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A model of the large-spatial-distance, zero-three-momentum, limit of QCD is developed from
the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate be-
cause they have infinite energy after renormalization. The Hamiltonian formulation of the path in-

tegral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the in-

frared limit is simplified by the absence of self-energy insertions and by the suppression of large
classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are
resummed to produce a set of nonlinear, renormalizable integral equations which fix both the
confining interaction and the physical propagators. Solutions demonstrate the self-consistency of
the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to
provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for
two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is ad-
dressed in detail. Large classes of corrections to the model are discussed and shown to support self-

consistency.

I. INTRODUCTION

This paper describes an analytic model of confinement
in quantum chromodynamics (QCD). Like all such cal-
culations, a specific mechanism for the confinement pro-
cess is proposed. However, the model differs from oth-
ers in its reliance on the equations of QCD, the require-
ment of self-consistency, and the ability to analyze
corrections. Radical hypotheses about the nature of cer-
tain vacuum expectation values (VEV's) are acceptable
only if they are consistent with the field equations and are
stable against corrections. The result of this investigation
is a "theory" in which colored states have infinite energy,
there exists a Bethe-Salpeter equation for finite-energy
color-singlet bound states, and residual interactions are
calculable with simplified perturbation theory rules. The
paper is devoted to an exposition of the model, its
strengths, and its defects. The goal is not to present the
ultimate theory of confinement, but rather to explore one
possible mechanism and develop it to the point where it
can be used to discuss interesting problems in bound-state
physics wholly within the framework of QCD. Emphasis
is always on the low —three-momentum, large-spatial-
distance limit. Some of the results have appeared in a
series of papers on the connection between the QCD vac-
uum and confinement. The derivation here is totally
new, almost rigorous, and self-contained.

The self-consistent model is formulated in the Coulomb
gauge. The problems of the Coulomb gauge are well
known. However, it is the natural gauge in which to dis-
cuss bound states, ' and it is well matched to the treat-
ment of the small —three-momentum limit. Two key hy-
potheses define this model. There is a singularity at zero
three-momentum (the infrared limit) in the QCD version
of the instantaneous Coulomb interaction. The singulari-
ty is controlled by a cutoff parameter and is responsible
for the long-range, confining interaction. The second hy-

pothesis is that quarks and transverse gluons do not
propagate in the physical vacuum because they have
infinite energy. The energy depends on the infrared
cutoff parameter and becomes infinite as the cutoff is re-
moved. A consequence of this hypothesis is that pertur-
bation theory in the physical vacuum is simplified. Feyn-
man diagrams with more than one gluon and/or quark in
a momentum loop vanish as the cutoff is removed. Sur-
viving diagrams are summed to generate a set of non-
linear integral equations for effective propagators and for
the Coulomb interaction. Even though the emphasis is
on the zero-momentum limit, the equations are renormal-
izable. Solutions exist which are consistent with the hy-
pothesized singularity structure. The model is self-
consistent; the hypotheses arejustified a posteriori More-.
over, screening effects produced by quark and gluon pairs
do not alter the conclusions. It is hard to create infinite-
energy particles out of the vacuum. The Wilson loop is
calculable and verifies confinement. Color-singlet bound
states exist in both the quark and gluon sectors. A linear
potential is favored. This model, like the simple MIT bag
model, confines quarks and gluons by the same mecha-
nism, contrary to indications from lattice calculations
which suggest that quarks are confined and gluons are
screened.

The model starts with the Coulomb-gauge Hamiltonian
of Christ and Lee. ' Problems with zeros of the
Faddeev-Popov" determinant are sidestepped by use of
the Hamiltonian formulation of path-integral quantiza-
tion. ' Terms are added and subtracted to define a free-
particle action that is quadratic in "physical" fields and
their conjugate momenta. ' By coupling external sources
to fields and momenta one derives effective propagators.
The interaction Hamiltonian is also a function of both
fields and momenta. Not only does the Faddeev-Popov
determinant not appear, but there is no need for ghost
fields. A complication is the appearance of interactions
which are nonlocal and of all order in the coupling con-

38 668 1988 The American Physical Society



38 SELF-CONSISTENT MODEL OF CONFINEMENT 669

stant. However, there are anomalous interactions in the
Coulomb gauge which have an equally complicated struc-
ture. ' '

A gauge-invariant, Lorentz-invariant theory of
confinement would be far preferable to one based on the
Coulomb gauge. Such a model has yet to appear. The
Coulomb gauge is unique in that only the physical de-
grees of freedom of the gauge field are quantized. It is
precisely those transverse gluons which do not propagate
as normal particles. In addition, the Coulomb gauge has
the virtue that the QCD version of Gauss's law does not
need to be imposed as a separate condition on states. '

Thus, only in the Coulomb gauge does it make sense to
treat a meson as a bound state of a quark and an anti-
quark. In other gauges one needs a gauge-dependent
phase factor that involves the gluon field and, therefore,
an indefinite number of gluons. Although the Coulomb
gauge has been frequently used in bound-state calcula-
tions, ' problems associated with the lack of Lorentz in-

variance, the need for anomalous interactions, and the
zeros of the Faddeev-Popov determinant' have been gen-
erally ignored. The virtues of the Coulomb gauge must
not obscure the possibility that in any incomplete calcula-
tion the results might be an artifact of the choice of
gauge.

