
PHYSICAL REVIEW 0 VOLUME 38, NUMBER 3 1 AUGUST 1988

Analytical and semiclassical aspects of matter-enhanced neutrino oscillations
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Matter-enhanced neutrino oscillations for the case of two neutrino flavors are studied and three
different approximation methods for calculating the unaveraged oscillation probability are present-
ed. Two of these methods provide simple analytical expressions, valid for small or large vacuum

mixing angles, which are very simple to evaluate numerically. The third method provides an ex-

pression uniformly valid over the entire range of mixing angles. In their respective regions of validi-

ty, the approximate calculations using these methods are found to be in very good agreement with
the exact calculations.

I. INTRODUCTION

If neutrinos have nonzero masses, their mass eigen-
states do not need to be the same as the weak-interaction
charged-current eigenstates. In such a case different
flavors of neutrinos would oscillate back and forth as
they evolve in time. Neutrino oscillations in a vacuum
were first conjectured by Pontecorvo' and by Maki,
Nakagawa, and Sakata. 3 After it was experimentally
determined that the measured solar-neutrino capture
rate on Earth is about one-third of the standard solar-
model prediction, neutrino oscillations were proposed as
a possible mechanism to resolve the discrepancy between
experiment and theory. By considering a slab of constant
electron density equal to the resonant density, Wolfen-
stein demonstrated that even a small mixing angle can re-
sult in complete conversion of electron neutrinos into
muon neutrinos due to the modifications caused by the
coherent forward scattering of the neutrinos in electronic
matter. Although the possibility of a matter resonance
was noted by Barger, Whisnant, Pakvasa, and Phillips
subsequent to Wolfenstein's result, it was generally as-
sumed that such a resonance conversion is too restrictive
to be applicable to the solar-neutrino problem.

More recently Mikheyev and Smirnov demonstrated
that the resonance condition can be satisfied in a medium
with varying electron density. Bethe rederived this result
and showed that the Mikheyev-Smirnov-Wolfenstein
(MSW) mechanism has an adiabatic solution for the
near-exponential electron density distribution of the Sun.
Detailed aspects of this mechanism have been investigat-
ed by various authors. ' In principle, it is possible to
investigate matter-enhanced neutrino oscillations numeri-
cally. However, the simultaneous existence of a macro-
scopic (stellar radius) scale and a microscopic (quantum
mixing) scale leads to a time-consuming numerical in-
tegration.

As was stressed by Bethe and Messiah, ' the main
contribution of Mikheyev and Smirnov is to recognize
the importance of adiabatic level crossing. Level crossing
and other salient features of the underlying physics of the
matter-enhanced neutrino oscillations can be understood
analytically. Already considerable work was done in this
direction. Barger, Phillips, and Whisnant derived an ap-
proximate analytic solution for the adiabatic propagation

to calculate solar-neutrino capture rates of Cl and 'Ga
detectors. " Haxton discussed an extension of the
Landau-Zener level-crossing approximation for neutrino
propagation in matter. '

In this paper we point out a formal analogy between
supersymmetric quantum mechanics ' and the neutrino
oscillations for two flavors. We exploit this analogy by
applying analogs of recently introduced supersymmetry-
inspired primitive and uniform semiclassical approxi-
mations to neutrino oscillations. We demonstrate that
the adiabatic condition and the condition of validity of
the semiclassical approximations are the same. We also
obtain another approximation valid for small mixing an-
gles. These approximations have difFerent regions of va-
lidity as we discuss in the following sections.

In Sec. II we review salient features of neutrino oscilla-
tions in matter and summarize exact and approximate re-
sults given in the literature. A "hidden supersymmetry"
of the neutrino oscillations for two flavors is outlined in
the Appendix. In Sec. III we present a semiclassical
analysis of matter-enhanced neutrino oscillations using
the primitive Wentzel-Kramers-Brillouin (WKB} approx-
imation and establish its equivalence to the adiabatic ap-
proximation. Another approximation, based on the loga-
rithmic perturbation theory, appropriate for small mixing
angles, is presented in Sec. IV. As expected, the results
given in that section reduce to the nonadiabatic results
obtained by previous authors in the limit of very small
mixing angles. In Sec. V another WKB approximation,
which is uniformly valid for all vacuum mixing angles, is
elucidated. Section VI contains a discussion of our re-
sults and conclusions.

