbC& ~(cosp)]+x' OLCN, (cosp))2~ m=o

(3.19)

xM ~= g d8e' ' x 0 kCN &(cosp)+x' 0[cosNp nb, C~, (co—sp)]
2K 0 0

(3.20)

Also, Eqs. (3.4) and (2.14) become

cosp(8) =1+eh(8)
and

(3.21)
b, (8)= —a

since~

1
cosc01 —cos 8+ l N1

2

(4.2a)

e N&
b, (8)= g S

$0 2' 0
(3.22)

with

(4.2b)
coscor '(e "'"&e"—+-e""-&e ") '-

2

IV. SINGLE-CAVITY MODE
e N~a=

4P72 cfo
R

C g
(4.3)

We consider here the case where the wake field of the
cavity, G (t), consists of a single mode Let us change the variable of integration in Eq. (3.17) to

S = —e "~ ~sin(mcus),
2m c Q

(4.1)
(4.4)

with p=e "'~ ~& 1. Equations (3.17) and (4.2b) become

where m is the particle mass, R the shunt impedance,
and co the mode angular frequency, and show that Eq.
(3.17) reduces to the result of GCC.

b, (8) is in this case, from Eqs. (2.12), (2.13), and (4.1),

M

p I ding PM w(g}
m=0

(4.5)
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since~5= —a
cosplT ——,'(g+g ') (4.6} COMPLEX C PLANE

where P~ & represents the quantities in curly brackets in
Eq. (3.17), and C is the circular contour with radius p
going clockwise in the complex g plane. (See Fig. 1.)

Note that 6 has two singularities at g=e+' ' and
g=e '"' which lie on the unit circle in the complex g
plane. Therefore, the integrand of Eq. (4.5) has these two
singularities plus a regular singularity at (=0.

Let us change the contour of integration from C to
C& „where C&, is also depicted in Fig. 1, and then
change the variable (~8, where

g=e'.

We obtain
FIG. 1. Integration contours for single resonance beam

break-up calculation.

xMN= g e ' ' ' ~ d8e' ' 'x
p cosN(((, l+ sin(j(, a, + C(I( l(cos(M, )

m=0

+x' pp, sinpC(II, (cospl) (4.7)

where

and

Slnp(T

coscOT cos8—

1

cosy& ——cosjM+ sinp .
2v

(4.8)

(4.9)

The notation should be clear from the discussion of Sec.
IV.

The strong focusing limit will be taken to mean that
the coherent betatron tune V(8), over the region of in-
tegration, is not significantly different from the tune v
without wake fields. Therefore, Eq. (3.4}can be expanded
about v=v to yield

This is the result of GCC. The integral of Eq. (4.7) has
singularities at O=e~ and 2m —co~. The contour of in-
tegration should be taken above these singularities.

V. TWO-CAVITY MODES

0( sin(co(T)
r

1 Q) I X
cos 8+

I

—cos(co(T )

(5.1)

where

To demonstrate the usefulness of our method, the case
of a cavity with two nearby resonances is treated here us-
ing saddle-point integration, in the limit of strong focus-
ing. Of interest are effects resulting from the proximity
of the resonances to each other. The technique of GCG
is specific to a single-cavity mode and cannot address a
problem of this nature.

When the deflecting wake fields inside the accelerating
cavities are modeled by a sum of two resonances, the
function b,(8) of (2.12) can be written

(5.3)

(5.4)

Because saddle points are expected to occur near
points where the denominators in (5.1) vanish (i.e., near
8+ice(T/2Q( ——+op(T), the denominators in (5.1) can be
expanded about their respective resonance points to yield

2 ai
&(8)= g+

I = l 8+IN( TI2Q(+CO(T
(5.5}

and the absolute value of the quantity on the right-hand
side is small compared to unity.