Lorentz invariance is a problem because the condition
V A=O singles out a particular frame. It is possible to
define boost operators that transform states and opera-
tors to an arbitrary frame, ' or one can construct a co-
variant Coulomb gauge. An arbitrary timelike vector g"
[rl g=(rl ) rl g=i] d—efines a time parameter r=g.x.
Quantization on a surface of constant r with the gauge
condition 8 A —g Bg A =0 produces a set of equivalent
theories in which g A carries a v. instantaneous interac-
tion. For each g there is a confining theory, but it is not
obvious that these g Coulomb gauges are equivalent to
each other. The ground states are certainly not identical.
On the other hand, since QCD is gauge invariant, covari-
ant and noncovariant gauges are equivalent if gauge-
invariant amplitudes are calculated to all orders in the
coupling constant. In the present model, perturbation
theory is simplified by the nonpropagation of quarks and
gluons. It is possible to calculate the effects of large
classes of diagrams and restore a measure of Lorentz in-
variance.

It is appropriate to ask whether one should demand
Lorentz invariance in a theory of confinement, a
low —three-momentum, large-spatial-distance phenomen-
on. The description of a meson as a quark-antiquark pair
connected by a fiux tube is certainly neither covariant nor
invariant. If a two-particle state is boosted, an indefinite
number of "sea" particles are created. Any model of
hadrons formed from a finite number of constituents
necessarily lacks Lorentz invariance and is restricted to
low momentum.

Singularities due to the vanishing of the Faddeev-
Popov determinant' ' do not appear in the quantization
method adopted here. The determinant is buried impli-
citly in the state vectors. Christ and Lee' recover co-
variant Feynman rules in the Coulomb gauge while ig-
noring wave-function singularities. Quantization about

the physical vacuum also suppresses the large field com-
ponents which occur at zero momentum in ordinary per-
turbation theory. The Faddeev-Popov determinant is
well behaved for weak fields. ' The philosophy of this pa-
per is that singularities arise as a result of dynamics. Per-
turbation theory is defined for weak, physical fields.
Series are resummed and analytically continued to find
singularities.

Is the whole calculation a gauge artifact? A hidden hy-
pothesis is that one gauge is favored over all others for
analysis of the zero-momentum limit of QCD (Ref. 18).
Such a favored gauge will not be covariant. Few-particle
bound states should make sense. Although the spectrum
of bound states is gauge invariant, most of the key func-
tions (such as the gluon propagator) are not gauge invari-
ant. Since trouble can arise when calculations are trun-
cated to finite order, it is important to calculate large
classes of diagrams to all orders and to estimate the efFect
of excluded diagrams. The standard test of a gauge
theory calculation is consistency with the Ward identi-
ties. In this model one can ask whether the hypothesized
pattern of infrared singularities passes that test. There is
no easy answer. The standard derivations of Ward iden-
tities are tied to Lagrangian path-integral quantization in
covariant gauges, ' not the Hamiltonian formalism
adopted here. Derivations assume an invariant vacuum
state. The Christ and Lee prescription for quantization
in the Coulomb gauge includes absorbing the square root
of the Faddeev-Popov determinant into the definition of
states. ' Another aspect of Ward identities is that they
relate longitudinal components of vertex functions to par-
ticle propagators. In the Coulomb gauge the longitudinal
components of vertex functions are decoupled from the
theory. The gauge fields are transverse. The nature of
Ward identity constraints is an interesting question,
worthy of a separate investigation, but is beyond the
scope of this paper. The goal of this work is to create a
model that is not in confiict with QCD, yet is simple
enough to be used in the investigation of important
theoretical questions related to the interplay between
constituent and bound-state degrees of freedom. Unlike
bag models, potential models, condensate models, ' etc.,
this model is complete. Hadrons are poles in the color-
singlet channel of two-particle Green's functions. Tech-
niques exist for extracting hadronic amplitudes from
quark processes. Whether QCD confinement actually is a
result of the proposed set of infrared singularities is not
of overwhelming importance. What matters is that the
mechanism is at least consistent with QCD.

The Hamiltonian approach to path-integral quantiza-
tion about the physical vacuum is developed in the next
section. The result is a set of effective propagators for
dressed quarks and gluons and a description of their in-
teractions. The gauge group is SU(N). Where approxi-
mations are necessary, amplitudes which do not vanish in
the X~oo limit, g X-fixed limit are expected to dom-
inate. Self-consistency is discussed in Sec. III. Some of
the results have been obtained before by less reliable tech-
niques. The Wilson loop is calculated in Sec. IV. Not
only does the result display confinement, but the calcula-
tion emphasizes the significance of nonpropagating
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gluons and the instantaneous, singular Coulomb interac-
tion. Bethe-Salpeter equations for bound states are treat-
ed in Sec. V. The energy spectrum is not calculated.
Corrections to the simplest version of the model are dis-

cussed in Sec. VI. Section VIII touches on possible de-
fects and mentions applications. The numerous appen-
dixes are devoted to important technical details.

II. QUANTIZATION IN THE COULOMB GAUGE

The @CD Hamiltonian in the Coulomb gauge is'

a

H=,'fd rB (r)B (r)+ ,'fd-'rP, '(r)P (r)+ fd rg, (r) iy —V gy—A'(r) +m gati(r)
aP

2 a a'

+ e r', b, P r ~ A' r — r y r E„.r,r', &, P r' A' r' — r' y r'

+ V, (A)+ Vz(A) . (2.1)

Both the gluon field AJ'(r) and its conjugate momentum
field P, '(r) are divergence-free in the Coulomb gauge:

V A'=V P'=0 . (2.2)

[A,', A, ]=2if,b, k',

tr(A, 'A, )=25,b .

