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Using lattice gauge theory in the quenched approximation we calculate the decay constants and
second moments of wave functions of pseudoscalar mesons containing nonstrange, strange, and
charmed quarks. We find fo =134(23) MeV and fo =157(11}MeV. We use the methodology of

two recent computations of the second moment of the pion wave function, and find that a nonper-
turbative treatment of operator mixing gives results consistent with calculations using sum rules.

I. INTRODUCTION

We report on a calculation of the decay constants and
second moments of wave functions of nonstrange,
strange, and charmed pseudoscalar mesons in lattice
QCD in the quenched approximation. We compute the
second moments using two choices for lattice operators
which have been recently proposed.

The operators which we study were introduced by
Brodsky and Lepage' in their study of exclusive processes
in QCD, such as form factors or amplitudes for large-
angle elastic scattering. Their calculation involves mo-
ments of the momentum-space wave function P of the
quark and the antiquark in a pseudoscalar meson, which
are a function of the momentum transfer Q. The nth mo-
ment of the meson's wave function is

(P&= f dkV(t)(k Q')

where g is the difference in the light-cone functions of the
meson's momentum carried by the quark and the anti-
quark, g=x —x . The normalization of P is chosen so
that (g )=l.

The lowest twist operators which give these moments
when sandwiched between a pseudoscalar meson M and
the vacuum are

(1.2)

symmetrized over Lorentz indices, and

(0
~
0„.. .„~ill(p) &

= V 2fIp„g„.p„(P ) + trace terms, (1.3)

where f~ is the meson decay constant. These operators
are the same ones used to calculate structure functions
measured in deep-inelastic sattering. The difference be-
tween a moment of the wave function and of the struc-
ture function is that in the latter case one must compute
expectation values of Eq. (1.2) between hadronic states,
(h(p)

~ 0„~ . . .„~h(p)). As in the case of structure
functions, if ( g"(Qo ) ) can be determined at sufficiently
large Qo, one can compute it at higher Q using the per-
turbative renormalization group. Unfortunately,
( g"( Qo ) ) cannot be computed using perturbation theory;

one must have recourse to some nonperturbative calcula-
tional scheme, in this case, Monte Carlo simulation of
lattice gauge theory.

Before we begin our discussion of the lattice calcula-
tion, we remind the reader of what is known from previ-
ous nonlattice work, mainly QCD sum rules. The most
complete studies are due to Chernyak and Zhitnitsky, '

who find that the low moments are quite similar to what
one would compute from the distribution

(t (g, Q') = —", g'(1 —(') (1.4)

at Q =0.5 GeV, i.e., (g~) =0.42. Other studies give
similar results at various low values of Q~ (Refs. 4 and 5).
The uncertainty in these determinations is about 15%.
As Q goes to infinity, P approaches the limiting form

=—', (1—g ) for which (P) =0.2.

Computing matrix elements from the lattice is by no
means straightforward at present. To begin with, one
makes two severe approximations: first, that the size of
the box containing the hadron (i.e., the lattice size) is very
small (about one Fermi in diameter) and second, that
space is coarse grained on a size scale of the lattice spac-
ing, about 0.1 F in present-day calculations. Next, many
studies, including this one, neglect the effects of virtual
quark-antiquark pairs (the so-called "quenched approxi-
mation"). Another uncertainty is the value of the lattice
spacing itself, which is determined by equating some lat-
tice quantity to its continuum value. It sets the overall
scale of dimensionful continuum quantities. This prob-
lem is particularly serious for our calculation of decay
constants, but not for the moments of the wave function
since they are dimensionless. What is more important for
them is whether or not the lattice spacing is small enough
that a smooth extrapolation to continuum behavior is
possible. Finally, lattice operators are related to their
continuum analogs by finite multiplicative renormaliza-
tions. These renormalization constants have so far been
computed only in perturbation theory or in a very few
cases by Monte Carlo methods.