Here we will consider the case where the leading bunch
is offset by an amount xp p =xp with all trailing bunches
on axis. The initial angles x'

0 are assumed to vanish.
Supposing further that a, =0 (e.g. , smooth focusing), the
particle trajectories, from (3.17), are described by

+MR I
uOe ~e
a n —iM8i iN(p —5/2v) . —iN(p, —5/2v) i+e

Xp 477 0

e N~
a

4m clap Q(
(5.2) Consider the first term in (5.4). The exponent f(8)

leading to break up is
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f(8 ) = i—M8+iN @+i
2v I, 0+aI

where

(5 6)

$17

2Q,
(5.7)

We can greatly simplify our task, and retain most of
the physics, by assuming the resonances to be of equal
strength, i.e., by assuming a, =a2 ——a. In this case, the
exponent (5.6) can be written

f(8, )=iNp+iM, a+2E M—5 /E,
where

(5.14)

Notice the location of the saddle points 8, =+i 5 in re-

lation to the two poles of f(8) at +5. The path of
steepest descent passes directly between the poles, mean-

ing that one will pick up an unwanted residue if this path
is used. Therefore, only the second saddle point is
relevant to the calculation.

The value of the exponent at the relevant saddle point
is given by

f (8)= iM—8+iMa+iNp+i .Na 0
g2 52

where we have introduced the shifted variable

(5.8)
E =(MNa/v)' (5.15)

The result of the saddle-point calculation is therefore
given by

8=8+o. ,

with

(5.9)
Xp

gE iNP+iMa+2E Ms —/E+
4v'YAM

(5.16)

and

a =(a)+a~) /2 (5.10)

5=(a, —a2)/2 . (5.1 1)

Saddle points 8, are located by setting the first deriva-
tive of (5.8) to zero: 8, =+(5+iE2/M ), (5.17}

The complex-conjugate term arises from the second term
in (5.4) using the alternate sign in (5.5). This result shows
how the growth is suppressed as two degenerate modes
are separated.

Consider now the case where 4
~

5
~

&&Nal2Mv. Ex-
panding the square root in (5.12) gives, to leading order,

2Mv
Na

2Mv

2

52 Na
2Mv

1/2

(5.12} where

It is instructive to treat two separate cases, depending
on the size of the complex frequency split 5. The first
case, when 4

~

5
~

&&Na/2Mv, after expanding the
square root, gives

E2 (MNa /2v——)'~ (5.18)

Only the saddle points at +5+iE2/M give exponents
with a positive real part. The exponents corresponding
to this are given by

52

+35' .
(5.13) f (8, ) =iNp iM(+5 a)—+2E2—+i. Na

4v5

yielding the result

(5.19)

+M, N

T

1 a
QEz exp iMa, +2E2+iN p+

4~wM 4v5
a+ exp iMa2+2Ez+iN p— '+C.c. (5.20}

This result shows a "tune shift" inversely proportional to
the complex frequency split 5, and opposite in sign for
the two modes.

Considering the number of approximations which have
been made up to this point, it is appropriate to go back
and investigate the domain of validity for the results
(5.16} and (5.20). First, a more thorough calculation
would yield an asymptotic series in powers of 1/E for
(5.16), or I /E2 for (5.20). The leading correction corre-
sponds to multiplying our results by ( 1 —

,
', E '

} or—
(1—

,', Ez '), respectively—. Clearly, a condition for the
validity of our results is that the quantities E and F2 be
larger than, or on the order of, unity. Note, however,
that there will be additional corrections, which could be
comparable to 1/E, related to the approximations re-

garding the size of the complex frequency split 5.
Second, Eq. (5.5) was written under the assumption

that the denominators appear to be small when 0=0, .
Writing (5.5) using the notation of (5.9)—(5.11),we have

b,(8)=
0+5 0—5

(5.21)

Inserting the relevant value 8, from (5.13), we see that
the denominators will be small if E «M. Similarly, in-
sertion of the saddle points (5.17) leads to the conclusion
that the denominator of one or the other of the terms in
(5.21) will be small if Ez «M.

