
PHYSICAL REVIEW D VOLUME 38, NUMBER 3 1 AUGUST 1988
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We investigate ordinary-mirror fermion mass splitting, quark isospin breaking, and both Majora-
na and Dirac neutrino mass seesaw mechanisms in the framework of E6-based superstring-type
models with mirror families. Our results suggest that actual realizations containing vectorlike gen-
erations should not be overlooked in the search for a realistic low-energy phenomenology.

I. INTRODUCTION

Superstring theory, ' whether based on the heterotic
version formulated in ten dimensions which must be
compactified down to four dimensions or on its more re-
cent versions formulated directly in four dimensions, has
provided a rich new framework within which one can at-
tempt to embed the low-energy standard model of
Glashow, Salam, and Weinberg. Various issues are
amenable to investigation which heretofore lay outside
the purview of the standard model. The quark-lepton
generation pattern with its puzzling mass spectrum is one
aspect which is of interest to us here.

In the case of the ten-dimensional heterotic super-
string, for Calabi- Yau compactification, the number
of chiral quark and lepton families is related to the
difference of two Betti-Hodge numbers b2 I

—b, , The
single number b», on the other hand, yields an upper
bound on the number of vectorlike matter families which
may exist in nature. It has been popular in the litera-
ture ' ' to consider manifolds which minimize the latter,
i.e., b, I

——1, since no evidence has appeared in nature
which suggests the existence of mirror families. Howev-
er, the current lower bound on such quarks and
charged-lepton masses is only 22 GeV. Since such mirror
fermions have SU(2)L quantum numbers, their masses
are bounded from above to be &M~, so they may be
discovered or eliminated completely in the near future.
In this context, we investigate here what quark and lep-
ton mass spectrum is viable in the superstring framework
when at least one mirror family of quarks and leptons is
present. The interesting case of large mixing of ordinary
and mirror families, leading to quark and lepton seesaw
mass contributions, is considered. Such mixing will be
generated via intermediate mass scales. Though, in gen-
eral, ordinary families will mix with each other and with
all mirror families present, for purposes of illustration we
shall consider mass matrices involving only one ordinary
family and one mirror family.

In what follows, we shall focus our attention on the
heterotic superstring and on the maximal subgroup of E6,
SU(3),SSU(3)t II SU(3)„and its subgroups, but the vari-

ous mechanisms considered will be presented in as gauge
group independent a manner as possible. We consider
both standard and exotic rnatter field content, i.e., the
16+16 of SO(10) and 27+27 of E6, respectively. Based
on group-theoretic considerations we anticipate what
mechanisms may be present to obtain a realistic low-
energy phenomenology.

By way of an overview, we descriptively list our major
assumptions and results. The Higgs superfields are as-
sumed to arise only from the vectorlike sector of the
theory surviving compactification, with no colored Higgs
superfields present. We impose ordinary supersymmetric
R parity or M parity (under which matter superfields are
odd}. We further assume that R parity or M parity
remains unbroken in the low-energy theory, i.e., no
matter scalar vacuum expectation values (VEV's} exist.
These two assumptions taken together guarantee the ab-
sence of both gaugino, and Higgsino, matter fermion
mass mixing. Neither assumption alone is sufficient to
guarantee either. R parity or M parity together with the
assumption of no colored Higgs superfields in the theory
further prevents rapid proton decay. ' With these as-
sumptions spelled out in the ensuing sections, we con-
struct the most general form of the quark and lepton
mass matrices, with and without mirror fermions present.

Within the framework outlined above, the following re-
sults are obtained. There exist mechanisms for splitting
ordinary and mirror charged-fermion masses and for ob-
taining the observed pattern of quark isospin breaking.
The quarks and leptons will receive both seesaw and radi-
ative mass contributions. Generalized neutrino mass
seesaw mechanisms" of both the Majorana and Dirac
type emerge in the presence of mirror families, where
intermediate-mass-scale entries will be required for all
but one of them. The Dirac case with no intermediate
mass scale was treated earlier in Ref. 12 as a special case.
The Dirac schemes will be viable only if SU(2)tt is not
part of the low-energy gauge group. Our results suggest
that actual realizations containing mirror families may
well play a role.

Missing from our analysis is a discussion of the
renormalization-group constraints on the particle field
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II. GENERAL MODKI. -INDEPENDENT
FRAMEWORK

A. Field content of the EqKz theory

We begin by elaborating the matter and gauge field
content in the compactified EsES theory. In the zero-
slope limit of the superstring in ten dimensions prior to
compactification, the representation content of the mass-
less sector is just

(248, 1 )e (1,248), (2.1a)

content. ' It is interesting to note, however, that the
presence of additional quarks from mirror families will
tend to make supersymmetric SU(3), (SQCD) asymptoti-
cally divergent, since the ft function for SQCD becomes
positive for five or more quark families, not including the
exotic isosinglets of E6. It follows that supersymmetric
models with mirror families provide a natural setting for
the attractive nonperturbative scenario of Maiani, Parisi,
and Petronzio' (MPP). In this scenario the value of the
gauge coupling g(p) at the low-energy scale p is almost
completely determined by the scale A at which it be-
comes -1, being very insensitive to g(A). Depending on
the choice of field content, A can be close to the
compactification scale. ' Furthermore, it has been shown
that the ten-dimensional (10D) heterotic superstring is
likely to be strongly coupled, ' a result which is con-
sistent with the large initial couplings g (A) required for
the MPP scenario.

The organization of our paper is as follows. In Sec. II
we present the general field content, couplings, and vacu-
um expectation values that contribute to the quark and
lepton mass matrices. Approximate mass eigenvalues
and eigenvectors are given in Sec. III for the charged fer-
mions of one generation. Discussion of SU(2)I breaking
in the vectorlike Higgs sector, splitting of standard and
mirror fermion masses, along with comments on inter-
family and intrafamily quark mass splittings are also
presented. Neutrino mass seesaw mechanisms of the
Dirac and Majorana types are considered in Sec. IV for
chiral and vectorlike families, with and without exotic
leptons. We conclude with a summary of our results to-
gether with a discussion of the realization in superstring
theories of the field content required for the various
mechanisms considered.

Calabi-Yau manifolds ' the number of chiral families is
given by

nz7 —nz7
——,' ~

X(K6)
~

(2.2)

where 7 is the Euler characteristic of K6, while the num-
ber of vectorlike matter families is governed by the Betti-
Hodge number b, ,

In general, the number of families obtained in this
compactification is too large, and further breaking of E6
is difficult to accomplish. Both difficulties are surmount-
ed by the Wilson-loop mechanism' of Hosotani and Wit-
ten, ~hereby the Es is broken directly to a subgroup of
E6. It should be noted, however, that while the chiral
families are protected by an index theorem, the vectorlike
families are not. Hence, whereas for chiral families all
components of the 27 survive, in general this is not true
for vectorlike families. We shall therefore consider
several combinations of survivors for vectorlike matter
families in what follows.

Since our primary focus is on rank-6 subgroups of E6,
it is convenient to classify' the supermultiplets according
to the SU(3), jgj SU(3)L 8 SU(3)a maximal subgroup of E&.
For subgroups of [SU(3)] the appropriate submultiplets
should be understood. Thus

27=(3,3, 1)+(3,1,3)+(1,3, 3)

with 427 ——A +I+C,

27=(3,3, 1)+(3,1,3)+(1,3,3)

(2.3a)

(2.3b)

with 47s =—g+GL +0„+EL+X+, where the carets indi-
cate superfields. The matter superfields AM, SM, and CM
with content

AM 0 AM& AM& kM DBM&BM& C'MC CM CM&

involve quarks and squarks, antiquarks and antisquarks,
and leptons and sleptons, respectively. The standard
quarks and leptons can be represented by 3&(3 matrices
of SU(3)g SU(3) according to

with +27= A+8+C,

78=(8, 1, 1)+(1,8, 1)+(1,1,8)+(3,3,3)+(3,3, 3)

(2.3c)

248~(27, 3)+(27,3)+(78,1)+(1,8) . (2.1b)

where the chiral fermions and bosons observed in nature
belong to the fundamental (and adjoint) representation
248 of E&, while the "shadow" world resides in the 248 of
E~. Upon compactification of six of the spatial dimen-
sions in a I&'ahler manifold with SU(3)H holonomy, the Es
group is broken down to E6 SU(3 )H with N = 1 super-
symmetry, whereby

&M

QC
1 d Q

1 I

Q2

h' d' Q'
3 3 3

Q) Q2 Q3

A~ — dJ d2 d3

h, h2 h3

(2.4a)

(2.4b)

The 27 supermultiplet contains matter fields and Higgs
bosons associated with the "standard" fermions; the 27
contains those associated with "mirror" fermions; the 78
contains vector gauge bosons and gauginos, and the 1

contains a Higgs scalar and Higgsino fermion. For

e v n'

C~ —— E vE N'

~c Ec ecE

(2.4c)

while their superpartners A~, BM, and CM are given by
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similar matrices with tildes indicating the corresponding
scalar fields. The entries in the matrices corresponding to
(2.3b} are primed and conjugated. The SU(2)L SU(2)s
submatrices of C given by

¹

E vE

¹

E'E
Cn

e
(2.4c')

lie in part of the 10, 16, 16, and 1 representations, respec-
tively, in the SO(10) decomposition of the 27 of E6:
27= 16+10+ l.