T

A —(5m ) cos28+—
2 (5m ) sin28

(5m }sin28
—A+(5m )cos28

(2.1}

II. NEUTRINO OSCILLATIONS IN MATTER,
EXACT RESULTS

For two flavors of neutrinos v, and v„ traveling
through matter, the mass matrix A in the flavor basis is

1 0
(m', +m', +")
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where m, and m2 are mass eigenvalues, 6t is the vacuum

mixing angle,

'2
6 sin20

2
2 — 2 25m =m2 —m ), (2.2a)

(2.8b)
and A is the Wolfenstein correction to the effective
mass:

A =2&2GFE,E . (2.2b}

In Eqs. (2.2), E is the neutrino energy, GF is the Fermi
constant, and X, is the number of electrons per unit
volume. We find it convenient to represent the electron
density as a dimensionless quantity

2 2
m2 —m&

(2.3)

We assume that g is a function of the distance from the
center of the Sun. Hence, in the ultrarelativistic limit
(R -ct},we can take g to be a function of time. After
discarding an overall phase, the Schrodinger-type equa-
tion which follows from Eq. (2.1) takes the form'

g —cos28
lg

gg %„(t) i sin28

where we defined

sin20
—g+ cos28 %„(t)

(2.4}

5m'
2E

2 2
m2 —Pl )

2E
(2.5)

In Eq. (2.4), %,(t) and qt„(t) are the wave functions for
the electron and muon neutrinos, respectively. Since in
this paper we wish to analyze Eq. (2.4) semiclassically, we
write Planck's constant irt explicitly in the equations
above.

The instantaneous eigenvalues of the mass matrix, Eq.
(2.1), are9

2 1/2

m+ ———,'(m, +m&+3 )+2E P (t)+2 $ 2 2 5 sin28

where a prime denotes derivative with respect to time.
Equations (2.8a) and (2.8b) are formally equivalent to
one-dimensional, time-independent Schrodinger equa-
tions with "potentials" (P —+i fig') and "energy"
(6 sin28/2) . This connection was first noted by
Notzold. 24

There is also a formal analogy between Eqs. (2.8) and
supersymmetric quantum mechanics. ' If these "poten-
tials" had opposite (positive) overall sign, Eqs. (2.8a) and
(2.8b) would be supersymmetric partners of each other
with the same "energy" spectra and the function P(t)
would be the superpotential. Although Eqs. (2.8) do not
represent the standard supersymmetric quantum-
mechanical system, the problem of the two flavors of neu-
trinos propagating through matter still has a "hidden"
supersymmetry, which we discuss in the Appendix.

As we mentioned earlier, Eqs. (2.8) are analogous to
Schrodinger equations describing the motion of a particle
above a complex potential barrier with real part —P and
imaginary part +ifiP' ( —for the electron-neutrino flux
loss and + for the muon-neutrino flux gain). The max-
imum of the real part of the barrier (/=0) corresponds
to the resonance density. Of course for the solar-neutrino
problem the initial conditions are different than the
boundary conditions of the standard time-independent
Schrodinger equation. We take (up to a constant phase)

(2.9a)

and

(2.9b)

or equivalently

where we introduced the function

P(t) =—[g(t)—cos26)] .
2

(2.6)

(2.7)

and
(2.8a)

The splitting between the mass eigenstates has a
minimum as a function of t if g&0 (m z & m, ). This
minimum occurs when P(t}=0 or g(t)= cos20, which
corresponds to the resonance investigated by Mikheyev
and Smirnov.

Equation (2.4} represents two coupled, first-order
differential equations. Differentiating Eq. (2.4) once with
respect to time, one can obtain two decoupled, second-
order differential equations for 4, and +„:

2
5 sin20

(2.9c)

Using the equivalence between the time-independent
Schrodinger equation and Eqs. (2.8) one can write down
exact analytic expressions for the neutrino conversion
probability in matter for a number of electron densities.
Notzold studied the density Votanh(r/ro), which corre-
sponds to a Rosen-Morse barrier. For the Sun an ex-
ponential density is a very good approximation. Pizzo-
chero, Toshev, and Petcov studied the solutions of
Eqs. (2.8) for an exponentia1 density, which corresponds
to a Morse barrier. Toshev also studied the situation
for a linear density, which corresponds to a parabolic
barrier. In all these cases, the conversion probability was
obtained in terms of hypergeometric functions. Unfor-
tunately, those exact solutions are of limited value since
the numerical evaluation of hypergeometric functions of
complicated arguments is not much easier than nurneri-
cal integration of Eq. (2.4).
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III. SEMICLASSICAL ANALYSIS
OF MATTER-ENHANCED NEUTRINO