Finally, there are many purely computational prob-
lems. For example, one generally cannot calculate quark
propagators for light quarks at the physical values of
their masses; one is forced to extrapolate the results from
heavier-quark masses. Generally, in these calculations
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the same gauge configurations are used for computing the
different quark propagators. This introduces a systematic
correlation between the results at these different masses
and makes extrapolation dangerous. As we will see, these
difficulties limit the precision of our lattice measurements
to no better than about 20%. Nevertheless, where com-
parison is possible, our results show good agreement with
the gross features of experimental data.

The lattice analog of O„.. .„was first given by
&n

Kronfeld and Photiadis. The continuum derivative is
replaced by a lattice nearest-neighbor difference operator.
This introduces two possible complications. The first
difficulty is that the lattice spacing may be so large that
the finite difference is a poor approximation to the deriva-
tive. This problem is most serious for the higher mo-
ments of the wave function since they involve higher and
higher derivatives; to date no one (including us) has cal-
culated moments higher than the second. The second
difficulty is more subtle. The lattice breaks rotational in-
variance, causing operators corresponding to high mo-
ments to mix with operators of lower dimension. The
mixing coefficients contain power divergences of the form
1/a", where a is the lattice spacing,

Two methods have been proposed for dealing with the
mixing problem. The first proposal, made by Gottlieb
and Kronfeld, is to calculate the mixing coefficients in
perturbation theory and construct the appropriate opera-
tors to lowest order in the gauge coupling g. Gottlieb
and Kronfeld took the mixing coefficients computed by
Kronfeld and Photiadis and computed the second mo-
ment using the operator Oooo. They worked at a lattice
coupling of P=5.7 with 19 configurations on a
6 X 12 X 18 lattice with k =—,

' fermions. They found

more data than Ref. 8 and our lattice is one-third larger.
In order to determine the origin of the difference between
the results of Refs. 7 and 8 we measure both perturbative-
ly and nonperturbatively subtracted operators. There are
two reasons for performing this study. The first is that
one really does not know why the results of Refs. 7 and 8

are different until both operators are measured on the
same lattice size at the same coupling. The second reason
is that even if one has a prejudice that one method of
measuring the operators is better than another, the calcu-
lation is so delicate that it is useful to have it checked by
several independent groups.

Our results may be simply stated: we find that the two
different operators measured on the same set of lattices
have very different values. Our calculation of the second
moment of the pion wave function using a nonperturba-
tive subtraction agrees with the result of Martinelli and
Sachrajda. The perturbatively subtracted operator gives
results which are if anything worse at the weaker cou-
pling of this study (P=6.0) than were seen by Ref. 7.

Finally, we make an important extension to the results
of Ref. 8 by including strange and charmed mesons in ad-
dition to nonstrange ones. We compare our results to ex-
periment whenever possible, as well as to other lattice
and nonlattice calculationy of wave-function properties.
We find that a simple quark model can reproduce our re-
sults.

We also present in Sec. III lattice determinations of the
decay constants of the pion, kaon, D, and D, mesons.
These predictions are constant with the results of a more
extensive calculation by Woloshyn, Draper, Liu, and Wil-
cox.

( g ) = 1.58+0.23 . (1.5)
II. DETAILS OF THE LATTICE CALCULATION

(g ) =0.26+0. 13 . (1.6)

These results are obviously quite different. However,
one does not know a priori why they are different. Is the
difference due to the choice of operators and subtraction
scheme, or is it simply due to the fact that every lattice
parameter which could be different between the two stud-
ies is different

We now present a third measurement of the second
moment of the pion wave function. %"e have one-third

The second proposal was made by Martinelli and
Sachrajda. They computed linear combinations of the
operators of a given dimension which are members of ir-
reducible representations of the group of discrete lattice
rotations. This eliminates the problem of mixing of the
desired operator with operators which are members of
other representations. For the second moment, linear
combinations of 0„„,with p&v are unaffected by mix-
ing. A disadvantage of this method is that one must mea-
sure operators at nonzero values of the lattice momen-
tum; in general, quantities measured at nonzero momen-
tum are noiser than ones measured at zero momentum.
They used a lattice coupling of P=6.0 with 15
configurations on a 10 )&20 lattice with Wilson fermions.
They found