In addition, Higgs superfields Cz

VCR',

Cu (or submul-
tiplets for subgroups of [SU(3)] }containing Higgs scalars
and Higgsinos will also be present. These will be as-
sumed to arise from the vectorlike sector in general, '

which, for Calabi-Yau manifolds corresponds to those
representations among the b, , pairs of 27's and 27's
which survive compactification. For example, if the low-
energy group is [SU(3)], the Higgs superfields would

arise from an equal excess of C s and C's compared to the

number of Asr's, Per's and A~'s, Bsr's, respectively
Note that we have assumed that there do not exist any
colored Higgs superfields. How this assumption may be
realized is discussed in Sec. V B. As a result, imposition
of either R parity or matter parity' will prevent rapid

proton decay (see Sec. II B). Although it is important to
distinguish between matter and Higgs supermultiplets, as
will be discussed in the next section, we shall use the slep-
ton labels for both to specify the transformation proper-
ties of the scalars.

We need not spell out in detail the representation con-
tent of the 7S superfields containing gauge fields and their
associated gauginos. Although it is possible that one or
more E6 singlets, '

P, will survive compactification, for
Calabi-Yau backgrounds they will obtain a mass com-
parable to the Planck mass mp~, due to world-sheet in-
stanton effects.

i,j,k

+27 terms . (2.S)

Expanding in components, the Yukawa terms of interest
can include

B. Yukaea and nonrenormalizable couplings

The low-energy groups we consider are [SU(3)] and
and its subgroups. The Yukawa part of the superpoten-
tial can be written generally as

A SC 0 uk 'e +ud 'E +du 'E '+ h u 'F '+ u u 'N z +dh '7+ dd 'Vz + hh 'n '+ kd 'N ',
C'M'0 eE'N'+vN—'Ns+r7'EE' 8'vzNz+—evFe' eE 'N' ve—'E+n'EE—'+evze'+vN'N z

ve'E n'—vsN—z+(evsF ' ve 'E+v¹—NF' n'vzN—z eE'N'+n—'EE')

(2.6a)

(2.6b)

plus similar expressions for the 27 terms, where the
slepton labels here refer to Higgs scalars with the same
transformation properties. In (2.6b) we have separated
out the Dirac terms from the Majorana terms. ' The
couplings implicit above are related only by the low-
energy group. If Higgs singlets P were present, Yukawa
terms of the following type would also rise in the super-
potential:

I,J, k

(2.7)

In this paper we study matter fermion mass matrices
for which there is no mixing of matter with Higgsinos
and gauginos. This greatly simplifies the search for
effective seesaw solutions to the light neutrino problem.
(In fact, solutions such as those that we have found may
not exist if Higgsinos and gauginos are included in the
neutral-lepton mass matrix. } To ensure that such mixing
does not occur, we impose either ordinary supersym-
metric R parity (under which matter fermions and
Higgs scalars are even, while matter scalars and Higgs
fermions are odd) or matter parity' under which matter
superfields are odd while Higgs superfields are even.

Both of these discrete symmetries forbid Yukawa cou-

plings involving only one matter superfield and so
prevent direct mixing of matter fermions and Higgsinos
through Higgs VEV's. We must further assume that, fol-

lowing renormalization-group evolution, those scalar
mass inequalities which guarantee absence of matter sca-
lar VEV's are satisfied, i.e., R parity or M parity remain
unbroken in the low-energy theory. This prevents direct
mixing of matter fermions with gauginos via supersym-
metric (SUSY) kinetic energy terms, as well as direct mix-

ing of the former with Higgsinos through matter scalar
VEV's. Either R parity or matter parity implies only one

type of Yukawa coupling for matter superfields,
%'~%'~%&, and an extra one for Higgs superfields,

%'z%'&%~. If the latter type couplings are typically
larger than the former, we expect Higgs-scalar masses to
evolve more rapidly than matter scalar masses, perhaps
justifying our assumption that only Higgs scalars acquire
VEV's. It is interesting that R parity or matter parity
will also prevent the troublesome A~, 8~, A ~, and 8 ~
terms. With no colored Higgs superfields present, as wi11

be assumed throughout, this ensures absence of rapid
proton decay. ' The resulting Yukawa superpotential
wi11 then consist of the couplings
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W=pMpMCH+ AMBMC'H+CHCHC'H+27 terms

+( AM AM+BMBM+ C'MCM+ 0HCH )Q,

(2.g)

~NR ~HCH(MCM+ AM AM+~MBM }
mp,

(2.9a)

mp)

A

(HH MCM+CH H~MM } (2.9b)

C'H CH 0H CH
mp,

where, as usual, the appropriate representations and cou-
plings should be understood for subgroups of [SU(3)] .
Though indices have been suppressed, in general several
multiplets of each kind may appear. The first two terms
plus their mirror counterparts lead to ordinary EI =—,

'

matter fermion masses, and if intermediate scales exist, to
large entries in the neutral-lepton mass matrix crucial for
all but one of our light neutrino seesaw solutions. If P's
obtain VEV's (see the next section), the last set of terms
will lead to important standard-mirror matter fermion
mixing.

In addition to Yukawa couplings, nonrenormalizable
terms of dimension 5 or higher may be present in the su-
perpotential. For example, it has been shown that for
Calabi- Yau backgrounds, world-sheet instantons will
generate such terms. Imposing either R parity or
matter parity, we find that the nonrenormalizable super-
potential up to and including dimension-7 contributions
consists of the terms

where, in general, several copies of each are possible fol-
lowing compactification. Nanzero VEV's for vE, XE,v
and v F', N z, v" with break SU(2)L and contribute mass
to ordinary and mirror fermions via the couplings of
(2.8). How such VEV's may be obtained will be discussed
in Sec. III B. Given a pair (IT ', n ') or (N ', N '), depend-
ing on the relative sizes of SUSY-breaking soft terms at
low energy, its contribution to the scalar potential can be
positive definite along D-flat directions. For such a pair
it may be possible for one or both elements to obtain
VEV's & 1 TeV (the observable SUSY-breaking scale) ra-
diatively, in much the same way that SU(2)L-breaking
VEV's are generated.

Intermediate mass scale VEV's for at least one pair
(If ', n ') or (N ', N ') will be essential in all our ultralight-
neutrino seesaw mechanisms. In addition, such VEV's
can affect the complete breaking of the low-energy group
down to the standard model at a high scale Al, although
the phase transition will actually occur at temperatures
T-1 TeV. There are several ways in which flat direc-
tions may become lifted at intermediate-mass scales. For
example, this can happen purely radiatively at one-loop
level without introduction of nonrenormalizable terms.
Typically, this will result in (n '), (rIf ') or (N'), (N')
or both of —10' GeV.

Addition of the nonrenormalizable couplings

(ncB ) (NCN, )or
mp) m p)

contained in the second term of (2.9c) will also lift the fiat
directions at A& —10' GeV, while nonrenormalizable
couplings

A A A

+ 3 (0H0HCH )(CHCHCH)
mp,

(2.9c) (n'n') (N'N')
or

mp) mp)

+ 3 (CHCHC'HCH)(C'MCM+ AM AM+IBM)
m p)

(2.9d)

plus other dimension-5, -6, and -7 terms with an even
number of matter superfields. The couplings in (2.9c) can
be important in lifting flat directions, thus leading to in-
termediate mass scales as discussed in Sec. II C below.
They will also play an important role in a radiative
scheme for splitting ordinary and mirror matter fermion
masses as discussed in Sec. III. Couplings of (2.9a) and
(2.9d) will lead to important mixing between ordinary
and mirror quarks and leptons while (2.9b) may lead to
large right-handed Majorana neutrino masses essential in
one of our light-neutrino solutions.

C. Vacuum expectation values

We now list the vacuum expectation values which can
arise from the vectorlike Higgs sector. For convenience
we label fields in question by their sneutrino counter-
parts:

v~, N E,v, N ', n 'C CH, v &,X F,v ",X ', n 'C CH,

(2.10}

contained in the first term of (2.9c) will lead to
Az —10' -10"GeV, so that two intermediate mass scales
are possible.