OSCILLATION S

In this section we apply the WKB approximation to
Eq. (2.8a). Given a differential equation of the form

The width of the resonance region is

dN,
5r =2 tan20

N, dr
(3.7a)

and the neutrino-oscillation distance at the resonance is

2+
+f(t}%=0,

dt2
(3.1)

4mE

5m sin20
(3.7b)

the condition of validity for the WKB approximation is

1

2
(3.2)

Since Eq. (2.8a) is written in a form which resembles su-
persymmetric quantum mechanics, the approximation we
use is very similar to the recently introduced
supersymmetry-inspired primitive WKB approxima-
tion. (Our superpotential i/ is pure imaginary and in
dependent of fi, whereas in the usual formulation of the
supersymmetric quantum mechanics the superpotential is
pure real and has a complicated fi dependence. ) For Eq.
(2.8a), the function f (t) of Eq. (3.1) takes the form

Inserting Eqs. (3.7a) and (3.7b) into (3.6), we find the con-
dition of validity for the WKB approximation to be

v'2
L„,«5r, (3.8)

which is essentially the adiabatic condition (L„,«5r ).
To find the WKB solution to Eq. (2.8a), we make the

substitution

+, = exp —S (3.9)

and expand the argument of the exponential in powers of

S=So+triS)+0(fi ) . (3.10)
f ( t }= —

( g —2( cos28+ 1)+ i 111('
2R

(3.3)

+i 28 (3.4)

The turning points of the real part off (t) [the solution of
Ref (t)=0] are given by '2

S~2 y2
5 sln28 g2 R I( )

2
(3.11)

Inserting Eqs. (3.9}and (3.10) into (2.8a) and equating the
same powers of 111, we get differential equations for So and
S1.

2'
(
g'(g —cos28) (

3/2
~ g —2( cos8+ 1

~

(3.5)

We immediately see that, for small 8, since the turning
points begin coalescing, the WKB approximation will
fail. We can also derive a more precise condition of va-
lidity for the WKB approximation. Using Eq. (3.2} we

get

iS()' —2S',SI) + i/' =0 .

Equation (3.12) has two sets of solutions:
' 2 1/2

+f ~2+ 5 sin28
2

and

(3.12)

(3.13a)

—1

/2 4E dN,
2

2 (( tan28
Sm sin28 N, dr

(3.6)

At the resonance, g goes from cos28 —sin28 to
cos28+ sin28 as was shown by Bethe. Setting
g= cos28+ sin28, Eq. (3.5) takes the form (with
fi= l, c =1)

'2 1/2 '

S1 ——k —ln
5 sin28

~ +—lnS0 .

(3.13b)

The general solution +„which satis6es the initial condi-
tions of Eqs. (2.9), then takes the form

4, (t)= —,'T (0)T (t)exp +—J P (t)+
0

2 1/2

dt .

+ ,'T+(0)T+(t) exp ——JP2(—t)+
0

6 sin20
2

'
2 1/2

dt -, (3.14a)

where we have defined

T+ (t): 1+—
6 sin20+

'2 1/2

' 1/2

(3.14b)

Using Eq. (3.14a} we can calculate the probability of an electron neutrino created at t =0, to remain as an electron
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neutrino once it leaves matter (e.g., the Sun). In vacuum we have P= —hcos28/2. Inserting this value into Eq.
(3.14b), we find that in vacuum T+ take the values

T+(t)
~
„„„„=(1+cos28)'~

Substituting Eq. (3.15) into (3.14a), one obtains the probability

(3.15)

1
P(v, ~v, )=— P cos28

[P +(b. sin28/2) ]'

1 csin 28 2 t 2+— cos — P (t)+
2 [P +(b, sin28/2) ]'~

5 sin28
2

' 2 1/2

ct (3.16)

Hence if we begin with 100% electron neutrinos in
matter before the resonance region, the average probabil-
ity of them remaining as electron neutrinos after they
leave matter is

1.0

o.e

Oae

a~~+Wlhh\

(P(v, ~v, ) ) = —,'[1—Rz cos28/(1+%o)' ],
where

Ro =2$ /6 sin 28 .