The data set used in this simulation consists of 20 pure
gauge configurations of an 11 )&20 lattice with gauge
coupling P=6.0. The gauge fields were equilibrated us-

ing the Kennedy-Pendleton' variation of the Cabibbo-
Marinari" quasi-heat-bath algorithm. The resultant
gauge configurations were stored at intervals of 1000
sweeps. We computed quark propagators using a conju-
gate residual algorithm. with incomplete Cholesky decom-
position. ' We used skew-periodic boundary conditions
for the gauge fields and skew-periodic spatial and open
temporal boundary conditions for the fermions. Details
of our methods will be described separately. '

We used Wilson fermions in this study. We took the
hopping parameter for the light quark to be a=0. 150,
0.152, and 0.153, and extrapolated our results to zero
quark mass. In addition, we calculated quark propaga-
tors for heavy quarks, with hopping parameters ~=0.130
and 0.145, and formed mesons using all possible pairs of
heavy quarks as well as mesons made of heavy quarks
and light quarks of each of the three hopping parameters
listed above. Pseudoscalar mesons made of pairs of these
heavy quarks have masses of 1540 and 2710 MeV, respec-
tively (with the inverse lattice spacing taking a nominal
value at this gauge coupling of 1/a =1900 MeV) and so
these propagators will allo~ us to interpolate from the
pion to the kaon, D, and D, mesons. We found the criti-



956 THOMAS A. DeGRAND AND RICHARD D. LOFT 38

cal hopping parameter, where the quark mass vanishes, is
x, =0.1566(4), which is in agreement with previous calcu-
lations on lattices of this size at P= 6.0 (Ref. 14).

In the, by now, conventional way we extract operators
from measurements of correlation functions of operators
a time slice t apart and averaged over all spatial sites,
with a possible Fourier transform:

C,, (k, t) = g e'" "&0, (x, t)Oi(0, 0) ) . and

0,= g CrA
color

(2.9)

t;„,until the fitted mass changed by less than a standard
deviation when t;„ increased by one time slice. We
found that taking t;„=7 was always a safe choice for be-
ginning our fits.

The operators which we measured in this study were

With skew-periodic boundary conditions on an N, XN,
lattice a point at a location (x,y, z, t) is labeled by an in-
teger

r =x+N, y+N, z+N, t . (2.2)

2'
N, N, a

(2.3)

where m is an integer running from 0 to N, N, —1. The
skew-periodic momentum most peaked in the z direction
1s

k, =(2m/N, a)m, ,

where

When one Fourier transforms on this lattice, the discrete
momenta are labeled by

Oos= g A'ors
color

(2.10)

o 76, Proysf+3 49 —.Vr—sf
a, 1 5—

a

and the operators appropriate for the second moment,
described as follows: The second moment of the wave
function in either subtraction method is given by an ex-
pectation value of combinations of the operator

(2ia) 0„,„=(1+t,) giy„ys(U U„+H c —
2. ).1(,

(2.11)

where t„=exp(ik„a). In the perturbative subtraction
scheme (with Wilson fermions)

0 = 0000 —trace term2

m =N, N, m, (2.4)
1.17—

ciao rsvp y (2.12)

with m, =0 to N, —1. For this choice of m, k and k„are
suppressed by factors of N, and N, , respectively, relative
to k, . We took m, =0,1,2 in (2.4) for nonperturbative
operators in this study. We found that the cancellations
due to Fourier transforming at m, ) 1 introduced a great
deal of noise. Consequently, we could obtain no useful
results, other than to check the energy-momentum
dispersion relation, at m, =2.

Inserting a complete set of relativistically normalized
states, Eq. (2.1) becomes

ONP
——0033 —Y(0022 +0011 ) .(2) & &2) (2) (2. 13)

where the trace term is given explicitly in Ref. 6,
Cf '3, 5/5t is a lattice time derivative, and b, is a lat-
tice covariant derivative.

