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Under the assumption of a compact gauge group, localized solutions are absent for Yang-Mills

fields coupled to either non-Higgs-scalar fields or (under certain additional conditions) linear spinor

fields.

I. INTRODUCTION

It has already been established that for certain external
charges one finds solutions of the Yang-Mills equations
which screen the external charge so that the total charge
vanishes. ' This phenomenon is called total color screen-
ing. The controversy of whether or not the effect is mere-
ly a gauge efFect was eventually explained in Ref. 3. In
our opinion, a more fundamental point may be the objec-
tion to the occurrence of external sources in the theory
which is expected to describe elementary processes. The
old Occam's principle should be observed also in Yang-
Mills theory, especially as its classical part has no direct
physical applications.

This gives us the incentive to study the existence of lo-
calized solutions in self-contained Yang-Mills-matter field
theory, where sources appear in a dynamical way. The
results obtained below almost exclude the possibility of
having finite-energy localized solutions and encourage us
to formulate the following.

Conjecture. Finite-energy localized solutions are ab-
sent in any "reasonable" self-consistent gauge-matter sys-
tems provided that (i) the gauge group is compact, (ii) spi-
nor fields do not interact directly (i.e., they are linear),
and (iii) scalar fields are non-Higgs type. The word
"reasonable" needs a clarification which is not fully given
in this paper. We hope, however, that it will be possible
to prove the strong form of the conjecture without any
additional assumptions. We have to point out that condi-
tions (i) and (iii) seem to be inevitable. The compactness
of a gauge group is necessary to ensure that the kinetic
energy of a gauge field is positive definite, which is impor-
tant for the strategy of our proof. The exclusion of Higgs
fields is necessary because, in this case, the localized solu-
tions are known explicitly [Bogomolny-Prasad-Sommer-
field (BPS) monopoles].

The order of the rest of this work is as follows. In Sec.
II we introduce the models of interest and describe our
notation. Section III comprises a partial proof of the
conjecture. For scalar fields coupled to Yang-Mills po-
tentials the conjecture has been proven earlier. In the
fermion counterpart we make use of a recently found in-
equality concerning the kinetic energy of fermion fields.

II. STATEMENT OF THE MODEI.

In the part concerning scalar fields we have to explain
only the term "non-Higgs type. " Let P denote a scalar

(2b)

Here, the following notation is used: f,b, are the struc-
ture constants of a gauge group 6, the field-strength ten-
sor F„'„is defined by

F„'„=B„A'„—B„A„'+gf, , A b A'„, (3)

the T's are the gauge group generators. The indices

a, b, c, . . . =1, . . . , n are the gauge group indices in the

adjoint representation, the indices s, t, u =1, . . . , X are
the gauge group indices for the fundamental representa-

tion, A, B,C =1,2, 3,4 are the Dirac-bispinor indices, and

p, , v, p =0, 1,2, 3 are the Minkowski indices. The indices

i,j,k will be used as space indices. The Dirac matrices

are, in the spinor representation,

0 1
0

1 0 cr' 0

where a's are the Pauli matrices.

III. PROOFS

We begin with a simple observation that to have classi-
cal color screening in self-contained systems one needs lo-
calized solutions. Thus, we will consider the existence of
localized solutions to various Yang-Mills-rnatter systems.

Let us discuss Yang-Mills fields minimally coupled to
non-Higgs scalar fields. The following important result is
due to Glassey and Strauss.

field in the fundamental or adjoint representation of a
gauge group which is minimally coupled to a gauge po-
tential A „' and let V be a part of the Lagrangian describ-
ing self-interaction of a scalar field. We say that V(g) is
non-Higgs type if

1( V'(P)&0;

here V'(s) =(d /ds ) V(s). This generalizes the standard
definition according to which a field is said to be non-
Higgs type if V(s) has only one extremum, a minimum at
s =0, and V(0)=0.