The color-magnetic field is

(2.3a)

(2.3b)

Implicit in the definition of the quark fields g (r) are
color, Qavor, and Dirac indices. The quark mass matrix
m is diagonal in flavor space. The gauge group is SU(N,
and f,&, represents the usual set of antisymmetry struc-
ture constants. The N XN Hermitian matrices A,

' satisfy

tonian indicates Weyl ordering of the factors inside the
large square brackets. Since A, '(r) and P, '(r) are non-
commuting operators, it is necessary to specify their or-
dering in the quantum Hamiltonian. The final terms in
(2.1), V, ( A ) and V2( A ), are the anomalous interactions.
They are absent when QCD is quantized directly in the
Coulomb gauge rather than transformed from a well-
behaved gauge. ' Explicit expressions for V, (A) and

V2( A) appear in Appendix A.
Feynman rules in the Coulomb gauge are calculated

from the generating function

8'=N D A D P D D & exp iS AP,

(2.7)
B = ,'&Jk(VJ—Ak' Vk A&'+gf,—b, AJ Ak') . (2.4)

0

To lowest order in the coupling constant g, F„(r,r', t ) is

proportional to 5„.I
~

r —r'
~

. Hence, F„.(r, r', t ) incorp-
orates the QCD modifications of the ordinary instantane-
ous Coulomb interaction of quantum electrodynamics.
This modified Coulomb potential is defined by '

F„.(r, r', t ) = fd r "D,&(r, r";t )( V)Di .(r",r—', t ),
(2.5)

where D,t, (r, r", t ) is the modified Coulomb Green's func-
tion:

when it is augmented by terms coupling fields to external
sources. The integral in (2.7) involves only the physical
components of the gluon field. There are no additional
gauge constraints in the integrand. Since H is quadratic
in inomentum fields P, '(r), it is conventional to explicitly
carry out the inomentum integrations. The result is the
appearance of the Faddeev-Popov determinant and the
need for ghost fields. ' An alternative method of quanti-
zation is to treat A (r) and P (r) as equivalent fields.
First, however, I switch from configuration space to
momentum space:

—[V 5„+gf,b, A (r).V]D,d(r, r', t)=5,d5 (r r') . —A (r t)=fd ke ' A (k). (2.8)

(2.6)

The 8 subscript around the Coulomb term in the Hamil-

The momentum field and the quark fields are similarly
transformed. That portion of the action in (2.7) which is
linear or quadratic in fields is

So —— (2n)f d —k d p. 5 (p +k )

x(ipoP'(k) A'(p)+ —,'P'(k) P'(p)[1+F, (k)]+—,
' A'(k) A'(p)[k +F2(k)]+ A'(k) J'(p)+P'(k) K'(p)

—p(k)y pop(p)+ it(k) [y p[1+6, (p)]+m [1+6,(p)] J 1i(p)+ p(k)g(p)+ g(k)it(p) ) . (2.9)
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Since both A, '(k) and P (k) are transverse, only the transverse components of the external boson sources J (k) and

K, '(k) are coupled. Thus, J A is shorthand for J,P, A where P;, (k)=5; —k;k lk . The treatment of quark degrees
of freedom is standard; g and q are quark source terms. The functions F~(k) and Fz(k) turn bare gluon propagators
into fully dressed propagators, and G&(k) and 62(k) do the same for the quark propagator. These functions are fixed

by the requirement that they sum exactly all self-energy diagrams. ' In principle additional terms such as
ipoP'(k) A'(p)F3(k) and g(k)y po+(p)63(k) are needed. However, self-consistency in the k~0 limit does not require
them. The terms added to make So the action for particles propagating in the physical vacuum are compensated for by
the subtraction of identical quadratic terms in the interaction Hamiltonian.

The standard path-integral formalism yields the following effective single-gluon propagators:

1+F)(k)
( A (k}A& (p) }= 5,&5 (p+k)P; (k)

(2m. )

k +Fi(k)
(P, '(k)P, "(p))= 5,„5(p+k)P;, (k)

(2m )

(2.10a)

(2.10b)

(P, '(k) A, (p) ) = 5,b5 (p+ k )PJ(k)
(2n )

where

d(k)=ko —[k +F (2k)][1+F,(k)]+i =ek 0 co(k—) +ie .

(2.10c)

(2.1 1)

The transverse projection operators arise from the fact that only the transverse components of the vector sources occur.
The quark propagator is

with

l' ko+g k[1+6&(k)]+m[1+62(k)]] &
P (p)Ptt(k) =,5'(p+k)

(2n. ) F
(2.12)

d~(p}=pa —p [1+6,(p)] —m [1+G2(p)] +i e . (2.13)

If the functions F„F2,G„and G2 contain terms which become infinite in the infrared limit, then the poles in the prop-
agators are shifted to ko ——+ ao.