In the nonperturbative subtraction scheme one takes
linear combinations of the 0„,s which suffer no mixing
with lower-dimensional operators. The choice in this
study was to take m, = 1 (see above) and measure

CJ(k, t)= Q &0iO; i
n )&n

i Oi i
0&e2E„k

where
(2.5}

We always take the operator at the origin to be 05 and
the operator at time slice t is one of the operators ap-
propriate to the desired physics: 05, 005,0, or 0„.For
the second moment it is more direct to measure ratios of
operators. For future reference we define

E„(k) =m„+q (2.6}

(m„and t are the mass and time separation in lattice
units) and

g e'"'"&O„z(x,t)Os(0, 0))
R„(k,t)=

g e'" "& Oo(x, t)0s(0, 0) )
(2.14)

q =2(1—cosk, a) (2.7} and

because of finite-lattice-spacing effects.
We are of course only interested in the lightest meson

states and so we must determine the range of t for which
Eq. (2.5) is dominated by a single exponential:

C;(k, t)= &0~0; ih)&h i0 i0)e
h

g &O, (x, t)O, (0,0))
R (t)=

g &0„(x,t)0, (0,0}&

One can extract the second moment from

R, =-,'m'& g')

(2.15}

(2.16)
—E~ (k)t:—B,. e (2.g) or

We did this by varying the lowest-t value used in a fit, R„,=q'&g') . (2.17)
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There are two possible ways to determine the lattice
pseudoscalar-meson decay constant f~. The most direct
way involves 0~5:

0.150

0.125

f I I

i

i I I I

[

(0
~ Oo~

~

M ) =&2f~m~ . (2.18) 0.100

Alternatively, one can determine f from current algebra
which gives

0.075

0.050

&2m f =(m„+mz)(0~ 05
~

m) . (2.19) 0.025

We choose the direct measurement of f& via Eq. (2.18)
for all mesons for two reasons. First, since the naive rela-
tion between the hopping parameter K which we input,
and the quark mass which we need in (2.19},
m = —,'(I/tt —1/«', ), is not preserved in the interacting
system, it must also be computed (for a discussion of this
point, cf. Ref. 15}. Second we are interested in mesons
containing a heavy quark, for which PCAC (partial con-
servation of axial-vector current) is probably not
trustworthy.

One difficulty marred our extraction of fM. Our lattice
has skew periodic boundary conditions except at the ends
of the lattice, where we set the fermion propagator to
zero. This modifies the correlation function in time slices
near the ends of the lattice and invalidates Eq. (2.5) there.
Unfortunately, we set our source for matrix inversion one
time slice away from the boundary. This distorts the
coeScient 8; from its true value. We corrected our data
by recomputing all propagators for one-quarter of the
gauge configurations (5) with the source set in the center
of the fourth time slice. The masses we measured were
the same as in our full data set, within errors. We com-
puted the corrected B,J's by taking ratios of extracted
B;~'s between the same gauge configurations and multi-

plying the 8; 's computed from the whole data set by that
ratio. In the absence of rerunning the whole data set, this
is the appropriate approach to take because difkrent
operators on the same lattices are highly correlated and
the error obtained from taking a ratio of averages is a
considerable overestimate of the uncertainty. The factor
ranged from R =2.83(25) for two «=0.153 quarks to
R =2.36(26} for a «=0. 153, «.=0. 130 meson, so that
while the overall renormalization is large, its ffuctuation
from lattice to lattice (as shown by the error in R) is
small. It small variation is also small. Since we are ex-
tracting (g ) from ratios of operators, the particular
choice of operator we take at t =0 is not important for it.

We would also like to remark that there is an extra
trivial lattice-to-continuum renorrnalization factor of 2K
for fermion bilinears for the form of Wilson fermions
which we are using. In that action the lattice field t/i is
rescaled by a factor of &2a so that the fg part of the ac-
tion appears with unit coeScient and the derivative terms
appear multiplied by the hopping parameter K.