(3.17a)

(3.17b)

0.4

Oa2

a ~ ~ a I a a a ~ I

Equation (3.17a) was previously obtained by Barger, Phil-
lips, and Whisnant in the context of the adiabatic approx-
imation [cf. Eq. (13) of Ref. 11].

In Fig. 1 we plot Eq. (3.14a) for a number of angles.
We see that it is a good approximation for larger angles,
but it breaks down for smaller angles as stated earlier.

o.e

O.e

0.4

0.2

0.0 ~ a a a f a a ~ a I a a a ~

5 10

(a)

15 20
IV. MATTER-ENHANCED NEUTRINO

OSCILLATIONS FOR SMALL VACUUM
MIXING ANGLES

In the previous section we have shown that the primi-
tive WKB approximation for matter-enhanced neutrino
oscillations is equivalent to the adiabatic approximation
and, hence, its region of validity is restricted to large [i.e.,
those satisfying the inequality in Eq. (3.6)] mixing angles.
In this section we introduce another approximation,
which is valid for small mixing angles.

We choose

g =(1—cos28) (4.1)

as our expansion parameter. Using Eq. (4.1), Eq. (2.8a)
takes the form

1.0

O.S

O.e

0.2

O.S
a

O.S

0.4

Solar Electron Density (N„cm )

' —e'+tXe+g g +,=0,
2

(4.2)
0.2

0.0 I

2a5

(b)
~ ~ a ~ I a a ~ ~ I a ~ a ~

5 7.5 10 12.5

where we have defined

4=/(8=0)= —(g —1) .
2

(4.3)

We solve Eq. (4.2) using the logarithmic perturbation
theory, i.e., by expanding ln%', in a power series in g.
Note that the WKB approximation studied in the previ-
ous section can also be thought of as a logarithmic per-
turbation, where the expansion parameter is A.

We proceed, as in the last section, by making the sub-
stitution

Solar Electron Density (Nx om )
FIG. 1. Probabilities for an electron neutrino to remain an

electron neutrino for several different mixing angles. The solid
line represents the exact values and the dotted line shows the re-
sults of the simple WKB approximation given by Eq. (3.14a).
For definiteness, we have chosen an exponential solar-electron

distribution g= foe with go= 137N„cm ', ro =0.092
X R s„„——6.4032 X 10 m, and the ratio of neutrino mass
difference to neutrino energy to be 6m /E=10 ' eV. (a) Re-
sults for mixing angles of 4S and 20 . (b) Results for mixing an-

gles of 5 and 2'.
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%', =e (4.4)

We then expand the derivative of the argument of the ex-
ponential in powers of g:

S =C0+gC1+g C2+ ' (4.5)

A(—co+co}=(4 +ifi4'), (4.6a}

Inserting Eqs. (4.4) and (4.5) into (4.2) and equating the
same powers of g, we get differential equations for
C0~C1~C2) ~ ~ ~ ~

iQ(T} ihT
%,(T)= exp — —g

2 2))I

Q2
dt e+IQ(t) dtte —cQ[t')

262 o 0

+O(g ) (4.12)

from which one can calculate the probability of an elec-
tron neutrino created at t =0, to remain as an electron
neutrino at t = T:

2
—()1 (c, +2coc, )=2

2

ft (c—~ +c, +2coc~ )=0,

(4.6b)

(4.6c)

P(v, ~v, )= exp —g f dt e'~(" +O(g ) .
2A'

(4.13)
and so on. The initial conditions, Eqs. (2.9a} and (2.9c},
can be rewritten as

S(t =0)=0 (4.7a)

and

S'(t =0)=——[4(t =0)+-,'gb, ] . (4.7b)

c,(t =0)= C(t =0—)—,0 (4.8a)

The initial condition of Eq. (4.7a) can be satisfied by
choosing the integration constant appropriately as one
calculates S from S'. To satisfy Eq. (4.7b) we choose

Results obtained using Eq. (4.13) for P(v, ~v, ) for
several mixing angles are plotted in Fig. 2, where they are
compared to the exact solution. As expected, the agree-
ment is very good for smaller mixing angles, but the ap-
proximation fails for larger angles.