Interactions are described by St ——fHt( A, P, ql, %)dt. In momentum space this becomes

St( A, PQ, Q) =(2m)4 f d P d4k 5 (p +k)PP'(p) P'(k)F, (k)+ —,
' A'(p) A'(k)F2(k)+g(p)[y kGi(k)+mGz(k)]g(k) j

ig(2n) f,—b, fd 1 d 2d 35 (1+2+3)A'(1) A'(3)1 A (2)
2

(2n) f,b,f,d, f d 1 d 2d"3d 45 (1+2+3+4)A"(1) A (3) A'(2) A'(4)

+ (2m) f—d 1 d 2d 3$(1)y A'(3)A. 'f(2)5 (1+2+3)—fdt[V)(A)+ Vz(A)]
2

2

(2m. ) f d 1 d 2d 3d 4dx5(lo+20+3O+40+x)
2

X[f,„,P (1) A'(2) ——,'$(1)y iPQ(2)]F„.( —1 —2, —3—4;x)

X[f,d P"(3) A'(4) ——,'p(3)y A, 'g(4)] . (2.14)

Explicit expressions for the anomalous interaction terms are given in Appendix A. Except for the restriction to spatial
components, the three-gluon, four-gluon, and quark-quark-gluon terms are standard QCD interactions. The final term
in (2.14) is the modified Coulomb interaction. The modified Coulomb operator has the Fourier transform

F„.(r, r';t)= f d p d k dx e '"'e' 'e'"'F„(p,k;x) . (2.15)

It will be necessary to calculate this function from its definition in terms of the modified Coulomb Green's function
D,b(r, r', t }. If the Green's function has a Fourier transform such as (2.15), then

F„.(pk x)=(2m) f d sdy dz D b(p s y)s Db, ( —sk z)5(x —y —z} .

The dilferential equation (2.6) becomes an integral equation in momentum space:
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5,b5'(p+k)5(x)
D,i, (p, k;x)= +igf„, 2 J d s A'(s) pD,b(p —s, k;x —so) .

(2ir)'p' p
(2.17)

If (2.17) is expanded in a perturbation series and the re-
sult is inserted in (2.16), one can prove that

F,b(p, k;x)= [gD,b(p, k;x)] .d
(2.18)

dg

In the g =0 limit F,b(p, k;x ) is equal to the first term in

(2.18). More generally the Coulomb part of Si as well as

Vi and Vz, contains interactions of all orders in g and
can lead to the creation of an arbitrarily large number of
gluons.

The self-consistent theory of confinement is defined by
the following set of assumptions.

(1) There is an infrared singularity in the theory that
can be controlled by a cutoff parameter p.

(2) The subtraction functions F„Fz,G„G2diverge as

p~O. Each function has a term proportional to a con-
stant k(p, ), where A, (p)~ oo as p~O.

(3) In Feynman diagrams integrations over po, the time
component of a loop momentum, are to be performed be-

fore setting p =0.
(4) The vacuum expectation value (VEV) of the

modified Coulomb interaction has the form

5,b5 (p+k)5(x)
(F,i, (p, k;x ) ) =

&
F(p), (2.19)

(2n. )

where, as p~O, the function F(p) develops a singularity
at p=O. The structure of the VEV is fixed by symmetry
requirements, except for the unknown function F(p).
The singularity in this function is such that in any in-

tegral involving F(p), one can set

F(p)=&(p)5 (p)+F(p)
and the effects of the singularity are totally absorbed in
A,(p).

These assumptions are shown to be self-consistent in
the next section. The vacuum expectation values of
F,b(p, k;x) and D,b(p, k;k) play a proininent role as the
effective propagators for the Coulomb interaction.

Hypotheses (1) and (2) imply that at fixed momentum
all single-particle propagators vanish in the p=O limit.
For example, the ( A A ) propagator for gluons becomes
proportional to F, /(F, F2)~A, '~0 when F, &&1 and

F2 ggk . Moreover, the pole in the ko plane moves to
ko ——+(F,Fz)' ~+A,~+~ as p~O. If a propagator
occurs inside a momentum loop, there are, according to
(3), contributions from encircling the ko poles. The resi-
due of the pole of an ( A A ) propagator is proportional
to F, /(F, Fz)' =A, . The residue is finite at p, =O.
Thus, a momentum loop with a single quark or gluon line
(and a number of instantaneous Coulomb lines) has a
finite infrared limit. In general, each momentum integra-
tion encircles a pole and compensates for one factor of

Quark lines are treated in the same way. Diagrams
with two or more gluons and/or quarks in a momentum
loop vanish in the infrared limit. For n particles, a
momentum loop is of order A,

' ". In addition, the in-
teractions in (2.14) never produce a momentum loop

The maximum value of M is 1, and it occurs when there
are no four-gluon vertices (nag„——0), three-gluon vertices
(n =0), or quark-quark-gluon vertices (n =0). Dia-
grams with M &0 vanish. An example of an M =1 am-
plitude is the set of ladder diagrams for quark-antiquark
scattering via singular Coulomb exchange. (There is a
constraint condition that eliminates the M =1 term to
leave a finite function. ) Diagrams with M = 1 are also re-
sponsible for the infrared divergence in propagator func-
tions. It is important to remember that there are no
quark or gluon self-energy diagrams in the perturbation
series. They are summed exactly by the use of effective

propagator s.
In constructing a set of Feynman rules, one must

recognize that there are three separate gluon propagators
corresponding to ( A A ), (,PP ), and ( AP ), and two
Coulomb propagators which are distinguished by their
behavior at p=0. The VEV of the modified Coulomb in-
teraction is singular in that limit, while the second propa-
gator is the nonsingular VEV of the Green's function.
The Green's-function propagator is needed to describe
the multigluon interactions inherent in the Coulomb, V„
and V2 contributions to S~.