III. PSEUDOSCALAR-MESON DECAY CONSTANTS

Our results for fI are shown in Fig. 1 as a function of
the light-quark hopping parameter for the three cases:
quark and antiquark hopping parameter equal, antiquark
hopping parameter equal to 0.145, and antiquark hop-

0 000 I. . . , I

0.15 0.152 0.154
I

0.156

FIG. 1. Meson decay constant fM in lattice units as a func-

tion of the hopping parameter ~. Squares label points for which
the quark and antiquark hopping parameters are equal, crosses
and diamonds the points for which the antiquark hopping pa-
rarneter is 0.145 and 0.130, respectively. The data points at
K=O. 1566 are the results of a linear extrapolation in K' to ~, .

ping parameter equal to 0.130.
We must continue our results for the ~,E, and D to

zero light-quark mass. Realizing that our three data
points for each value of the antiquark hopping parameter
are strongly correlated, but not having any better pro-
cedure to follow, we fit them to a linear dependence in
« —«, [a linear fit in (1/«, —1/v) gives identical results].
These values are shown in Fig. 1 as the points at K =K, .

Finally we convert fM's to continuum numbers by

fM fM ZA
a

(3.1)

where the multiplicative factor Z„ is a renormalization
constant which converts from lattice to continuum regu-
larization. Neither a nor Z„ is precisely known. Let us
discuss our choices for each of them.

We begin with the lattice spacing. There are several
possible choices. First, we can fix the lattice spacing
from our calculation of the mass of the p meson. We find
m a =0.37(1) at zero light-quark mass: K=K . This
gives 1/a =2081(56) MeV. Second, we can use the per-
turbative P function and the string tension. Taking the
square root of the string tension &o =400 MeV and
&o/AL ——95 from lattice string tension studies, ' we
have A~=4 MeV and 1/a =1800 MeV. Third, Fukugi-
ta' has made a compilation of quenched approximation
fits to the ~ and p mass and finds AL ——4. 7 MeV and
1/a =1800 MeV. Finally, in the quenched approxima-
tion calculations done on lattices of similar size to ours,
the proton mass is generally too high. For example, in
the simulation of Lipps et al. ' m = 1.25(15) GeV.
There is no very good reason to assume that the
quenched approximation is better than the p than for the
proton; if we chose to fit the lattice spacing to the proton
we would find 1/a =1650 MeV. Finally, we do not know
how all these numbers are changed when one relaxes the
quenched approximation. In what fo1lows we will take
the uncertainty in the lattice spacing from all of these
different determinations into effect of choosing 1/a to
nominally equal 1900 MeV.
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Next we turn to Z„. In perturbation theory at P=6.0
several groups' have computed Z~ =0.87. Z„has also
been calculated on the lattice at P=6.0 by Maiani and
Martinelli;' they find Z„=0.7(I). It is not too surpris-
ing that the two calculations do not agree since P=6.0
corresponds to a lattice coupling g = 1.0. When we con-
vert our f into a continuum number using Z„=0.87 we
find f„=76(31) MeV. Using the Z„of Ref. 15,
f„=61(27) MeV. The physical number is 93 MeV.

Decay constants for mesons containing at least one
massless quark, using the perturbative Z„, are shown in
Fig. 2. We linearly interpolate our light-quark and
K=0. 145 heavy-quark results to the physical kaon mass;
we find fx ——103(22) MeV, where the error comes only
from the extrapolation. This is within one o of the ex-
perimental number, 112 MeV. The D-meson decay con-
stant can also be read off from Fig. 2: fD ——134(32) MeV.
With our choice for lattice spacing, the vector meson
whose mass is closest to the physical P mass is made of
two K=0. 152 quarks. We can interpret the D, as a
~=(0.152,0.130) bound state. Referring to Fig. 1 we find

fD =157(11)MeV.