The Yang-Mills-Dirac equations read

(2a)
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Theorem 1. Let V(g) describe the self-interaction of
non-Higgs scalar fields in the Lagrangian. Assume that
gauge and scalar fields decay at spatial infinity sufficiently
fast to ensure the finiteness of the energy-momentum and
angular-momentum tensors of the whole Yang-Mills-
matter system. Then the localized time-dependent solu-
tions are absent if either (i) sV'(s) &4V(s) &0 (for mass-
less scalar fields), or (ii) sV'(s)&2V(s)&0 (for tnassive
scalar fields).

Theorem 1 implies also the absence of static finite-

energy solutions. The approach of Glassey and Strauss
is based on conservation laws of the energy-momentum
and angular momentum and therefore requires too strong
boundary conditions at spatial infinity (e.g., that the

potentials fall off more quickly than 1 lr). In the static
case, however, one easily obtains the same results for
standard boundary conditions tt =0(1/r+ ~ +'),
A& 0(r ~ ——') (as r~~) and under weaker condi-
tions on V(P), s V'(s) & 0 (Ref. 5).

Thus the only models where localized solutions could
exist are fermion fields coupled to non-Abelian gauge po-
tentials. Below we limit our interest to static Yang-
Mills-Dirac fields. A result of Magg states the absence
of finite-energy solutions of static Yang-Mills-Dirac equa-
tions, but it requires the SU(2) gauge group (there is no
obvious way to include other gauge groups), massless spi-
nor fields, and spherical symmetry. Therefore the prob-
lem of the existence of localized static solutions of Yang-
Mills-Dirac theory is still open. A partial solution to the
problem was obtained in Ref. 7. We show that the con-
jecture is valid for an important sector of Yang-Mills-
Dirac theory.

Theorem 2. Assume the constant

' 2/3
t=gi gf(A„') d x

a,p,

(4)

y f [(@AM)2+ 2(yM)2]d3

g2f c M/M+ y DMDM d3X . (5)
k

above M =+ and summation over M is assumed, while
the C's and D's are defined by

CM Aa yhf AayM ie

Aalu&

2t 2t

is sufficiently small, then localized solutions are absent in
Yang-Mills-Dirac static theory both in massive and mass-
less cases and for all compact gauge groups.

Proof. For the Abelian compact group the proof is
trivial (Appendix A). It happens also that for all compact
semisimple gauge groups the main idea of the proof
remains intact. Therefore we assume the SU(2} gauge
group and spinor fields in the fundamental representation
of SU(2}. After some algebra (Appendix B) one obtains
from Eq. (2b) the following identity:

A kyM+ A ayM A ayM
a a 2&- a k

2&
k a

The tl)'s are related to the bispinor g by

pi y+ y2 y
— yk yk p 2

By the use of the Holder, Minkowski, and Sobolev ine-

qualities one arrives at the following inequality (Appen-
dix C):

E &ctE,

where E denotes the left-hand side of (5), c is a constant
(which, in principle, can be calculated), and t is defined in
the above theorem. Quite analogous inequalities are ob-
tained for other gauge groups with the constant c being
dependent only on the group. It is interesting to note
that such inequalities are possible only for n & 3, where n

is a number of spacelike coordinates.
Now assume t is so small that ct &1; then E =0 and

nonzero solutions of Eqs. (2b) are absent. This implies
{via the Deser no-go theorem ) the absence of static solu-
tions of Eq. (2a). This completes the proof.

The rest of this section is devoted to the justification
and interpretation of the condition stated in Theorem 2.
The condition that t is small ensures that the nonlinear
terms in the equations of motion are small; in the limit
t =0, Eq. (2a) becomes linear {but not necessarily source-
less, since the dependence of the f's on the coupling con-
stant g is almost arbitrary). Thus the condition that t is
small can be read off as the selection of a sector of Yang-
Mills-Dirac theory which is "asymptotically free." Let
us point out that the explicit examples of total color
screening' also belong to this sector. The theorem prov-
en above can be restated as "classical asymptotic freedom
is absent. " The classical Yang-Mills-Dirac theory does
not mimic the asymptotic freedom known in quantum
chromodynamics.