As was emphasized by Rosen and Gelb, ' for extremely
small mixing angles (g «1), the Mikheyev-Smirnov-
Wolfenstein (MSW) enhancement region is very small.
Consequently, for such small values of 8 (or of g), the in-
tegral in Eq. (4.13) can be evaluated using the stationary
phase approximation. ' From Eq. (4.10), we obtain the
stationary point tR, as a solution to the equation

c((t =0)= — iI(,1 (4.8b)
Q'(t„)= [( (t„—) —1]=0,R (4.14)

c~(t =0)=0,. . . . (4.8c)

c()(t)= — 4(t),—0 (4.9a)

Using these initial conditions, Eqs. (4.6) can be easily
solved to yield

which, as expected, is the point at which the MSW
enhancement occurs for very small angles [in general,
g(tt() = cos28 as was discussed in Sec. II]. For a mono-
tonically decreasing electron density there is only one
such stationary point and so we can approximate the in-
tegral in Eq. (4.13) as

and

(4.9b) ,Q 2M
o )5,

I
g'(t„)

I

1/2

e' e (4.15)

c (t)= —e+'~'" dt'c (t')e2
0 1

where we have defined

Substituting Eq. (4.15) into (4.13) we obtain
(4.9c)

P(v, ~v, )= exp —, +O(g ) .g~h 2

I
g'(t„)

I

(4.16)

Q(t)= —f 4(t')dt'.2 t

fi 0

The solution of Eq. (4.2) is given as

(4.10)
Since for small angles g=28~ and g(tl( }=1, we can
rewrite the above result as

q(, (t)= exp f 'dt'co(t')+g f dt'c)(t')
0 0

+g f dt c (t')+ .
0

2 (4.11)

2m8 5,

I r(4 }c(tR ) I

(4.17)

which can be calculated to any desired accuracy by in-
cluding the appropriate number of terms.

For very small mixing angles, where we can neglect
contributions which are second order in g, Eq. (4.11)
takes a particularly simple form:

which is the result obtained in the Landau-Zener approx-
imation [compare Eq. (4.17) with Eq. (9) of Ref. 14 and
Eq. (20a) of Ref. 16 for small mixing angles]. Of course,
Eq. (4.11) is valid for larger values of 8, where Eq. (4.17)
fails.
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V. UNIFORM SEMICLASSICAL ANALYSIS
OF MATTER-ENHANCED NEUTRINO

OSCILLATIONS

The primitive WKB and small-angle approximations
outlined in the previous sections work well in their
respective regions of applicability, but there might exist a
range of angles between these two regions where neither
approximation is appropriate. An approximation which

is uniformly valid for all mixing angles would be free of
such a limitation. The uniform semiclassical approach
allows the WKB method to be extended to the region of

1.0

O.S

0.6

0.4

Oa2

a s a a I a a a s

small angles despite the fact that the turning points of the
problem are very near the real axis, thus providing an ap-
proximation that is valid over the entire angular range.
As is also the case with the other approximations
presented in this paper, this method is not restricted to
any particular choice of density distribution.

In this section we apply the uniform semiclassical ap-
proximation to the problem of matter-enhanced neutrino
oscillations. We take advantage of the "hidden" super-
symmetry in the equation governing the time develop-
ment of the neutrino probability by using the
supersymmetry-inspired uniform approximation. This
method has the advantage of separating the purely real
Pi(t} term from the purely imaginary P'(t) term in Eqs.
(2.8a) and (2.8b). The supersymmetric uniform approxi-
mation outlined in Ref. 23 was applied there to the prob-
lem of bound-state wave functions in a potential well.
With small modifications, the method can be applied to
the case of above barrier scattering which is formally
equivalent to the matter-enhanced neutrino oscillation
problem considered here.