Finally, we can eliminate all Z„dependence by com-
puting ratios of the different decay constants. We find

fx lf„=1.35(62),

fD Ifx ——1.31(36),

fn !fD
——1.17(22) .

(3.2)

(3.3)

(3.4)

Most of the error comes from the extrapolation to K=K, ',

the fractional errors on the unextrapolated decay con-
stants are only about 10%.

Woloshyn, Draper, I.iu, and Wilcox have recently car-
ried out an extensive study of the decay constants of
heavy mesons. They studied both Wilson and staggered
fermions, and instead of the local axial-vector current
005 used the point-split operator

o„5=T'(fr„r5U„P+H c ) . (3.5)

They infer that fD is 2 —3 times f„.Our results appear to
be consistent with theirs, but the errors are large.

200 I i I I

i

I t I 1

l

& I I I

i
1 I I

150—

100—
.'(

50

0 s i & i I i i s i I

0 500 1000 1500
meson mass (MeV)

FIG. 2. Meson decay constant versus mass in physical units
using 1/a =1900 MeV and Z& ——0.87. The crosses show the
known value for the pion and kaon.

There are a number of more conventional calculations
offD. In a nonrelativistic quark model Suzuki' predicts
fD=83 MeV. Bag models give fD ——220 to 240 MeV
(Ref. 20) or fD ——120 MeV (Ref. 21). Recent QCD sum-
rule calculations give fD ——1.31f„(Ref. 22) and

fD ——1.71f„(Ref.23}.
In a nonrelativistic quark model a pseudoscalar meson

of mass m has a decay constant
1/2

f„= —
l
y(o) I,6

m
(3.6)

where
l f(0)

l
is the wave function at the origin. If one

assumes a linear potential then
l
g(0)

l
scales like &p,

where p is the reduced mass. In that limit that one mass
is much greater than the other, we expect from (3.6) that
f~ rises as the lighter mass rises but falls as they heavy
mass rises. Figure 1 shows the first eft'ect and a Battening
of the decay constants as the heavy-quark mass increases.
Of course, for the n, K, and D mesons there is no reason
to assume that a nonrelativistic quark model might be
applicable because the motion of the light quark is cer-
tainly relativistic.

IV. SECOND MOMENT OF MESON WAVE FUNCTIONS

A. The pion

We begin our evaluation of the second moment by first
verifying that the individual O„„„sshowed the same ex-
ponential decay as Os and Oos. Since the different opera-
tors are strongly correlated, it is better to divide them be-
fore averaging than vice versa. Therefore in this analysis
we measured the ratios of operators using Eqs. (2.14}and
(2.15).

We fit for the second moment using the following four
procedures: We measured the two ratios R„and R lat-
tice by lattice and then computed an error by either (a)
averaging over all 20 configurations or by (b) breaking the
data into four bins of five lattices and assigning an error
from the bin-to-bin fiuctuations. (The averages will be
the same but the errors will be different. } Next (c) we
averaged the numerators and denominators of R„z and
R separately over groups of five lattices, computed the
ratio of these averaged quantities, and took an error from
the bin-to-bin fiuctuations of these quantities. Finally (d)
we fit R to each of our four bins using Eqs. (2.14) and
(2.15) and computed an error from the bin-to-bin fluctua-
tions in the fits. We performed a least-squares fit to a
constant to each of these data sets, varying the initial and
final time slices of the fit. The fits to R„were generally
stable from r;„=6 to 8 (but not at t;„=5 in contrast

with the results of Ref. 8} and t,„e texdning to about 12;
the signal above tm» ——12 usually disappeared into the
noise. Fits to the three choices of R„agreed to within
one standard deviation of each other. As an example of
our data, we present in Fig. 3 the time dependence of O„z
and 00~ with m, =1 and K=0. 153. In Fig. 4 we show

(g )I extracted from the same data using method (b)

above.
The fits to the perturbative operator were performed

similarly. Once again, the values of R obtained from the
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FIG. 3. Time dependence of O„~ (labeled by squares) and 005
(labeled by crosses) with m, = 1 and ~=0.150.