Third, implicit in the result (5.20) is the assumption
that the distance between the two saddle points (5.17),
i.e., 25, is large in comparison to the saddle width. This
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width can be approximated by 68=
~

[2/f"(8, )]
~

'

=QE2/M.
Recall that the assumption leading to (5.17) was that

2
~

5
~

&&&Xa/2Mv=E2/M. Therefore, the two saddle
points (5.17) will be far enough apart provided that
2

~

fi
~

/58 && 1, which implies that QE2 must be greater
than or on the order of unity.

Finally, the condition for which the strong-focusing
approximation (5.3) is valid is that 5(8, )/(2v) be small
compared to one. This in turn leads to the conclusion
that both E and E2 must be small compared to E.

P)0, M= —oo, . . . , —1,0, 1, . . . , Do . (A2)

The solution of the initial-value problem of Eq. (A2) can
be reduced to that of Eq. (Al) by setting

%=1,2, . . . .
In order to find an interpretation for 8 and P(8), let us

extend the range of M and m to be from —~ to + ~ in-
stead of from 0 to ~ ~ We thus consider

M

g~($)+v (~($)=b g g 6(P 2—vrX)S~ g (P),
m= —oo N=O

VI. CONCLUSIONS CMo (M o (A3)

A new technique of solving the cumulative beam
break-up problem has been presented, which for coasting
beams yields the results (3.17) and (3.18), and can be easi-
ly extended to include the effects of acceleration. It was
shown that these expressions are in agreement with the
results of GCC, but are valid for a general impedance.
The power of the technique was demonstrated for the
case of two overlapping resonances, which was treated
approximately using saddle-point integration.
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APPENDIX: EXTENDED PROBLEM

Equation (2.9) is a homogeneous linear equation of two
independent variables P and M. It is well known (e.g. ,
from quantum mechanics) that the initial-value problem
in P of such an equation is closely related to the eigenval-
ue problem of the other variable M. We And here the
physical meaning of 8 and P(8) introduced in Secs. II and
III by relating them to the eigenvalue problem associated
with an extension of Eq. (2.9).

We solved earlier the initial-value problem associated
with the equation

k~(4')+v'(M(4')=b g
m =ON=0

$)0, M=0, 1,2, . . . , ~ . (Al)

Assuming g~ o and g~ o to be known for M =0, 1,2, . . . ,
we were able to find expressions for g~ ~ and g~ ~ with

We now discuss Eq. (A2). First, we concentrate on the
indices M and m. SM on the right-hand side can be
regarded as an element of an ~-dimensional matrix S.
This matrix can be diagonalized easily since what is in-
volved is a convolution sum. The eigenvector of S is

g (P)=:-(tt,8)e
1

m= —~, . . . , —1,0, 1, . . . , oo,

0& 8(2~,
(A4)

where 0 parametrizes different eigensolutions; the factor
I /2n in front of this equation is arbitrary.

We have yet to find the P dependence of:- so that
(P) satisfies Eq. (A2). Upon substitution of Eq. (A4) in

Eq. (A2), we obtain

:-($,8)+v =($,8)=b(8) g 5(P 2mN):-($, —8), (A5)
N=0

where 5{8) is defined by Eqs. (2.12) and (2.13), and Eq.
(2.7) has been used. Recall that we have obtained this
equation in Sec. II [see Eq. (2.14)]; hence, the transfer
matrix of this transfer equation is the same as before:
namely, Eq. (3.3).

It is now evident that P(8) as given by Eq. (3.4) is the
betatron phase advance per period if the beam in the ex-
tended problem is in the 0th mode, or, if the phases of the
bunches are arranged coherently according to Eq. (A4).

To solve the initial-value problem of (A2), we expand
gM(P) in terms of the eigensolutions of Eq. (A2):

(P) = f d 8:-($,8)e (A6)

or

:-(P,8)= g g (P)e™e. (A7)

We find that =(P, 8) satisfies Eq. (A5).
A method similar to that of Sec. III gives the solution

of Eq. (A2) as

QO 2n ~ ~

P+ " x i(o%) k,o+ w i(os%,o277 0 2v V

The solution to Eq. (Al) is obtained from this equation by using Eqs. {A3). The result is Eq. (3.13).
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