If E6 singlets P exist, it again becomes possible to lift
flat directions without the presence of nonrenormalizable
terms, this time leading to Az —10' -10" GeV. To see
this, consider for simplicity only one E6-singlet superfield

p and one pair of (fi' ', n '} superfields together with the
following superpotential plus soft terms:

~ F +~ F + III Pl~ F III '
I

Il
"

I
+ I

n "—Ii '
I Dl

(2.11)

The second and third terms will be generated by world-
sheet instantons as previously pointed out, while the
fourth term will be driven negative as a result of
renormalization-group effects with m —m 0 —1 TeV.
The F terms resulting from the first and third couplings
will lift the flat directions and lead to
&n ') =&n ') -(mme, )'", &y) -m.

D. General mass matrices

We now present the general form of the mass matrices
for a vectorlike family of quarks and leptons with all



38 QUARK AND LEPTON MASSES IN SUPERSTRING-TYPE. . . 921

components of the 27 and 27 present. If fewer com-
ponents survive, just set the relevant entries in the ma-
trices equal to zero. These matrices are sufficient for
studying the basic effects of mirror families on the mass
spectrum. The effects of quark mass mixing can be incor-
porated by perturbating about the generation-diagonal
limit. No mixing with gauginos and Higgsinos appears
under our assumptions of R parity or matter parity to-
gether with the absence of matter scalar VEV's.

We first identify the matrix entries with the possible
Higgs VEV's where coupling strengths are implicit
throughout, and slepton labels serve to identify the trans-
formation properties of the Higgs scalars. Transforma-
tion properties under SU(3), && SU(2)L SU(2) j((3(U(1)
U(1)' are indicated below in parentheses. Entries in the
mass matrices which can be ~10' GeV or —1 TeV
transform as

where i,j=1 or 2. It should be understood that in gen-
eral there may be more than one Higgs VEV with the
same transformation properties entering the above ex-
pressions. Order-of-magnitude estimates for the entries
of (2.13a) and (2.13b) will depend on whether they origi-
nate from dimension-5 or -7 terms and on which scales
enter the above expressions:

Q =+—', : 8"=tu, u', u", u'IL .

In terms of the two-component Weyl spinor basis, the
up-quark mass matrix is

M27 r

s2 —V2 ——(n ') -(1,1, 1)2/3 2/3,

s 2
- V2 = ( I )- ( 1, 1, 1) 2/3 2/3

s, —V, =—(N') -(1,1,2)2/3 }/3,
s', —V', —:(N ')-(1,1,2)

Weak scale entries transform as

(2.12a)

r M"—
27

rl 0 0 ml

0 r2 ml 0

0 ml rl 0

ml 0 0 r2
(2.14)

rn, —(,N E ) -(1,2, 2)

m', —(N s ) -(1,2, 2)i/3 i/3 ~

m2 —(vs') -(1,2,2), /3 i/3

m2 (vs') (ly2)2 ]/3 i/3

3
—(V) -(1 2 1)—i/3, —2/3

m 3
—(v")-(1,2, 1)i/3 2/3

(2.12b)

where r; mixes standard and mirror families. If a stan-
dard family is unpaired with a mirror family, clearly just
the upper block-diagonal submatrix enters:

Q =+—' 8 =Id' d, h' Ii d' d" Ii' Ii "iL,

Q =+1: 8'=
I e, e', E,E', e",e', E",E')(L .

Entries which can result from couplings of dimension 5
or 7 (given in that order) and from (I) X 27M X 27& if P ex-
ists are of the Dirac type,

The down-quark and charged-lepton mass matrices have
the identical forms if the bases are ordered as above:

r V,'V, , (V, V,')(VjV,'), ((|))-(i,l, l)„,
mpl m pl

0 m2 0 sl rl 0 u' 0

u — V2 V', , ( V2 Vi )( V; V,")-(1,1,2)0 i, (2.13a)
mpl

u' — Vi Vq, ( V, Y2)( V; V )-(1,1,2)(i, ,
mpl m pl

and of the Majorana type,

2 1 z
Vj Vj ( 1 1 3)4/3, (2/3, —4/3)

mpl m pl

de
0 u 0 0

0 r2 0 0 m2

u' 0 r3 0 0

0 0 0 r4 s'

m2 0 sl

0 m3 0

m3 0 s2

0 s2 0

0 m3 0 0 r2 0 0

0 m3 0 s2 u 0 r3 0

sl 0 sz 0 0 0 0 r4

(2.15)

(2.13b)
Q =0: 8 = tv, vF, NF, v", vE', Nz, N', n', N', n')I1,2 1

t, — V, , V, V, V, -(1,1,3)—4n, ( —z/3, ~/3
mpl m pl

Here the ordering is chosen for convenience in deterrnin-
ing the form of the eigenvalue and eigenvector solutions
given in Sec. IV below:

r(2 — V, V2, 3 V, V2V Vj-(1, 1,2) 4/3 'i/3
m pl

1 1

, V i Vz V, ~,'-(1 1 2 ~4/3, (/3-
mpl m pl
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I
Q)

tt
fp

0
0

m()
0

$)
0 0
0 0

Pl )2Q)

0
S2

0 m2

0
m3

0
r3

I
S)

I
S2

$2$)
IIf ]
I

Q)

I
m ))

0
0 0 0Q)

II
f2 0 00 0 m)p

I
Pl 2

I
Sp

I
S)
0

0 0 00 0 m3
If

r4
I

Q2

0 0m3Pl ))
0
0
0

Q2
tt

rs0 0 0 t2
I

Q2
It

r5

m)2 m2

0 0
0 0

I
m ()

0

II
f40 m3

I I
m)p m2 t2

0 0 0

(2.16)

With this form most of the higher-dimensional terms are
grouped in the lower diagonal block. Equality of
different r, m, and u entries in the above mass matrices
depends on the choice of gauge group.

Again we emphasize that the above matrices are of the
most general form in the absence of Higgsino, gaugino,
and family mixing.

III. QUARK AND CHARGED-LEPTON MASSES

We organize this section into four parts. In Sec. III A
we give the quark and charged-lepton mass eigenvalues
and eigenstates corresponding to the matrices of Sec. II C
under certain simplifying assumptions. In Sec. III B we
discuss in some detail the origin of SU(2)L-breaking
VEV's entering the expressions of Sec. IIIA. In Sec.
III C we suggest mechanisms for splitting the masses of
ordinary and mirror charged matter fermions and discuss
important radiative mass contributions to quarks and lep-
tons. The multigeneration case and quark isospin break-
ing is discussed in Sec. III D.

A. Quark and charged-lepton masses and eigenvectors

We now present the approximate mass eigenvalues and
eigenvectors for the quarks and charged leptons. Al-

though we are more interested in the vectorlike case, we

include for the sake of comparison the chiral case as well.

For ease of presentation we denote all r entries in the

preceding mass matrices as r.

Q =+ &~. 27only

The eigenvalues and eigenvectors

+m, : —(uL+uL )
2

(3.1)

m&..
l 0 2ug

(3.2)

Q =+2: 27+27

With both standard and mirror families present, the re-
sults are now

~c " c—m].'—uL+ uL+ uL +, uL
2 m& m&

(3.3a)

+
/r2 —m, m',

/

m&

1 r, , r
&2 m', m)

(3.3b)

where we have taken m, , r &m, cf. Sec. IIIC. Numeri-
cally for the first family, m

&

—10 GeV, m
&

& 22 GeV.

Q =+&~.' 27only

Here the results are

represent two degenerate Majorana masses which are
equivalent to a Dirac mass and four-component spinor

QL

(sf+st)': — hi+ 2, ~ (s,dL+s2hs). .
2 (s

1 +s2 )

(3.4a)

~
m, s, —m, s,

~

(sl+s2) &2 (s&+sp) (3.4b)

Q =XI" 27+27

Now we find approximately, with m;, u, u ', f & m
I «s„s

&
&S2,S2,
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r

(S2 +$2 )l/2

T

k(sl +$2 )': ~ 2) l 2
(s', dL+szhl }+hL"

v 2 (s l +$2

I mzsz —m', sl I 1 1, , r
]/2 ' g '

2 2 ]y2 2 L+, dL ~i~L, —dL+(sl +sz ) '~ 2 (sl +sz ) mz mz

(3.5a)

(3.5b)

(3.5c)

1
, dL +

2 2 l/2 $2 dL
mz (s, +sz }

{r —mzm z }szsz+(r m3—m 3 )sls l
—(ru' m—zm 3 }s',sz (ru——m zm3)slsz

(Sl +$2) Im2$2 m3$l I

1 dL— , dL,
' —s, hL

mg
(3.5d)

+m, : —(dr +dL) .
2

(3.4')

We have

Q k 3l 16+16

+mz.. d~+, dL+ dl"+, dL
2 m2 m2

(3.5a')

Ir' —mzmz I

m&
dL, dl. 4

3/2 m2 m2

(3.5b')

In the above we have, for simplicity, set u, =u,'=0 and
only kept terms up to 0 (r /m ') in the eigenstates,
neglecting terms of O(rs, /m'sz). The charged-lepton
masses and eigenstates are simply obtained from (3.4) and
(3.5) above by the appropriate basis substitutions in Sec.
II. It is apparent from (3.4a) and (3.5a) that we must take
sz/sl 10 in order to ensure that the heavy-mass eigen-
state is mostly the exotic Q =+—,

' singlet member of the
27, while the lightest-mass eigenstate is mostly the ordi-
nary doublet member dL. It is also interesting to note
that in the limit sz-sz »s„s', , (3.5c) and (3.5d) will

yield mass eigenstates and eigenvalues for d quarks,
charged leptons, alrd their mirrors exactly of the same
form as in the simpler u-quark case (3.3a) and (3.3b).