FIG. 5. The second moment of the pion wave function as a
function of the quark hopping parameter a: Open squares, non-

perturbatively subtracted operators; circles, perturbatively sub-
tracted operator.

four fitting methods agreed with each other within two
standard deviations.

Finally, we converted the measurement of R to one for
(g ) using Eqs. (2.16) and (2.17). The results are shown
in Fig. 5 (where we take the first fitting choice described
above for R ) with t;„=7, t,„=12. The results are
clearly quite different. In Fig. 6 we replot the nonpertur-
batively subtracted operator together with the results
from Ref. 8. They appear to be in good agreement with
one another. Our results are also displayed in Table I.

Extrapolation to the limit K=K is not very meaningful
for our data since the results for different K values are
known to be correlated, and they are a11 equal within er-
rors. Nevertheless, we find (g') =0.30(13)at a=a, after
extrapolating (and assuming a linear dependence in
K —K ) to be contrasted with (g ) =0.31(3) from a simple
least-squares fit to a constant to the three K values.

This result was obtained using a lattice regularization.
In order to pass to the continuum, one must renormalize
it:

(4.1)

Here Zo is the ratio of renormalization constants in the

modified minimal subtraction (MS) and lattice schemes.
In view of the difficulty in extrapolating to mq ——0 it
would be inappropriate to attempt to convert our lattice
number into a continuum one. Nevertheless, as long as
these renormalization factors are not too large the second
moments we are measuring will be in good agreement
with the results of Chernyak and Zhitnitsky. The uncer-
tainties are still too large to give a result which is really
interesting phenomenologically.

B. Results for mesons containing one heavy quark

We have also collected data for other mesons. We will
present our results only for nonperturbatively subtracted
operators, since they are the ones which give physically
reasonable results for the pion. In the case of one light
and one heavy quark our results extrapolate smoothly to
zero light-quark mass and we show our results after ex-
trapolation [using method (a) described above] in Fig. 7.
One can see that the second moment shows little change
from the second moment of the pion. That is to be ex-
pected from simple quark models, as we now demon-
strate.

First, Chernyak and Zhitnitsky have presented a
sum-rule calculation of the second moment of the kaon
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FIG. 4. (g )L extracted using method (c) described in the
text, with m, =1 and re=0. 153. The three horizontal lines show
a least-squares fit to a constant and its one o. error bar over the
range 7&t (12.

FIG. 6. The nonperturbatively subtracted second moment of
the pion's wave function (open squares) compared with the re-
sults of Ref. 8 (crosses).
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TABLE I. Second moment of pseudoscalar wave function:
nonperturbative and perturbative subtraction.

0,5 I i I

0.4

I I

I

I 1 I I

0.150
0.152
0.153

Nonperturbative

0.31(4)
0.34(6)
0.29(6)

Perturbative

0.004(10)
0.64(5)
1.47(10)

V

0.3

0.1

wave function: (g ) =0.17.
Second, as one of the quarks becomes much heavier

than the other, the wave function becomes more and
more asymmetric in g. However, this asyminetry may
not be refiected in a large change in ( g ). For example, a
simple model for P, inspired by the so-called Peterson
form of quark fragmentation function, is

0.0
0

I I i I I I I I I

0.5 1

mass (Gev)

I I I I I I I

1.5

FIG. 7. Second moments of mesons containing one heavy

and one light quark, as a function of the meson mass (taking the

lattice spacing to be 1/a =1900 MeV). The light-quark mass

has been continued to zero. The line is the prediction of the

simple model described in the text.

Q=N(bEpi ) (4.2)
V. CONCLUSIONS

where b E is the energy difference in the infinite-
momentum frame of an initial state consisting of the
meson with mass M and a final state consisting of a quark
of mass m „ transverse momentum k, and momentum
fraction x& plus an antiquark of mass m2, transverse
momentum —k, and longitudinal-momentum fraction
x2= 1 —x)'.