As we described in Sec. II, the propagation of the elec-
tron neutrino in matter is described by the equation

O.S '-
s

O.e—

0.4

a

0.2
' ~

0.0
()

a a ~ I a a ~ s I s s ~ ~ I a s a ~ I a a ~ ~ I a a a s

6 10 16

82%

, —[P'(i)+ii}tQ'(r)]%,(i)=A%, (r), (5.1)

where we have defined
2

d sin28
2

We wish to solve Eq. (5.1) by using the approximation

Solar Electron Density (N~ cm ) 4', (i) -K(t) U(S(i }), (5.2)

1.0

O.Q5

O.QO .6'

O.S5

s I a a ~ a I ~ a ~ s I ~ a ~ s I ~ s a a

O.QQ8

' ~

' ~

s

' ~

.1e

O.QQe

O.QQ4
~ a ~ I a ~ a s I a ~

2 4

(b)
~ a I a a ~ a I ~ ~ a ~

6 S 10

Solar Electron Density (N~ cm )
FIG. 2. Probabilities for an electron neutrino to remain an

electron neutrino for several different mixing angles. The solid
line represents the exact values and the dotted line shows the re-
sults of the small-angle approximation given by Eq. (4.13}. We
have used the same parameters as were used in Fig. 1. (a) Re-
sults for mixing angles of 5 and 2. (b) Results for mixing an-

gles of 0.5' and 0.1'.

K(i)= [S'(i)]

simplifies the problem to that of solving

(5.4)

K II
iri' —(S')'(0+ii)iri+S')+[A+/'(i)]+ilia'(i) =0 .

K
(5.5)

where the function U(S(t)) is a known solution of the
mapping equation

—(S +iilfi)U(S)=AU(S) . (5.3), a'U(S)
g2

In Eq. (5.3), the value of i} is chosen to be kl depending
on whether P' is positive or negative. If we ignore the ex-
plicitly trt-dependent terms in the effective "potentials" of
Eqs. (5.1) and (5.3) we see that the turning point topolo-
gies of the "local momenta" are identical as long as
Q&0. This equivalence of turning point topology (here
the topology is that of complex-conjugate pairs) is critical
in developing the correct uniform approximation to the
solution of Eq. (5.1). Note that if the mapping "poten-
tial" were chosen to be a constant (instead of S }, the
primitive WKB approximation of Sec. III would be ob-
tained.

Substituting the assumed forin of Eq. (5.2) for 4,(t)
into Eq. (5.1), utilizing the fact that U(S) satisfies Eq.
(5.3), and making the choice
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Now, in the spirit of the WKB method, we expand the
function S(t) in a power series of fi and keep only the two
lowest-order terms

S(t)=S,(r)+fiS, (r) . (5.6)

Substituting Eq. (5.6) into (5.5) and separating powers of
fi leads to the two equations

id at the turning points and away from them. In particu-
lar, we choose the turning point to such that
p(to)=+i&A corresponds to So(ro)=+iv Q and

P(to )= i—&A corresponds to So(to )=+i &Q where to
has a positive imaginary part. With these choices, 0 is
determined by

and

[A+/'(r)] =(Q+S,')(S,')' (5.7) f, +A+0'(~)dX=
2

and So(t) by

(5.10)

i p'(t) =2(Q+So )SOS I +(So ) (I v]+ 2SOS& ), (5.8)

where only terms up to first order in A have been re-
tained. Equation (5.7) can be immediately solved to give

f +Q+cr'do =f &A+/'(y)dy . (5.9)

Choosing the zeros of Q+So(t) to correspond to those of
A+/ (t) produces a wave function that is uniformly val-

I

(5.11)

K(r ):-[So(t ) ]
Q+So(t)
A+ /'(r)

(5.12)

Now Eq. (5.8) can be solved for S,(t) with the result

So(t)

f +A+/ (y)dy = f +Q+o do .

Note also that, to lowest order in A', Eq. (5.4) becomes

i p(t)+[/ (r)+A]' i&Q
2[Q+S02(r)]'~' i &A So(r)+ [S02(t)+Q]'~' (5.13)

From Eqs. (5.10), (5.11), and (5.13) we see that if t is real, then So(t) is also real and S&(t) is imaginary.
The solutions of the mapping equation are the parabolic cylinder functions

D„(+(1+i )S(&) )

with v= —(1—q+iQ/2). Therefore, we can write the neutrino probability amplitude as

%,(r)=E(t)[ AD„(y(t))+BD„(—y(&))], (5.14)

where y(t)=(1+i)S(t) The con.stants A and B are to be determined by the initial conditions. With the initial condi-
tions of Eqs. (2.9), the approximate solution is found to be

%,(t)= —D„(y(t)}D„'(—y(0)) —D„(—y(t))D„'(y(0))Z(r) r( —v)

+ i g(0) — —[D„(—y(t) )D„(y(0) ) —D„(y( t) )D „(—y (0) ) ]
E'(0)

(5.15)

where 1 ( —v) is the gamma function and a prime denotes
a derivative with respect to the argument of the parabolic
cylinder functions. For large enough t [when y(t) gets
large], it is possible to replace the parabolic cylinder
functions appearing in Eq. (5.15) with their asymptotic
forms.