Finally we consider the possibility that the full 27 and
27 representations of E6 do not survive compactification,
i.e., only the would-be SO(10) representations 16 and 16
remain massless. In this situation, to be elaborated upon
in Sec. V, the Q =—,

' mass matrix remains unchanged,
while the Q = ——,

' and Q = —1 mass matrices in (2.15)
reduce to the form of (2.14) with m l and m l replaced by

m2 and m2, respectively. The mass eigenvalues and
eigenvectors corresponding to (3.4} and (3.5) are then re-
placed by the following.

Q =ksl: 16

We have

B. SU(2)L breaking in the vectorlike Higgs sector

The heavier quarks and leptons can obtain the bulk of
their mass via mixing with their mirrors, see Sec. III D.
Therefore, an acceptable VEV pattern may be
( v z ), (N z ) -Mn, ' ( Vz ), ( N z ) -0. The former may
simply be a consequence of m „,(0. These inequali-

B' B
ties are easily attainable as mirror fermions are experi-
mentally constrained to have large Yukawa couplings
with v z and N z, leading to large renormalization of the
latter's masses. We shall see that even with mz„, mz,

both less than zero, the scalar potential is not generally
unbounded from below. It follows that SUSY-breaking
scalar bilinears such as AIsvzN z, Ap'vzN z (where p
and p' are the coupling strengths of the corresponding
superfield bilinears resulting from trilinear terms in the
Higgs superpotential in E6-based models, and A, the
SUSY-breaking coupling, also has dimensions of mass
and is determined by details of the SUSY-breaking mech-
anism) are not strictly required in order to obtain accept-
able SU(2)L breaking and fermion masses. This is to be
contrasted with the case of minimal supergravity
(SUGRA), where the first term is required in order to ob-
tain ( vz ), (Nz ) (Mlr and ensure the absence of an elec-
troweak axion. For vectorlike models, the assumption of
low-energy ordinary-mirror quark mixing guarantees the
latter.

In light of the above discussion, we are free to consider
two cases in what follows: A «mo, and A -mo, Refs.
30 and 31, respectively, where mo (taken to be —1 TeV)
is the mass typically acquired by all scalars in the theory
as a result of SUSY breaking. We shall see below and in
more detail in Sec. IIIC that there will be additional
mechanisms available for splitting ordinary and mirror
fermion masses when A « mo.

We begin by giving the relevant low-energy Higgs-
scalar potential. For simplicity, consider just one copy
each of the Higgs superfields v, A' z, vz and their mirrors
v",v z, R z, while in general allowing for several pairs of
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Higgs scalars (i? ', i? ') and (1V';8''). The couplings of
Eqs. (2.8) and (2.9) involving only the above Higgs
superfields together with D terms and SUSY-breaking

soft terms will lead, in general, to the following relevant
low-energy Higgs-scalar potential, which we give for fu-
ture reference:

«;&'( I. I

'+
I Nz I

')+ «'&'( I.z' + I Nz I
')+ &N;&'( I. l

'+
I Nz I')+ &N: &'(

I
v"

I

'+ INz I')

+&&&'(
I
v I'+

I
v" I'}+&0&'( INz I'+ INz I'}+&0&'(

I
v I'+

I
v" I')

+ INzv, I
+ I v, Nz I'+ IvNz I'+ l»z I

+ Iv, vz'I'+ INzNz I'+ Ivv" I'
2

+ I
I'I' —

I

v" I'+
I vz I' —

I vz I' —INz I'+ INz I'I'
8

+similar D terms for other generators of the low-energy gauge group (3.6b)

+m]
I
Nz I +m2 I vz I +m3 I

v
I

+m] INz I +m2 I vz I +m3 I

v"
I

+ ~ & it; & N'+ & & N; & N'+ A & ir,' &
"N' + A & N', . &

"N' + g & y &
"+g & y &N N' + g & y &

+ & &8,'I J,N,'N J &(vv", NzNzvzvz)+ A, &(?? ';?? J,N;N J )(n kn '], N kN])&(vv", NzNz, vzv'z) . (36c)
mp) m p)

Clearly, the coupling strengths implicit above will be re-
lated by choice of the low-energy gauge group. Note that
we have assumed that in addition to Yukawa couplings,
nonrenormalizable terms in the superpotential will also
lead to SUSY-breaking soft terms in the scalar potential,
see (3.6c). The coefficients of all such soft terms are re-
ferred to generically as A.

Recall that for Higgs pairs (r7 ', ii ') and (N', N ') there
are three possible ranges of VEV's: -1 TeV,
-10' -10" GeV or ~10' GeV, cf. Sec. IIC. For
(ii ', if ') or (N ', N ') with intermediate-mass scale VEV's,
some or all of the Higgs couplings

e Vz8', +e 'e z8",+8''8', v+8 '8",O"

must be eliminated from the Higgs superpotential so that
some or all of the Higgs scalars Vz, gz, v and mirrors
remain light enough to acquire SU(2)z-breaking VEV's,
see (3.6a). An example of a discrete symmetry which ac-
complishes this exists for the extensively studied Yau
three-family models. For pairs (iI ',I ') or (N', N '}ac-
quiring VEV's ~10' GeV, in addition to the couplings
of (3.7a} the couplings

C C

(vzvz NzNz vv ) or (vzvz NzNz
mp) mp)

(3.7b}

will also have to be forbidden if the corresponding iso-
doublet Higgs scalars are to remain light.

%e now return to a comparison of the two cases men-
tioned at the beginning of this section: A —mo,
A &&mo. In the former case, which leads to a low-

energy potential very similar to those of the Inoue type,
for suitable ranges of parameters negative scalar masses
will not be required for generating some or all SU(2)L-

breaking VEV's. In the latter case ( A « mo) with those
terms appearing in the last three lines of (3.6c) essentially
absent from the Higgs-scalar potential, the opposite is
true —generation of non-negligible SU(2)L -breaking
VEV's necessitates negative scalar masses for all of the
corresponding Higgs fields. This property may facilitate
standard-mirror fermion mass splitting, cf. Sec. III C. As
a result, F quartic terms (3.6b} are generally necessary to
ensure stability of the potential. For example, if
m „,&0 is to lead to &Vz &, &N z &-M??, the quartic

v~, Ng

term
I Nzvz I, originating from (i? '8 zlzz)F, must be

present in order to stabilize the scalar potential along the
D flat direction

I
& v z &

I

=
I

& N z &
I
.

C. Splitting the masses of standard and mirror
fermions and radiative contributions to quark

and lepton masses

Charged mirror fermions are experimentally con-
strained to have masses larger than 22 GeV. Therefore,
if a known generation is vectorlike, a mechanism must
exist for splitting its ordinary and mirror quark and
charged-lepton masses. The necessity for such splitting,
together with flavor-changing neutral-current (FCNC)
and weak universality constraints, requires
m ] 2 3 « m ', z 3 and r « m ', z, respectively; see Eqs. (3.3),
(3.5), and (3.5'). We give in this section several alterna-
tive sources for the former inequality, not mutually ex-
clusive, one of which requires A &&mo. Each mecha-
nisrn involves different explicit breakings of ordinary-
mirror interchange symmetry in the Yukawa sector. The
section concludes with a discussion of important radia-
tive contributions to m, 2 3, alluded to previously.

