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Motion of test particles and light rays around massive conducting cosmic string
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An exact solution of the coupled Einstein-Maxwell equations describing an infinite, straight, mas-

sive, conducting cosmic string is presented. Equations of motion of test particles and light rays are
derived. Radial motion, motion in a plane perpendicular to the string, and motion along a line

parallel to the string are discussed. When the string is represented by a line singularity and its
linear mass density is not too large and it is carrying electric current then radially moving test parti-
cles very close to the string encounter a repulsive force.

Incorporation of gauge theories of elementary particles
into the standard framework of the big-bang cosmologi-
cal model opened up several interesting possibilities. It
turned out that since the big bang the Universe could
have undergone a number of phase transitions. These
phase transitions can have important cosmological conse-
quences. Zel'dovich, Kobzarev, and Okun' and indepen-
dently Kibble' pointed out that phase transitions can pro-
duce vacuum domain structures such as domain walls,
strings, and monopoles. Recently cosmic strings have at-
tracted a lot of attention (see an excellent review by
Vilenkins). It was shown that cosmic strings could bend
light rays and produce double images of quasars. In the
early Universe strings might produce density perturba-
tions leading to formation of galaxies. Witten has shown
that under certain conditions strings could behave like
superconducting wires carrying a current of up to 102 A.

Here we would like to investigate motion of neutral
test particles and light rays in a space-time of an infinite,
straight, massive, superconducting string. Several years
ago %'itten obtained an exact solution of the coupled
Einstein-Maxwell equations which describes a space-time
with an infinite, straight current-carrying wire. It is very
easy to generalize this solution so that it describes an
infinite, straight, massive, conducting cosmic string. If
the string is oriented along the z axis then the metric can
be written in the form
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where y =1—46p+, p+ is the linear "field" energy densi-

ty of the string, a =26@~,p~ is the linear mass density,
A =I Gla y, I is the current fiowing on the string, p() is

a constant, and G is the gravitational constant. We use
units in which the velocity of light e is set to be equal to
1.

When both the current and the linear mass density are

zero the solution reduces to the well-known solution
representing a cosmic string. The Witten solution is
recovered when the linear "field" energy density van-
ishes. When I&0 it is not possible to go to the limit
a ~0 unless one allows the current to grow indefinitely so
that I /a is finite.

When I&0 there is a nonzero magnetic field and the
only nonvanishing component of the Maxwell tensor is
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To investigate the asymptotic structure of this space-
time for large and small p let us introduce the radial geo-
desic distance p related to p by
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and asymptotically the metric assumes the Kasner form
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where we have normalized the scale so that p=O when
p=O. For p~~ we have
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so P1+q 1 +F1 = 1 p1 +q1 +P1.2 2 2

When P~O,

P
po a —a+1 po

a —a+1

Po

2l'2

dZ (5)

and asymptotically the metric assumes the Kasner form
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so p2+q2+r2 ——1=pz+qz+rz. In both asymptotic re-

gions the nonzero components of the Riemann tensor
behave like p

It is apparent that the space-time described by the
metric (1) admits three commuting Killing vectors d/r)t,
8/BP, and 8/Bz and therefore the equations of geodesic
motion will possess three first integrals related to the con-
servation laws of energy, z component of momentum, and
z component of angular momentum. To derive the equa-
tions of motion of electrically neutral test particles and
light rays we use the Hamilton-Jacobi method and we as-
sume that the generating function S has the form

where
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From the relativistic Hamilton-Jacobi equation
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Equations of motion of the test particles are
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To obtain equations of motion of light rays we take the
limit m ~0, J, /E~l, and p, /E~k and we get
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At first let us consider the radial motion of test particles
and photons. Radial motion of test particles is governed
by the equation
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The test particle can move only in the region where
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It is interesting to notice that when A &0 and 0 & a & 1

radially moving test particles encounter a potential bar-
rier at smail and at large p. Radially moving test parti-
cles will therefore oscillate between the turning points
p;„and p,„. The period of oscillations is given by
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A test particle placed at the minimum of the potential at
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will stay there forever.
When A =0 radial motion is possible in the region

0 &p &p,„=(E/m )' "+"and all test particles will be
trapped by the string.

Photons move in the radial direction along the null
lines p+t =const. One should notice however that p is
not the proper distance and radially moving photons do
feel the curvature of the space-time generated by the
current and the matter density of the string. Photons
moving radially outward are not trapped by the string.

The effective potential of a test particle moving in the
plane perpendicular to the string assumes the form
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When 0 & a & 1 and !+0 the standard centrifugal barrier
appears and photons cannot reach the symmetry axis.

To analyze bending of light by the string let us com-
pute the total change in the angular coordinate LLP of a
photon incoming from infinity with the impact parameter
I and escaping to infinity. It is given by
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When 0 & a g 1 the potential rises at small and at large
p and the extremal points of the effective potential appear
at p such that
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1/(a —1)where p~;„=pa(poy/l)'/" ". Let us introduce a new
variable x =(p/po) ', then
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Depending on the values of a, A, and J, /pomy this
equation can possess several real positive roots corre-
sponding to local maxima and minima of the potential.
Therefore stable circular motion along the string should
be possible. In general, the trajectory of a test particle is
not a closed curve and it is confined between p,„and
pmin'

When a (1 the effective potential is regular at p=0
and it rises to infinity with p~ ~. In this case all test
particles moving in the plane perpendicular to the string
fall at the symmetry axis.

Photons moving in a plane perpendicular to the string
obey the following equations:
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When a) I/v'2, hp is infinite and photons coming
from infinity spiral around the string infinitely many
times before escaping again to infinity. When
0 & a & 1/v 2, b,p is finite, and for a =0 we have
b P =n. /y.

Finally let us investigate motion of particles and light
rays along a line parallel to the symmetry axis. In this
case J,=0 and p, &0. A test particle can move along a
line parallel to the symmetry axis if it is placed at the ex-
tremum of the potential. Position of extrema are deter-
mined from the equation
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When 0 &a & 1 and 3 &0 this equation possesses at
least one real positive root and therefore in this case test
particles can move along a line parallel to the symmetry
axis. Energy of the test particle is then given by the rela-
tion

When 0 & a ~ 2 also photons can propagate along a line
parallel to the symmetry axis which is at a distance
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The momentum of these photons should be
k =—'A '+' '(2 —a)' ' (2+a)'+' and as expected16

dz ldt =1.
Detailed analysis of the motion of test particles and

light rays in the general case and discussion of possible
astrophysical applications will be given elsewhere.

and its velocity is
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