1(~ 2+k 2)1/2
( 2+k 2)1/2

2
EEP

II

——M— (4.3)

This wave function does not have the "dimple" at (=0 of
the Chernyak-Zhitnitsky pion wave function, but that is
not necessary for this simple exercise. Recalling that
2g —1=x„we can compute (g ). Taking M =mz+100
MeV, k =300 MeV, and m, =0 gives the solid curve
shown in Fig. 7. It qualitatively resembles the Monte
Carlo data, although the errors are very large.

We also measured the second moment of mesons con-
taining two heavy quarks, to see if their wave functions
approached the expected nonrelativistic limit of 5(g).
The meson made of two ~=0.145 quarks has

(g ) =0.19(3) and the meson made of two»=0. 130
quarks has (g ) = —0. 11(3). The first result goes in the
right direction but the second is clearly absurd. We do
not believe that we are seeing continuum physics in this
number; rather, we think the size of the bound state has
become small compared to the lattice spacing so that lat-
tice effects have become important: in particular, that
the replacement of a derivative by a finite difference can
no longer be justified. For qg mesons the variation in
size of the wave function with changing heavy-quark
mass is expected to be small since the relevant parameter
is the reduced mass p. In the nonrelativistic limit (r )
scales like p '/ for a linear potential using Quigg-
Rosner scaling laws. Going from the pion to the D
meson the reduced mass changes by at most a factor of 2,
and since the pion radius has been measured at about 0.4
F at P=5.7 (Ref. 26), the lattice spacing should still be
small relative to the D diameter.

We have calculated decay constants and second mo-
ments of light, strange, and charmed pseudoscalar
mesons. The calculations of f and f» are in agreement
with experiment (although with large errors). When a
nonperturbative subtraction is used to eliminate operator
mixing due to the effects of a finite lattice spacing, the
second moment of the pion is in good agreement with the
results of QCD sum rules and with the earlier Monte
Carlo study in Ref. 8. The second moment of mesons
containing one heavier quark shows very little depen-
dence on the heavy-quark mass, at least as far as charm.
This is in accord with simple quark-model ideas.

Using perturbation theory to eliminate operator mix-

ing due to lattice artifacts is a common practice in the
calculation of hadronic matrix elements. However, as
a~0 the coupling constant vanishes logarithmically
while the denominator of a typical term vanishes like a
raised to a power. This means that at best many terms in
the perturbation expansion would be needed as the a ~0
limit is approached. At worst, the powers of a ' imply
that nonperturbative contributions to the mixing
coefficients might not vanish as a ~0 (Ref. 28). Based on
a comparison of our results with those of Ref. 7, pertur-
bative subtraction does not appear to be converging for
the operators appropriate to ( g ) for P in the range
5.7—6.0. It appears that for the sizes of lattices and lat-
tice spacings which may be attainable in the foreseeable
future, nonperturbative subtraction is the only method
which can be used to give reliable QCD predictions from
the lattice.

The results of this study, as those of Ref. 8, can only be
considered to be exploratory. In order to see the
renormalization-group evolution of the moment or the
dependence of the second moment with quark mass, the
statistical errors must be reduced to the level of a few
percent. This will require a minimum of several hundred
lattice configurations. One also needs larger lattices to
avoid possible finite-size effects as well as similar lattice
spacings to better approximate the continuum derivatives
which are what one really wants to measure. Finally, one
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needs to include the effects of dynamic fermions. (How-
ever, even an exploratory study including dynamic fer-
mions would be interesting. ) On the positive side, these
operators involve very little computational overhead and
can be readily measured as part of any large spectroscopy
project.

The other obvious next steps in an exploratory pro-
gram are to extend wave-function results to the baryon
sector and to compute moments of the structure func-
tions of hadrons. A recent study of Martinelli and

Sachrajda for the pion indicates that the latter calcula-
tion is within reach of present-day computing power.
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