III. SELF-CONSISTENCY

The amplitudes corresponding to Feynman diagrams
depend on six unknown functions —four functions in the
effective propagators and the Coulomb functions F(p)
and D(p). The model makes sense only if these functions
can be calculated nonperturbatively. The simplest func-
tion to analyze is the VEV of the modified Green's func-
tion. The perturbation expansion of D,b(p, k;x) is given
in (Bl) of Appendix B. The VEV of D,b has the diagram-
matic representation of Fig. 1. Diagrams which vanish in
the A, ~ ~ limit have been eliminated. The only nonvan-
ishing diagrams are those in which physical gluons are
emitted and reabsorbed by the gluon line. The perturba-
tion series for this subset can be resummed to produce a
Dyson equation for the unknown function in (D,b ):

1 1

k' 1 —gI(k)
(3.1)

composed entirely of Coulomb lines. As a result there
are no spurious divergences from ko integrations.

By hypothesis the propagator of the Coulomb interac-
tion is singular and produces a positive power of the
divergent parameter A, . Hence, finite amplitudes can
occur when vanishing propagators are compensated by
either momentum integrations or singular Coulomb prop-
agators. If the Feynman diagram for a particular process
contains L momentum loops, G gluon propagators (of
any type), Q quark propagators, and C singular Coulomb
propagators, the amplitude will be proportional to A.

where, as shown in Appendix C,

(2.20)
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+. ~

rithmic divergence in (3.2). Analysis of the p~O limit
shows that if 3 (p) approaches a constant, D(p) is pro-
portional to (p ) . Conventional perturbation theory
sets A (p) =1/p and D(p) = 1/p in lowest order.

The p=O enhancement of D(p) is promoted to a true
infrared singularity in F(p)=d[gD(p))/dg. Differenti-
ation of (3.1) leads to

1 1+g J(p)F p)=
p [1—gI(p) ]

with

(3.4)

~ 0 0

J(p)=, fd'k A(k)F(p —k) . (3.5)
2(2vr )' p2I 2

These equations also appeared in the paper on the QCD
vacuum. Since F( p )~ 1/p as p ~ ao, the integral
defining J(p) is logarithmically divergent. After renor-
malization, the solution of (3.4) must lead to an infrared
singularity in F(p) in order to satisfy the self-consistency
requirement.

F(p) is infrared singular if, as p~O, F(p) ~(p )

and n ) —,'. When n is in the range —,
' (n & —,the singular-

ity can be controlled by a simple subtraction procedure.
One possible parametrization is

(c)
+ r ~ ~

FIG. 1. The perturbation series for the Coulomb Green's
function is portrayed in (a). Solid lines are 1/p propagators
and wavy lines are gluons. The perturbation series is resummed
in (b); the dashed line is the dressed propagator function D(p).
The nature of the integral equation for the vertex function is
shown in (c).

0

where D(k) is defined in (B3). If the DgDO vertex func-
tion in Fig. 1 (Do= 1/k ) is replaced by its zeroth-order
value

I(k) = f d'p 3 (p)gD(p —k) (3.2)
2(2n. ) p k

for the gauge group SU(N). The role of vertex correc-
tions and other higher-order corrections is addressed in
Sec. VI and Appendix E. The propagator function A(p)
is of order k:

oc 1+F,(p)
A(p)= —f dpo

po' [I+Fi (p) )[p+—F2(p) l

1+F,(p)

p'+F2(p)
(3.3)

I have used the fact, to be verified shortly, that F, (p) and
F2(p) are independent of pn in the A.~ oo limit.

Equations (3.1) and (3.2) were derived in an earlier
work on the relationship between confinement and prop-
erties of the QCD vacuum. The extensive discussion will
not be repeated here. Asymptotic freedom predicts that,
within logarithms, A (p)~ 1/p and D( p) ~ 1/p as
phoo. Renormalization is necessary to remove a loga-

(b)

FIG. 2. The order-g gluon counterterm, marked by a cross
in (a), cancels four diagrams. Only the diagram with the singu-
lar Coulomb propagator indicated by a double-dashed line sur-
vives the infrared limit. Quark lines are solid. The quark coun-
terterm equation is shown in (b).



674 ARTHUR R. SWIFT 38

F(p)=
(p '+ ju')"

Then for an arbitrary function H(k),

I(p)= fd k F(k —p)H(k)=A(p)H(p)+I(p) .

The integral I(p) is finite as @~0and

2nI'( ', }I—(n ——,')
(p)=

2ll —3p( )

Equation (3.7) is equivalent to writing

F(p) =&(p)5'(p)+F(p) .

(3.6)

(3.7)

(3.8)

(3.9)

Integrals containing F(p) are defined from (3.6) with the
stipulation that p-dependent divergences are to be dis-
carded. For example, in (3.5) F(p —k) can be replaced by
F(p —k), since p k —(p.k) vanishes at p=k, and the
integral is finite at p=0.

The theory is complete when A (p) and the quark and
gluon eft'ective propagators are calculated. The sums of
all self-energy insertions in gluon lines are canceled by
the quadratic terms in the interaction Hamiltonian.
Order-g corrections to gluon and quark lines are shown
in Fig. 2. Quadratic insertions are indicated by crosses.
If (2.20) is correct, only the diagrams with a singular
Coulomb line contribute in the X~ ~ limit. Other self-
energy diagrams are of order A, '. The second-order
correction to (2.10a) is

( A (k) A "(p) ) = 5, 5 (p+k)P; (k)
(2m )

2Q
X —ko F&(k) — fd s F(s—k)A(s)tr[P(s)P(k)]

d (k) 4(2m }

2'—[1+F,(k)]' F,(k) —g, fd's tr[P(s)P(k)]
4(2~)'

1

d(k)
(3.10)

F, (k)= —fd s F(s—k)A(s)tr[P(s)P(k)],
2

(3.11a)