The next problem is the justification of such an asymp-
totic falloff of potentials that ensures A EL3, which is
assumed in (4). The L3 integrability of a function f does
not imply even its vanishing at spatial infinity but, on the
other hand, it excludes the (1lr) asymptotic falloff.
There are two arguments. At first, total color screening
solutions are expected to be short range. ' Second, as-
sume that the total charge is Lorentz invariant. Then the
result of Bizon implies that the nonlinearities appearing
in the Yang-Mills equations are L, integrable. Now the
standard procedure (cf. Ref. 10) gives the asymptotic re-
lations

1 T+ ~ ~ o ]~ + e ~ ~ ~

T
O

here T' denotes isospin components of a total charge. If
we assume the total charge to vanish then we obtain the
required asymptotics of gauge potentials that ensures the
L3 integrability of potentials. Thus we can conclude that
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the condition stated in the theorem is quite natural be-
cause it selects an asymptotically free sector of Yang-
Mills-Dirac fields with the Lorentz-invariant total
charge. The preceding theorem says that this sector has
no static solutions of the Yang-Mills-Dirac equations.
The generalization on the case of stationary fields is
easy, although it requires faster decay of gauge fields at
spatial infinity than previously assumed.

We expect that localized solutions are absent also in
the time-dependent case. To prove this, one should show
the absence of localized time-dependent solutions of
Yang-Mills-Dirac theory, at least in the asymptotically
free sector. The absence of static and stationary localized
solutions gives a strong argument in favor of the expecta-
tion but, on the other hand, the technique used in this
work cannot be employed then.

Suppose that the Dirac fields are stationary,

Bop„=1 EP„+

while the Yang-Mills potentials are static BOA„' =0 and
satisfy the Coulomb gauge r);A,'=0. Multiplication of
Eqs. (B2) and (B3) by (Bkpk +im $0 i e—po ) and
(Bkpo+ irk—;&r)Ip&+ +i epk*+impk ), respectively, integra-
tion over R, and omission of exact differentials yields
Eq. (5) (notice that there @=0,i.e., fermion fields are stat-
ic).

APPENDIX C

We begin with the observation that the right-hand side
of Eq. (5) is bilinear both in the fermionic and gauge
fields:
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APPENDIX A

yg2 f '( M( M+ y DMD M '

d 3

M k

=g' y f~„„.pkIM y„y„A."A p'x . (Cl)
p, v, a
P, k, l

M

J'=eA
The Gauss-type law

a, E, =j0

(Al)

(A2)

gives now q = fj d V =0 for short-ranged fields and
therefore implies /=0

For a single fermion field the time component of the
current is either nonpositive or non-negative (being
dependent on the sign of the coupling constant e):

1/3 ' ' 2/3
g c g f($„)d x fd x(A'„)

p, v

a, M

(C2)

This in turn is estimated by

Here a„&„klM are constants while the C's and D's were
defined below formula (5).

By the use of Holder and Minkowski inequalities we
estimate the right-hand side of (Cl) by

APPENDIX B

Assume the gauge group SU(2) and set

y+ (t+a "O2

p 2

Then Eq. (2b) reads

+~04'0 +~ 4++ gA o0.+ ———.. A:(to
2l 2l

(Bl)

Cg2 g f (A )3d3x f ~

PM
~

2d3x
p, M
a, v

2/3«'g'g f (A'„)'d x E . (C3)
a, v

Here

,'gE,k, A,'pk++i—m—po =0, (B2)
p, M

f [(qyM)2+m2(yM)2]

+~04'k +~kA ~' ~i(( g~i k Ai 4'0

——.gA,"p, + .gA;pk* — .gAk—p,+ +impk =—0.

(B3)

&5 478 V dV;

the above estimation is the sharpest one. "

To get (C3) we have to invest the Sobolev inequality

f (y)'dv (C4)
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