First we elaborate on a feature of E6-based models
which naturally lends itself to ordinary-mirror mass split-
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ting. This is the fact that ordinary fermions and their
mirrors are provided with their own sets of mass giving
Higgs fermions, ordinary and mirror Higgs fermions ap-
pearing in the 27 and 27 representations, respectively.
Because of gauge invariance, there are no tree-level Yu-
kawa couplings between ordinary matter fermions and
mirror Higgs fermions or vice versa. One-loop Yukawa
couplings of this type are discussed later in this section.
As a result, the standard-mirror fermion mass hierarchy
may originate from a hierarchy of standard-mirror Higgs
VEV's rather than standard-mirror Yukawa couplings or
from a combination of the two. Before addressing these
possibilities in some detail, we note that the same can be
achieved for SO(10)-based models (or for its subgroups)
possessing two copies of the complex Higgs representa-
tion 10 (or submultiplets} if one introduces an extra glo-
bal symmetry. A U(1)po is the natural choice which
distinguishes between them. The U(1)p& ensures that at
the tree level one 10 couples exclusively to 16's (ordinary
matter), while the other couples exclusively to 16's (mir-
ror matter), hence resulting in the same feature attributed
above to E6-based models.

We now return to a discussion of mechanisms for ob-
taining m, 2 3 & m', 2 3. Let us assume that the Yukawa
couplings of the Higgs superfields vE, Az, v o'f type
CM CM CH, A~BICH, or CH are typically smaller than
those of their mirror counterparts (for Calabi-Yau mani-
folds this is a possibility, as the 27's and 27's come from
two distinct cohomology classes); then, in general, due to
renormalization-group effects we expect

((vz ), (N z ), (v) ) &((v @ ), (N z ), (v") ) . (3.8a)

From Eq. (3.8a) and the hierarchy of standard-mirror
Yukawa couplings assumed above, one also trivially ob-
tains

m I,2, 3 && 1,2, 3 (3.8b)

However, for A -mo, the burden of mass splitting falls
almost entirely on the hierarchy of standard versus mir-
ror matter Yukawa couplings. This is because the VEV
hierarchy of Eq. (3.8a) cannot be very large, & 10, due to
the presence of scalar bilinears, proportional to A, which
couple ordinary and mirror AI =—,

' Higgs fermions; see
the last six terms of (3.6c).

For A/mop&1, the standard-mirror or overall Yu-
kawa hierarchy need not be as large since the standard-
mirror VEV hierarchy can be greatly increased. In fact,
we shall see in Sec. III D that, including radiative effects,
when the latter is the case the overall Yukawa coupling
hierarchy required need not exceed 10 for certain models
containing vectorlike generations compared to 10 for the
standard model. The increased standard-mirror VEV
hierarchy follows from an observation made in the previ-
ous section —that for A gizmo, a large LI =—,

' VEV can
only arise if the correspondings Higgs-boson mass
squared is negative. As an example, again consider
2/ma&10 . If the largest Yukawa couplings of vz,
NF', or v are as little as a factor of 3 or 4 smaller than
those of their mirrors, then m, and m „, „may

VE& E,V VE, E,V

be positive ( &mo) and negative (-—M~), respectively,
at M~ following renormalization-group evolution. We
then expect the following VEV hierarchy from Eq. (3.6):

mo
&v, ), &N', ), (v) & lo-'

m e
VE, NE, v

(3.9}

& 10-'((-,"),(N,'), (-"))- lo M v,

where the appropriate couplings are implicit, and (P) 1

TeV, mz —10' —10" GeV. Interestingly, the VEV's
( vE ), (N z ), and ( v) given above are large enough to
be of significance for the erst-generation quarks and
charged leptons.

Finally, a large standard-mirror VEV hierarchy may be
due to a global or discrete symmetry; a U(l)pg is used in
Ref. 35. For example, for a pair (8' ', n ') with
(n '), (8')-M, such a symmetry ma ensure that the
couplings &'vz z, R''EE', and h'vz z, 8'P'X'" are,
respectively, present and absent in the superpotential. As
a result, only X z, vz would acquire masses -Ml, mak-
ing their VEV's negligible, while the VEV's of N z, v z
would be ~M~ as before. The analogous suppression is

possible for (7) and m3, if there exists a pair (N', N')
with VEV's —MI. With the VEV's ( vz ), ( N z ), ( v)
negligibly small, m&, m&, and m3 will be predominantly
radiative in origin and will not be large enough to gen-
erate heavy-quark masses —at least for t and b. The
latter wi11 instead obtain the bulk of their masses via large
mixing with their mirrors —see Sec. III D.

For superstring-type models based on Calabi- Yau
compacti6cation, implementation of the above scenario
requires discrete symmetries whose charge assignments
differ for the 27 and 27 sectors. There is a priori no
reason why this could not happen for two distinct coho-
mology classes. In fact, such a discrete symmetry, if it
existed, would likely have different charge assignments
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for standard and mirror quarks so that it could lead au-
tomatically to a U(1)p& (together with an invisible axion
and an acceptable solution to the strong CP problem if
Mpq -MI —10' —1O' GeV).

The remainder of this section details the important ra-
diative contributions to m, , m 2, m 3, cf. Fig. 1 . Other
diagrams which we do not discuss here involving k, P '
Higgs-boson exchange will also contribute. They will,
however, be negligible if P,E obtain intermediate-mass
scale masses; cf. the previous paragraph. How the trilin-
ear scale vertex for m P in Fig. 1(a) is generated can be
seen by considering the following terms in the superpo-

gpss g +g y peg
mp) m p)

(3.10)

Note that we must require

(~)
(5'I ') (N'N') &10 —10 Gey

mp1 mp&

tential [cf (2.6a), (2.6b), (2.8), and (2.9c)], where the neu-
tral superfields are Higgs superfields while the charged
superfields are matter:

) t
NE

I
I

I
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E

I
I
I
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F1G. &. Diagrams (a), (h), and (c) depict the radiative contributions to m I 3 3 and (d), (e), and (t) those to m
& 3 3.
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so that X E remains light enough to obtain a VEV (M~.
This relation is naturally satisfied for ( P ) & 1 TeV or
&I'&&n '&, &N'&, &N'&-MI —10' —10" GeV. If
Ml —10' GeV, cf. Sec. IIC, then we must replace the
dimension-5 terms in Eq. (3.10) with dimension-7 terms.
The scalar trilinear vertex is then obtained via

Xm [max(m „m )] (3.12)

where m is the SUSY-breaking gluino mass —m»z and

m, are SUSY-breaking squark masses —m 0. For
Q, Q

a, /4n. -0.01 and m~&2, mo-10 GeV, we obtain

m~&1 GeVX&, . (3.13)

Estimates for the other diagrams of Fig. 1 are obtained in
a similar manner. Those of m& 23 will be -0.1m& 23,
not taking into account differences in quark and lepton
Yukawa coupling strengths, since a, is replaced by a,
or a& in Eq. (3.12), corresponding to photinos or Z-inos
in the loop. Contributions to m, 2 and similarly to m3 (if
m 3 &0) will certainly be large enough to be of
significance in generating light-quark masses. In fact, if
they provide the dominant contributions to the d quark
and electron, one obtains m, /md ——O(a~/a, )-0.1 as
observed, even under the assumption of global or local
leptoquark symmetry. These radiative contributions will
also be important in obtaining quark mass mixing since,
in general, the Yukawa couplings leading to the scalar
vertices associated with Figs. 1(a)—(lc) will not be genera-
tion diagonal. We return to these radiative contributions
in the following section, where we discuss a mechanism
for obtaining the observed pattern for quark isospin
breaking when the known generations are vectorlike.

D. The multigeneration case and quark isospin breaking

In this section we make some remarks concerning the
multigeneration case with one or more mirror families
present. For simplicity we work in the limit where quark
mixing effects are obtainable as a perturbation about the
generation-diagonal case, so the generations are essential-
ly either chiral or vectorlike. The expressions for the fer-
mion masses and mass eigenstates given by Eqs. (3.3),
(3.5), and (3.5') can then be used to study an important
feature of the charged-fermion mass spectrum, i.e., the
generation dependence of the intrafamily quark mass
splittings. In particular, we shall point out a possible ori-
gin of the observed inequalities, m, & mb, m, & m„
md & m„, which is linked to the low-energy vacuum
structure and standard-mirror quark mixing. For a more

(3.11)

Vertices for the other diagrams of Fig. 1 will be generated
in analogous fashion.

One then expects radiative contributions to m ~ to be

o's
~ ~ (~) (n 'n ') (N'N') (N, )

mp) mp)

md—
[r' —m, m',

[

(3.14)

which is of the same form as the expression for m„. The
situation is the same if there are no exotic quarks in the
theory. Hence m„and md then consist of a seesaw part

r lm ',
2
—and a direct part —m, 2. The seesaw part will

clearly be the dominant source of mass for the third fami-

ly of quarks and probab1y for the charmed quark as
well. The direct part may be relevant for the strange
quark but will certainly be competitive for the first family
of quarks, cf. (3.13). It will also be an important source
of quark mixing. The important one-loop contributions
to m

~
and m z are proportional to ( N z ) and ( v z ), re-

spectively. The same is also true of the small ( & 10 MeV)
tree-level contributions of Eq. (3.9). If (Vz) &(Nz),
then we expect rnid & m', , i.e., mirror down quarks more
massive than mirror up quarks, and m2 & m

&
for all three

families, so that the seesaw contribution is larger for up
quarks while the direct contribution is larger for down
quarks. As a result, we expect m, &mb, m, &m, (since
the seesaw mechanism dominates for these families),
while md &m„becomes possible, since we expect the
direct contributions to be competitive for the first family.