We should contrast our result with that obtained by
Haxton. ' ' Equation (5.15) is formally very similar to
Haxton's result, ' derived using the Landau-Zener ap-
proximation, where the matter density is replaced by a
linear function of t that has the correct magnitude and
first derivative at the crossing point. Our result is de-
rived for an arbitrary matter density, provided that the
turning point topology discussed earlier is realized. For a
monotonically decreasing density that would be the case.
Indeed, for the special case of a linear matter density, Eq.
(5.15) reduces to the result given in Ref. 16.

Figure 3 compares the results of Eq. (5.15) with the ex-
act results for several mixing angles. Note that the uni-

I

form method provides an excellent approximation to the
exact result over the entire range of mixing angles, in
contrast with the primitive WKB and the small-angle ap-
proximations.

VI. CONCLUSIONS

In this paper we studied rnatter-enhanced neutrino os-
cillations for the case of two neutrino flavors and present-
ed three different approximation methods for calculating
unaveraged oscillation probabilities. The first approxi-
mation is a WKB approximation which exploits a formal
analogy between supersymmetric quantum mechanics
and neutrino oscillations for two flavors. We showed
that the condition of validity for this approximation is
the same as the adiabatic condition, so that it is applic-
able for large [as defined by Eq. (3.6)] vacuum mixing an-
gles. The second approximation is achieved within the
context of logarithmic perturbation theory by taking the
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a
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probability, we expect that they will be especially suitable
to use when the oscillation length is comparable to the
distance traveled by neutrinos in matter. (For neutrinos
traveling through the Earth that might be the case. ) In
such cases our expressions could provide simple estimates
of the expected neutrino capture rate.
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APPENDIX: SUPERSYMMETRY OF NEUTRINO
OSCILLATIONS WITH TWO FLAVORS

To demonstrate the "hidden" supersymmetry of the

problem of two flavors of neutrinos propagating through
matter, we introduce the operators

(Al)

Using Eq. (Al), Eqs. (2.5) can be written as
'2

(A2a}

0.99S

ff

0.99e ',
—

(b),
099

0 2 4 d S io

Solar Electron Density {N~ cm )
FIG. 3. Probabilities for an electron neutrino to remain an

electron neutrino for several different mixing angles. The solid
line represents the exact values and the dotted line shows the re-
sults of the uniform semiclassical approximation given by Eq.
(5.15). We have used the same parameters as were used in Fig.
1. (a) Results for mixing angles of 20' and 2'. (b) Results for
mixing angles of 1' and 0. 1'.

and

H„Q„=B B+%„= 5 sin28
2

Introducing

H, 0

0 HP .

B B
0

0

B B+

By further defining the operators

B+
0Q, =v'2 ~

Eqs. (A2a} and (A2b) can be written together as

2
b sin28

P. , P.

(A2b)

(A3)

(A4)

(A5a)
vacuum mixing angle as the expansion parameter; hence,
it is designed to be valid for small vacuum mixing angles.
Both of these approximations are numerically much

simpler and faster than the exact numerical integration of
the equations describing neutrino oscillations. The third
approximation is another WKB approximation unifor-
mized to be valid for all mixing angles. In their respec-
tive regions of validity, the approximate calculations us-
ing these methods are found to be in very good agreement
with the exact calculations.

Our approximations give the unaveraged neutrino os-
cillation probability in all three cases. Upon averaging
they yield previously obtained results. However, since we
have simple expressions for the unaveraged oscillation

and

Q, =i&2
0 B+

0 (A5b}

one can show that the following commutation and an-
ticomrnutation relations are satisfied:

(Q, , QJ ) =25,,H; i,j =1,2,
[H, Q, ]=0; i,j =1,2 .

(A6a)

(A6b)

Equations (A6) are the commutation and anticommuta-
tion relations of the superalgebra SU(1/I), realized here
in a non-Hermitian representation.
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