The identical combination of F„F2,and integrals occurs
in ( PP ) and (PA ) . Hence, the condition that self-
energy corrections vanish fixes F, and F2 (to order g ):

1+F,(k)
A(k) =

k'+F, (k)

aA, A (k)+1+F,(k)

+k +F2(k)

1+F,(k)

k +F~(k)
(3.15)

Fz(k)= —fd s F(s—k) tr[P(s)P(k)]
2 A(s)

(3.11b)

with a=g Ni[2(2n. ) ]. The corresponding quark calcu-
lation for each Aavor leads to

The poles of the gluon propagator are located at

ko=+(ah+ [[1+F,(k)][k +Fz(k)])'~2) . (3.16)

a'
3 k s I+Gi(s)

6, (k}= f d s F(s—k)

1+6,(s)
62(k) = f d s F(s—k) E s

where a' = [(N —1 ) /N2]a and

E(s) =s [1+6,(s)] +m [1+Gz(s)]

(3.12a)

(3.12b)

(3.13}

F, (k) =AaA(k)+F, (k),
F2(k) =La/A(k)+F&(k),

(3.14a)

(3.14b)

where the overbar over a function indicates the absence
of an infrared singularity. Assumption (2) of the model
and (3.14) are mutually consistent since A (k} is infrared
finite:4

According to (3.11) and (3.12), the self-consistency re-
quirernent is satisfied if the propagator functions are in-
dependent of kQ and even functions of k.

When (3.9) is used for F(s—k), the gluon functions be-
come

I

1+6,(k)= 1+ [1+6,(k)],

where the quark energy is E(k)=a'l/2+E(k) and

E(k)=[k (1+6, ) +m (1+G2) ]'

(3.17)

(3.18)

Using (3.17) and (3.18) in the integrals defining 6, and
62, one finds

1+6)(s) g.sGi(k)= —fd's F(s—k)
2 E(s) k

(3.19a)

a 1+62(s)
G2(k) = fd s F(s—k)

2 E(s)
(3.19b)

Again there is no dependence on the infrared cuto8 pa-
rarneter. The poles of the quark propagator are located
at

As k~ (x} the poles move to kQ +
The infrared singularity in each quark function defined

by (3.12) can also be isolated:
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I

ko ——+ +E(k)
2

(3.20)

g(k)
= —[I(k)—I(0)], (3.2 la}

As the cutoff parameter p~0, the poles move to
ko —+ oo.

In order to fully validate the self-consistent model, it is
necessary to show that there exist solutions with the ex-
pected behavior. The gluon equations must be solved
simultaneously for D(p), F(p), and A(p). Then F(p) is
used to determine G, (p) and Gi(p). First, however, ul-
traviolet divergences must be removed. The renormaliza-
tion of the pairs (3.1),(3.2) and (3.4),(3.5) is discussed in
Ref. 3 and Appendix D. The set of equations in the
gluon sector is

and f is not fixed. If 64/21ir=0. 97=1, 8=0. The pres-
ence of a coinplex power in (3.27c) is a defect of this
lower-order calculation. A linear, nonrelativistic poten-
tial in configuration space corresponds to 8=0 and
F(k) ~k . Fortunately 8 is small, and there is the ex-
pectation that higher-order corrections will produce a
purely real power-law dependence for F(k). In the non-
relativistic limit, the Fourier transform of F(k) is the
configuration-space potential. Since M is the dimension-
ful scale factor in the potential, the size of a color-singlet
bound state is of order 1/M. The deviation fram a linear
potential for this small value of 8 does not become
significant (i.e., 10') until r =400/M. Pair production
of hadrons becomes important well before that limit.
This argument also suggests the nature of important
corrections ta F(k). Section VI and Appendix E are de-
voted to a discussion of corrections.

F(k)= , , Il +g(v) [J(k)—J(v)]I,1 g(k)'
k g(v)

1+Fi(k) —Fi(v) 1+F&(0)—Fi(v)
A (k) A (0)

2

= k i+Fan(k) —Fi(0)— [Fz(v) —Fz(0)],

(3.21b)

(3.21c)

lo) (p)

{p)

where gD(k)=g(k}/k and all functions and coupling
constants are renormalized. Integrals are infrared finite.
The limits g(0)= ~ and A(0)=1/M, M&0, have been
imposed. A(0) is a naturally occurring parameter with
dimensions of mass but which is not calculable. It sets
the scale of the theory. The linear nature of the integral
equation for F(k) is used to set v F(v) =1. Since v is an
arbitrary subtraction point, solutions to (3.21) should not
be sensitive to its value. Solutions will not be stable un-
der iteration if the choice of g(0) and A (0) is not con-
sistent with the equations.

One can show analytically that all functions approach
their asymptotically-free values in the ultraviolet limit.
There are logarithmic modifications to power-law behav-
ior, and the coefficient of the logarithms differs from that
predicted by conventional QCD calculations. The
difference is expected, since the ordering of infrared and
ultraviolet limits eliminates diagrams which contribute to
standard perturbative QCD calculations. It is important
to note, however, that (3.21) is fully renormalized without
the missing diagrams.