A central requirement of the above model is
(vz) & (N z). This inequality or (vz) & (N E) could
be due, simply, to gauge invariance under the extended

detailed discussion, including comments on quark-lepton
mass splittings, see Ref. 35.

First we show that with at least one mirror family
present, the overall Yukawa coupling hierarchy need not
exceed 10 . The 6 and t quarks and ~ lepton can acquire
the bulk of their masses via large mixing with the mir-
rors, see Eqs. (3.3) and (3.5) and the next paragraph. A
large standard-mirror VEV hierarchy is then favored, re-
ducing the required Yukawa coupling hierarchy. In fact,
the readily attainable VEV's (vz), (N z), (V)-0, are
acceptable since radiative contributions can account for
the remaining charged-fermion masses. The c-quark Yu-
kawa coupling should be —1, while the first-generation
quark and lepton couplings should not exceed —10
see Eqs. (3.12) and (3.13) and recall that for leptons one
replaces a, with a ~ or aEM in (3.12).

When three mirror families are present, a nice mecha-
nism emerges which explains the observed pattern of
quark isospin breaking. The point of view is taken that
Yukawa couplings for up and down quarks will not be
sufficiently different to explain md m„, m, , »m, &, so
that an additional mechanism relying on the vacuum
structure of the theory is required. This is certainly true
if SU(2)R is part of the four-dimensional gauge group,
since then isospin is a symmetry of the Lagrangian. We
assume that one of the mechanisms of Sec. III C for split-
ting ordinary and mirror fermion masses is operative,
with m, 2 3 primarily radiative in origin. The masses of
up and down quarks for a vectorlike family are given in
Eqs. (3.3b) and (3.5d), respectively, for m, , r & m, '. for the
down quarks consider, for simplicity, the case where
s2, sz »s, ,s I and the first term in the numerator of (3.5d)
is the dominant one. In this limit, one then obtains
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E6-based electroweak group, whereas the reverse inequal-

ities could not. What is required is a pair of Higgs
superfields (N', N') for which (N'), (N') &(mo)-1
TeV. The F terms resulting from the couplings 8''VA' z,
8''v "2V'z, i.e., [¹ii ¹zi

and
i

N'
i ONE i, would

lead to mass contributions of order (N'), (N ') to N z
and Xz, respectively. By contrast, because of E6 gauge
invariance, no Yukawa couplings exist between 8'' and

vz or 8' ' and v z, see Eq. (2.6), so that vz and v z cannot
receive mass contributions from the VEV's of N ' and X '

in the F sector. As a result, m, and m, would be
B

larger than m and m, 6, respectively, and the desired
VB VE

VEV inequality follows. Supersymmetry is crucial for
obtaining this result. Global symmetries cannot ensure

the absence of the term
i vz i i

N'
i

in the scalar poten-

tial of a nonsupersymmetric model.

Generally, the number of quark families receiving
seesaw mass contributions cannot exceed the number of
mirror families; therefore, two mirror families are re-
quired above to explain m, )mb and m, )m, . The inver-

sion resulting from the "direct" radiative masses is prob-
ably too large in the absence of a partially compensating
seesaw, which is why we included a third mirror family
above.

In the case of models discussed above, because m ]p 3

are primarily radiative in origin, the Yukawa couplings
of first-generation quarks or the electron need not be
smaller than 10, cf. Eqs. (3.12) and (3.13). Since
mb/m, or m, Im„ is of —10, the hierarchy of couplings
leading to standard-mirror mixing need not exceed 10,
since seesaw mass contributions to ordinary fermion
masses are approximately proportional to the coupling
squared. Therefore, the overall coupling hierarchy re-
sponsible for the observed family structure need not
exceed 10 which is a dramatic improvement over 10 re-
quired for the standard model, or 10 for the two-Higgs-
doublet models; cf. del Aguila, Ref. 9.

We conclude this section with some phenomenological
remarks. The models considered require large mixing of
heavy quarks with mirror quarks. The large r mass may
also be generated via mixing with a mirror lepton. It has
been checked in Ref. 35 that the mixings required are
consistent with fhvor-changing neutral-current (FCNC)
constraints. Such large mixing leads to smaller forward-
backward asymmetries in Z decay than expected in the
standard model, as there will be a significant admixture
of V+ A in the neutral currents. Such deviation may be
observable at the Stanford Linear Collider (SLC} or
CERN LEP, especially for e+e ~bb, for which LEP
should be able to measure AFz to within + 3% (Ref. 40).
Also, because (Nz) &(7'E') (or m„'&md), we expect

larger standard-mirror mixing and, therefore, smaller
forward-background asymmetry for the u quark than for
the d quark within a given family; see Eqs. (3.3), (3.5},
and (3.5').

IU. NEUTRAL LEPTONS

The Dirac case for the neutrino mass matrix is dis-
tinguished by the vanishing of m2, m2, m3, and m3, as
well as all t's and t's, since these elements lead to Majora-
na contributions as indicated in Secs. IV B and IV C. As
we shall see, this case cannot be implemented for models
with SU(3)L or SU(2)z invariance because of resulting
implications for the charged-lepton masses.

Q=O: 270nly

The solutions here are given approximately by

2 2 in.(s i +$2): —
2 2 ii2 (sivl, +$2vsL, )+ C

2 ($1+$2}

1 1+mi' . —
2 2 in [($2VL —SivEL )v'2 (s i +s 2 )

(4.1a)

+($2NI' s i nL )—], (4.1b)

0: 1 C C

2 2 in (siNL +s2nL ) .
($1+$2 )

(4.1c)

These results are unsatisfactory, for the ordinary doublet
neutrino is not ultralight but has a mass comparable to
the charged-lepton mass. '

Q=O: 27+27

Here we can find a suitable solution with an ultralight
mass for the doublet neutrino if we note the determinant
of the mass matrix is given by

We shall begin our discussion of the neutral leptons
with the Dirac case, for there more entries in the neutri-
no mass matrix are required to vanish. This, in turn, has
some implications for the charged-lepton mass matrix.
The conditions for an ultralight neutrino are considerably
relaxed in the general Majorana case; moreover, such
solutions persist in the Majorana case when the full 27
and 27 representations of E6 do not survive

compactification. For ease of presentation, we refer to all
r entries in M generically as r, and take m]] -m, 2

—=m ],N

I I I
m]] -m]2 =—m].

A. Dirac case: m2 ——m2 ——m3 ——m3 0

DetM = —[r(r —m, rn', ) —r(r —mim', —uu')(s, s', +s2s2)+m, m', (s',s2u2+s, s2u2)

I+($2$iui+si$2u i ) —uiu ir(r —u2u2) —uiu ir(r —u2u2) —rmim i(uiu2+u iu2)] (4.2)
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and impose on the entries in M the conditions

(a) s, s'1 +szsz -0,
(b) s', szu'+slszu =0,
(c) Szslu1 +$1Szu 1 0 .

(4.3a)

(4.3b)

(4.3c)

$2.+ —(VEL —NEL»
1

2
(4.4a)

$1'.i —(NEL+vL'),
2

(4.4b)

+(r +m', )'~: nL+ vEL+ nL
2 ml

(4.4c)

1r:+ m]
NL + vL +N

T
(4.4d)

Presumably these three conditions can result from extra
discrete symmetries in the model. In particular, discrete
symmetries may lead to u', =u2 ——s] ——s2 ——0 in the ma-
trix of (2.16) as well as mz ——m z ——m

&

——m
&
——0. Then the

approximate solutions become

while the ultralight Dirac neutrino corresponds to (4.4e).
To satisfy weak universality constraints, we set m, &&r in

(4Ae). For purposes of numerical illustration, we set
m, -m2 —1 MeV, m ] -m 3

—100 GeV, and r-1 GeV,
where r can be obtained from

P'. P'.
( 1010 1011)2

GeV .
10'mp,

We then find m, -1 MeV and

(4.6)

m light—
(r —m 1m', )

10—15 10—13 V
i I

m ]$2S]
(4.7a)

—10 —10 eV

-0.1-10 eV

(4.7b)

(4.7c)

B. Majorana case with t; =t =t)2 ——t)2 ——0

according to whether one (10' —10" GeV), two
(10' —10" and 10 —10 GeV), or one (10 —10 GeV} in-
termediate scales are present, respectively, in the denomi-
nator. The latter case was the one discussed previously
by one of us in Ref. 12.