Analytic solutions to (3.21) are available in the k~0
limit:

-5
0

I.O

.8

4

, 2

' 1/2

lim g(k) = 21m
(k/M) —1/2

k-O 2N
(3.22a)

0
0

s s s s s s I I
2 4 6 8

lim A ( k ) = 1/M,
k~O

f k
lim F(k) =

k' M2

64
21m.

sinmO 1

(1+8 }coshm8

where 0=0.0847 is the solution of

(3.22b)

(3.22c)

(3.23)

FIG. 3. Numerical solutions of the fundamental equations of
the mean-Seld model are shown as functions ofp. The coupling
constant in the equation for F(p) is multiplied by 0.9 to avoid
complex solutions at p =0. The logarithms of both D(p) and
F(p) are plotted in (a), and the gluon propagator function A (p)
is given in (b). F(p) is constrained by F(1)=1. The quark
counterterm functions G&(p) and Gz(p) are zero on the scale of
(b), except for the highest momenta. The momentum p is mea-
sured in units of A (0)
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Appendix F presents an alternative calculation of F(k) .
Direct evaluation of the VEV of the integral defining F,

„

as the product of two Green's-function operators leads to
exactly the same singular behavior. One interprets the
result as due to the formation of a color-singlet "bound
state" of two D-type Coulomb lines interacting by gluon
exchange. The alternate derivation is useful for the
analysis of possible corrections.

The quark equations are renormalized in Appendix D.
The result is

1+G, (k) = 1+[IG,(k) —IG, (v)], (3.24)

where IG;(k) is the integral on the right-hand side of
(3.19). The quark mass and all functions are renormal-
1zed.

An approximate numerical solution of the complete set
of equations is shown in Fig. 3. Since there exist in
lowest-order solutions that satisfy the self-consistency
conditions, the next step is to prove confinement and the
formation of finite-energy, color-singlet bound states.

IV. WILSON LOOP

L—:P exp i Adl (4.1)

where P indicates ordering of field operators around a
closed loop. The loop is fixed to be a rectangle with
corners (0,0), (nR, O), (nR, T), and (O, T). With this
choice, L is equal to

The model is designed to confine color and provide a
method for calculating the properties of color-singlet
bound states. The absence of poles in single particle
propagators is one manifestation of confinement. A
second way to prove confinement is to calculate the VEV
of the Wilson Loop for pure imaginary time ~. A third
"proof" requires analysis of the Bethe-Salpeter equation.

The Wilson loop ' calculation is a nontrivial test of
the model. The result depends both on the instantaneous
nature of the Coulomb interaction and on the impossibili-
ty of propagating physical gluons over finite time inter-
vals. The quantity of interest is

R T 0 0L= tr Pexp i do. A„no,0 Pexp i ~ A4 nR, ~ P exp i do A„ncaa,~ P exp i d~ A4 0, 7
0 0 R T

(4.2)

In (4.2) A„(x,r) = A„'(x,r)k' and A„=n A. Before (4.2) can be evaluated, it is necessary to define a propagator for
the time component of the gluon field. In the Coulomb gauge Ao (x, t ) is eliminated from the Hamiltonian. However,
the coupling of the time component of the quark current to the modified Coulomb interaction shows how an external
source coupled to Ac'(x, t ) enters the Hamiltonian. The propagator is

(Ao'(k)AO"(p)) = ~5,b5 (p+k)g F(k) .
(2n )

(4.3)

To calculate the Wilson loop, one needs propagators in configuration space for imaginary time. Equation (2.10a) with
k0~ik4 is equivalent to

and

( A '(x) A s(y) ) = d k P"(k)A(k)e '"'" "'e
2(2m )

1J

25
( A4'(x)A4 (y)) = 5(x4 —y4) f d k e '"'" "'F(k)=5(x4 —y4)5, ~ V(x —y) .

(2n )

(4.4)

(4.5)

The gluon energy is co(k)=a (, +)[(1+F,)(k +Fz))' . Since the propagator for transverse gluons is proportional to
exp( —ad(,

~
x4 —y4 ~

), physical gluons do not propagate over finite time intervals. Only when x4 ——y4 is the propagator
nonzero in the A, ~ ac limit.

Since the transverse gluons do not propagate over finite time intervals, the spacelike parts of the loop at ~= T and at
~=0 are disconnected from each other, and the loop factors into

T 0l. G(R) (tr Pe pi jttd=rRt(eR, r) Pe pi Jtt(O, rd)dtr (4.6)
0 T

where

G(R)=—P tr exp i f do. A„(nor,O)
0

(4.7)

G(R) is r independent. Term by term G(R) approaches unity as R ~ Go. Confinement comes from the remaining VEV
in (4.6). There are contributions from equal r propagators acting across the loop from x=nR to x=0. In addition it is
possible for a v.-like gluon to be emitted and reabsorbed by the same side. Details of the calculation are in Appendix H.
The result is

L=NG(R) exp[ —p[V(0) —V(R)]TI .

If F(k) is given by (3.6) with n =2,

(4.8)
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N —1
(4.9)

and the exponential in the Wilson loop has the standard area dependence. Although n =2 seems to be favored by self-
consistency, Eq. (4.8} is valid for any value of n. The Wilson loop measures field energy of widely separated sources of
color. An area dependence is equivalent to a linear potential.

The success of this calculation depends on the instantaneous propagation of the modified Coulomb interaction. Fin-
ite propagation time would lead to crossed rungs and longer-range (in r) interactions along a side of the loop. If physi-
cal gluons propagate over finite time intervals there are additional complications.

V. BOUND STATES

There is a large gap between a general proof of confinement and the derivation of explicit bound-state equations. The
self-consistent model incorporates the full machinery of field theory. Thus, it is possible to derive Bethe-Salpeter equa-
tions for both gluon-gluon and quark-quark states. Although the three-quark calculation is possible, it is not dis-
cussed here.