(r' —m, m', )'
+

(r +m' )' szs', &2
m,

VL — NL

c ~ ic
nL i +EL

m]
(4.4e)

Now we find

Q=O: 27only

In (4.4a) —(4.4e) we have, for simplicity, set ul ——uz ——0
and again have assumed that m;, r gym &gs;, s . To
satisfy weak universality constraints, we also require

m, &&r, see (4.4e}.
It is important to check that the Dirac neutrino mass

~ ~ N iN N iN iN iN Nconditions m2 2 m3 m3 ——Oand u] =u2 S1
=s 2

——0, where the superscripts refer to the correspond-
ing mass matrix, do not impose undesirable results for the
charged leptons. The Dirac neutrino conditions together
with SU(2)L invariance imply s 1

——sz' ——u"=0. SU(2)R
invariance would further imply m 3

——m 3' ——0. The deter-
minant of the charged-lepton mass matrix would then be-
come

1
2+m: c r

eL — eL
'

eL — eL
m2 m2

(4.5)

detM'= [r3 (m zrn zr —r
1
r zr) ]

Since there will be two Dirac eigenstates with masses
=s', and s2, respectively, the above equation would imply
the existence of an ultralight charged lepton. SU(3)L in-

variance would lead to m 3
——m 3" =m 2

——m 2' ——0 and

again, as for SU(2)E invariance, there would be at least
one ultralight charged lepton. It is therefore apparent
that a seesaw mechanism for an ultralight Dirac neutrino
is not a viable option for models possessing SU(3)L or
SU(2)11 invariance.

In contrast, if SU(2)E or SU(3)L are not contained in

the gauge group, the light electron mass eigenstate fol-
lows from (3.5d) and is given approximately by

T

Z Z ln.(s 1 +sz): — (s1vL+szvEL )PANEL
c

2 ($1+$2)
L

(4.8a)

1 1
1 - 2 2 1yz [($2VL —Sl VEL )

v 2 (sl +s2)

+(szNL s, NL )], (—4.8b)

m2S2+m 3s] 1
2m, z z

.
z 2,&z ($1NL+sznL ) .

$1+$2 ($1+$2)
(4.8c)

Here again as in the Dirac case with 27 only, the wrong
neutrino is ultralight.

Q=O: 27+27

&&(m3s1+mzsz) . (4.9)

The eight heaviest masses and eigenstates are nearly
Dirac type and are given approximately by (4.4a) —(4.4d),
where again, for simplicity, we have taken u, =u2 ——0.
The lightest Dirac pair (4.4e), however, splits into two
Majorana masses:

Here the same conditions (4.3) as for the Dirac case
must obtain to achieve an ultralight-neutrino mass. With
these conditions satisfied via u', =u2 ——s] ——s2 ——0, we find

the determinant of M is given approximately by

DetM =2m 1m12(r m lm 1 ) (m3s, +mz—sz)
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2 I
mim3 r —mimi

2
$1 T

mi
VL — NL,

P
(4.10a)

I 2 I
mim2 r —mimi

2 nL vEL
r +mi mi

(4.10b)

The light electron is still given by Eq. (4.5), and the
correct mass is obtained with m 1

—m2-1 MeV,
m 1 -m3 —100 GeV, r -1 GeV, and u"-0 as before.

Estimates for the two ultralight-neutrino masses in
(4.10}follow with s2-s', —10' -10"GeV: for example,

t2—
&2

t12

2

ti +
ti —t2

1+
ti —t2

' 2 1/2

I
ti21+

' 2 1/2

t12
X —, NL+ nL, (4.14b)

1 2

I

ml; h, -2 -2X(10 -10 ) eV,
mim3 —3 —2

$1
(4.11a)

t12
X NL+, nL

ti —t2
(4.14c)

I 2 I
mim2 T —mim 1

m iightest —2
&2mi

-2X(10 —10 } eV . (4.11b)

m 1($2t2+s lt 1 +2$1$2t ]2 )

(s ] +s2 )(t,2 t', t2 )—
1

($2 +$2 )1/2

X (s2vL —s]V&L ) . (4.14d)

The doublet neutrino is ultralight but can be noticeably
heavier than the lightest one which transforms mainly as
the O(10)-singlet member of the 27.

C. General Majorana case

Q =0: 27 only

This case was treated previously by Nandi and Sar-
kar. Here the determinant of the mass matrix is given
by

Det~"=m]($2t2+s lt 1+2$1$2t]2)

Estimates here reveal that the ultralight neutrino has a
mass of order

2m it2
1Ig t t2 I I

t12 —t
(4.15)

with t2 —10 GeV, although a very small result is ob-
tained if we would take s2 —10' GeV so that t2-10'
GeV.

Q=O: 27+27

In the full general Majorana case with pairing of the
standard and mirror families, as discussed below, an ul-
tralight doublet neutrino is possible if

with

2m 1 (m2s2+—m3s] );3 (4.12) (a) t, =t,2=0,
(b) r, m, ,m, ', u, , u'«t], t12 2 2

(4.16a)

(4.16b)

m; ((t, t12 ((sk (4.13a)

Condition (a) can presumably be satisfied with extra
discrete symmetries. Since t, t' «s, s', see (2.13b), leading
contributions to the determinant of the mass matrix, tak-
ing (4.16) into account, are of order

the doublet neutrino can be made ultralight. If we take
s, $0. 1$2 so as to satisfy weak universality, from (2.13b)
it is reasonable to assume

DetM =s t X(terms quartic in u;, u, m, , m, ', r) .

(4.17)
I I It] ( t12 (t2 (4.13b)

The masses and eigenvectors are then given approximate-
ly by

2 2 1/2.(s ] +$2): ~— (s 1 vL +$2vFL ) NEL
C

( ', +', )'"

(4.14a)

Clearly there will be four eigenvalues -s, and three ei-
genvalues -t, see upper left 6X6 corner and lower right
4X 4 corner of (2.16), respectively. Equations (4.16b) and
(4.17} therefore imply the existence of an ultralight neu-
trino. We shall require s, ~0. 1s2 to satisfy weak univer-
sability constraints, see (4.18g}, so that again (4.13b) will
be assumed in what follows. With conditions (4.13b), and
(4.16) the full neutral spectrum becomes

2 2 1/2.($ ] +$2): ~ ($]vL +$2vgL ) NFL+ C

v2 (s]+s2)
(4.18a)
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T

+(sI +sz ): ~ NFL z (sivL+szvzL)v'2 (sl +sz )
(4.18b)

(4.18c)

12t1+
t1 —t2

c r, c
t 12 c

2 - 1/2 NI. ~ vL +
m1 t, —t2

(4.18d)

2
12t2— I

t12
I I

' 2 1/2

It 12 iC C
NL, — vL, +ni.

t1 —t2 m1
(4.18e)

k(r +mi )': ~ . NL+, vL, +
z z Iiz sz vt, +, Nt. sivFt,

2 m', (s', +sz)'" m' (4.18f}

(r —mimI ) tz

(r +m& }(tItz —tlz)

] r
2 2 1/2 $2 VL,

——

i Nl. —S1vEz,(s| +sz ) m',
(4.18g)

In the above, we have set u; =u,'=0 for simplicity and
only kept terms up to 0(rim'). An estimate of the
ultralight-neutrino mass is

m1; h, -0.1-10 eV

—10 -10 eV

(4.19a}

(4.19b)

when t', -10 GeV and —10' GeV is taken, respectively.

D. 16+16

Q=O: B»= Iv, v",¹,N'It.

We have

0 r m1 0

r 0 0 m1

m1 0 t1

0 m1 r t1

(4.20}

Only the general Majorana case yields ultralight neutri-
nos as follows.

Here again we entertain the possibility that the full 27
and 27 representations of E6 do not survive
compactification. In particular, we examine numerically
the case where the would-be 16 and 16 representations of
SO(10) remain massless. The neutral mass matrix of
(2.16) is then replaced by the following in the basis

Q=O: 16+16

We set t1 ——0 in order to obtain a seesaw mechanism
for v. Then we obtain approximately:

t1. NL, (4.22a)

+(r'+mI')'": z,z |»(rvL, +mINL)
( '+ ', )'

+vt', (4.22b)

(r —mimi)2 2

(r +m', )t',

1 I I

2 z lgz ™& vt rNt )—
(r +m& )

(4.22c)

V. SUMMARY

We thus see that the ultralight-neutrino mass predictions
persist in the Majorana case when only the standard-
matter representations remains light. This is not true in
the Dirac case, for the ultralight mass there relies crucial-
ly on the structure of the large 10X 10 matrix.

We conclude this section by noting that all of our
light-neutrino solutions predict a mirror Dirac neutrino
with mass (r +mI )'~ &Mn. The phenomenology of
such neutrinos has already been discussed in the litera-
ture. In particular, Z decay can lead to a
monojet+ pT, whereas W' decay can lead to an isolated
charged lepton plus jets.

We have

t1. NL,

m 1

VL

Q=O: 16only

(4.21a)

(4.21b)

A. Discussion of results

We begin by summarizing the quark and charged-
lepton results. Our basic assumptions have already been
listed in Sec. I. The Q =+—', quark mass matrix involves

just the uL and uL quarks of the 16 and possibly the mir-
ror quarks ut" and uL of the 16. The Q =+—,

' mass ma-
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trix will involve the exotic quarks hl, hL and possibly

hL, hL' if 27's and 27's are present in the theory. Howev-

er, in the limit s~ &&s„see (2.15), the mass eigenvalues

and eigenstates of the light down quark and its mirror
reduce to the same form as those of the 16+16 case.
Similar statements hold for the charged leptons.

Mechanisms are possible for splitting of ordinary and
mirror quark and charged-lepton masses with the mirrors
easily acquiring masses &22 GeV. Mixing of ordinary
and mirror quarks can easily generate heavy quarks and ~

lepton masses via seesawlike contributions, while the ra-
diative masses of Fig. 1 will be of significance for the light
quarks and leptons. These same diagrams will also be im-

portant in generating the Kobayashi-Maskawa (KM)
mixing angles.

If at least one mirror family is present, the overall cou-
pling hierarchy responsible for the ferrnion mass hierar-
chy need not exceed 10 compared to 10 for the standard
model. If quark isospin is an exact or nearly exact sym-
metry of the Lagrangian, an aesthetically attractive possi-
bility, the observed breaking must be primarily due to
vacuum alignment. The inequalities m, & m&, m, & m„
md & m„ then favor a vectorlike model with seesaw and
radiative mass contributions playing crucial roles. The
Yukawa couplings of isodoublet u and d quarks need not
differ, while the overall coupling hierarchy responsible
for the fermion mass hierarchy need not exceed 10 com-
pared to 10 for the standard model. The presence of ad-
ditional quarks from mirror families may provide a natu-
ral setting for the attractive MPP scenario' which is in-
sensitive to the initial 1 gauge couplings at MGzz.
Clearly, all of the above features would facilitate the task
of the correct string vacuum being correct.

Turning to the neutrino results, we have observed that
no seesaw mechanism is possible for Dirac neutrinos with
the 27 alone; however, if both standard and mirror neu-
trinos are present in the 27 and 27, and if SU(2)z is not
part of the low-energy gauge group after compactifica-
tion, a seesaw mechanism can exist to yield ultralight
Dirac neutrinos. Clearly the Dirac neutrino case requires
the most restrictive global symmetries, as 16 entries are
required to vanish in (2.16). Unless high mass scale en-
tries are absent in the neutral lepton mass matrix, their
mass is typically in the 10 ' -10 eV range, which is
exceedingly small. Since the Dirac seesaw mechanism re-
lies heavily on the features of the 10X10 matrix, if only
the SO(10) 16 and 16 representations are present rather
than the 27 and 27, an ultralight neutrino mass cannot be
obtained.

It is interesting to note that the right-handed com-
ponent of the allowed ultralight Dirac neutrino trans-
forms principally as an SO(10) singlet, rendering it nearly
sterile. Hence it is not in conflict with astrophysical lirn-

its on the number of light-neutrino degrees of freedom
consistent with the observed abundance of the elements
from primordial nucleosynthesis. Also, we observe that a
new Dirac neutrino is predicted with mass r easily greater
than the cosmological lower bound of 2 GeV. This neu-
trino couples mainly to SU(2)„weak bosons, so that it
would have escaped detection given present-day limits.

For the Majorana seesaw mechanism, we have ob-

served that an ultralight neutrino is possible under more
general conditions. In particular, for the 10&( 10
neutral-lepton matrix (2.16) only two entries are required
to vanish, cf. (4.16a). In this general case with t entries of
order 10 GeV (10' GeV), a light neutrino in the range
0.1 —10 eV (10 —10 eV) can be obtained in either the
standard fermion case as shown by Nandi and Sarkar,
or in the standard-mirror paired case. Unlike the Dirac
case, it is of considerable interest to note that this light-
neutrino solution persists even if only 16, 16 rnatter fer-
mions are present. In the restricted Majorana case with
vanishing t entries, a light doublet neutrino of mass
10 -10 eV is possible with mirrors present; however,
the primary singlet nI' is several orders of magnitude
lighter. Again it is nearly sterile and hence not in conflict
with astrophysical limits on the number of light-neutrino
degrees of freedom.

B. Realizations in superstring theories

In this section we discuss, very generally, how the
different possibilities for matter superfield content we
have suggested may be realized in actual superstring
scenarios. The Calabi-Yau compactifications are pri-
marily discussed in this context, but a brief remark is in-
cluded concerning four-dimensional heterotic super-
strings, which are a promising alternative.

We first briefly review the flux breaking mechanism'
together with the associated determination of survivors
from the vectorlike sector. For a discrete group G acting
freely on a simply connected manifold K„, one can ob-
tain a nonsimply connected manifold K =K„/G. In this
space there may exist nontrivial E6 gauge field

configurations contributing to Wilson loops given by
U =Pexp(i J rA dx ), wheregCGand I isanoncon-
tractible loop in K. The U~ form a discrete subgroup G
of E6, which is homomorphic to G. The group E6 is bro-
ken to the subgroup H under the action of U, where

[H, U ]=0, for every g E G. For G Abelian, the Us can
be parametrized in the SU(3), XSU(3)LSU(3)~ basis
as

a 0 0

U, =l x 0 a 0 x 0 p5-'
0 0 a 0 0

0

p
—2

(S.la)

whereas for G non-Abelian, the U can be parametrized
as

a 0 0 P 0 0

Ug 1 &( 0 cx 0 &( 0 u i i v

0 0 a '. 0 U21 U22

(5.1b)

with Pdetu=l. The above parametrizations reflect the
fact that H must contain SU(3),SU(2)LU(1)r. The
field content of the vectorlike sector following
compactification is given by those representations of H
contained in the paired 27's and 27's which are singlets
under GG.

In what follows next we point out how, given a Calabi-
Yau manifold with SU(3)~ holonomy and vectorlike
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matter sector (chiral matter sector optional),
compactification may lead to the different combinations
of matter and Higgs representations which we have con-
sidered. In doing so, we elucidate on some properties
which such manifolds must possess. As previously men-
tioned, the number of paired 27's and 27's is given by the
Betti-Hodge number b, , of K . For Calabi-Yau spaces
there will always exist at least one pair which is invariant
under 6, so that the survivors must be invariant under G.
It is not difficult to see from the parametrization of Ug
given above that, for such pairs, the standard and mirror
quarks contained in the 16 and 16 of SO(10) cannot sur-
vive in the presence of Wilson symmetry breaking, i.e.,
for U &1. For this reason we do not consider b, , =1 a
viable option for realizing models with one vectorlike
generation.

On the other hand, Calabi- Yau manifolds with b
& ~ & 1

are promising for realizations of the kinds of models we
have been discussing. Here there exists the possibility
that the additional 27+27 representations are not 6 sing-
lets. The condition that they contain survivors after flux
breaking, i.e., that they be 6+6 singlets can now, in
principle, be satisfied for some or all of their com-
ponents. In particular, it may be that for the vectorlike
sector either full matter 27's and 27's or only nonexotic
matter fields contained in 16's and 16's of SO(10) survive
compactification, both possibilities having been discussed
earlier. It is also possible that no Higgs color triplets sur-
vive compactification. This was already pointed out for
b, 1

——1 in Ref. 18. In light of the above, if X=O (cf. next
paragraph) an attractive possibility arises. As now there
are no 27's protected by the index theorem, it follows
that the exotic color triplets which could mediate fast
proton decay may not exist at all in the compactified
low-energy theory.

Compactifications on Calabi-Yau manifolds can cer-
tainly lead to the presence of mirror families. An exam-

pie with X=O and large b& &
is known to exist and

would lead to a vectorlike low-energy theory. Calabi-
Yau manifolds with g = —2 and —4 have also been con-
structed. ' Perhaps these can lead to low-energy models
possessing at least one or two mirror families, respective-
ly„along with three ordinary families.

Four-dimensional heterotic superstring constructions
with ¹ 1 supersymmetry can also contain mirror fam-
ilies for suitable choice of boundary conditions. The
gauge groups for such models can contain SO(10) or one
of its subgroups among its factor. One expects standard-
matter representations with respect to such factors, cor-
responding to 16's and 16's of SO(10}.

Given the attractive features of N=1 SUSY model pos-
sessing mirror families, it would be interesting to check if
any of the above candidate string vacua lead to their real-
ization.
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