The derivation of the Bethe-Salpeter equation for quarks is straightforward. One considers ladder diagrams for
quark-antiquark scattering. The color-singlet channel is projected out. Summation of the ladder diagram leads to an
inhomogeneous integral equation. The homogeneous version for bound states is

~ /

4 &(p, W; Wo)= f d x F(p —x)[yP( —W/2 —x)],% &(x,W; Wo)[S(W/2 —x)yo]&& . (5.1)

The xp integration introduces the standard positive- and negative-energy projection operators:

yoy'k[ 1 + 6 i (k )]+yom [ 1 +G2(k)]
Ag(k) =—I+

2 E(k)

The quark Bethe-Salpeter equation is

A (W/2 —x)%(x,W; Wo)A~( —W/2+x)
%(p, W; Wo)=a' d x F(p —x)

f + P

A+( —W/2 —x)qi(x, W; Wo)A ( —W/2+x)
+

Xf—8'p

(5.2)

(5.3)

and XI E(W /2+ x——) +E(W/2 x}=a'A, +X—&. The projection operators are independent of A (p). Since the interac-
tion is instantaneous, the Bethe-Salpeter equation becomes the Breit equation.

A finite equation is possible only if there is a cancellation between A, in XI and F(p —x) cc A,5 (p —x). In all qq and qq
channels, except the color-singlet one, infrared cancellation requires 0—:0. The color-singlet wave function becomes
%=%+ +4 +, where the subscripts indicate left and right projection with A+ or A . In other words,
A+/A+ A/A =0.——It is convenient to define new amplitudes by

V~p ——(XI+$VO)4~ ~,
in order to remove divergent factors from the denominator of (5.3). The bound-state equations are

[XI(p,W) —Wo]4 +(p, W, Wo)=A ( —W/2 —p)

(5.4)

X a' xFP —x 4 +x,Vf gp+4 x,~;P'p P ~ 2 p

[X/(p, W)+ Wo]4+ (p, W; Wo)=A~( —W/2 —p)

X a'f d x F(p —x)[4 +(x,W;Wo)+4+ (x, W; Wo)] A (W/2 —p) .

(S.sa)

(5.5b)

In the center-of-momentum frame where W=O, these
equations are identical to the Tamm-Dancoff equations of
Ref. 2. There it was shown, both numerically and with
the WKB approximation, that there exists an infinite
number of bound states. The Bethe-Salpeter equation,
unlike the Tamm-Dancoff equation, can be renormal-
rzed.

The phenomenology of bound states is beyond the
scope of this paper. However, one can easily show that in

the nonrelativistic limit of heavy quarks, the Bethe-
Salpeter equation reduces to the Schrodinger equation
with a confining potential proportional to r" . Lead-
ing corrections to the nonrelativistic limit introduce L-S
coupling, but spin-spin and tensor interactions are not
found. The equations are defined for nonzero total
momentum, i.e., bound states in motion. Another prop-
erty of these equations is that they are defined even when
the quarks have zero bare mass. When the quark propa-



678 ARTHUR R. S%IFT 38

gator function is redefined by setting 1+62(p)
=G2'(p)/m in (2.9), the nonlinear equations for G, (p)
and Gz'(p) are well defined. Having done this, one can
project the 0+ channel out of (5.4) and look for WO=0
solutions. If the pion wave function is identified with
G z (p ), the bound-state equation is identical to the con-
sistency equation for Gz(p). The model predicts the ex-
istence of a zero-mass pion. Chiral symmetry is broken
and one can study the formation of a qq condensate.

The analysis of bound states in the gluon sector is com-
plicated by the spin of the gluon and the need to consider
the three different gluon propagators of (2.10). Ladder
diagrams with Coulomb exchange lead to a set of coupled
integral equations for color-singlet glueballs. The equa-
tions are identical to those of Ref. 3 with a change in ki-
nematics for fully dressed gluons.

Corrections to the set of ladder diagrams are calcul-
able. Most vanish in the }(,(p)~~ limit. There is no
glueball-meson mixing. A more interesting extension ex-
amines the effects of finite-energy bound-state poles in
two-particle Green's functions. Since Bethe-Salpeter
wave functions can be normalized by standard methods,
it is possible to project out hadronic contributions to
quark scattering processes.

VI. CORRECTIONS

The self-consistent model describes a world in which
single quarks and gluons have infinite energy, yet color-
singlet bound states with finite energy exist. The model
should provide a useful theoretical laboratory for the
study of the relationship between bound state and constit-
uent degrees of freedom. Since the full machinery of
QCD is available, albeit in a particular gauge, one can an-
alyze a number of corrections. This is a useful exercise in
order to understand whether this model might be an ac-
curate description of the confinement process in QCD.
Here I consider questions that are answerable within the
framework of the model. Perturbation theory with
effective propagators is used to investigate the stability of
the results of Sec. III. I address in turn the effect of
anomalous interactions, vertex corrections, screening, or-
dering of the p~O and p~ 00 limits, and finite higher-
order corrections.

A. Amomalous interactions

The Vi ( A ) and V2 ( A ) terms in the Coulomb-gauge
Hamiltonian have been ignored in the development of a
low-momentum theory. These interactions are required
for correct quantization' ' and have been shown to be
necessary for renormalizability. They cancel diver-
gences of order g and higher and allow one to reproduce
standard calculations of gauge-invariant quantities.
Neglect of Vi( A) and V2( A) is equivalent to the state-
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FIG. 4. A representative multigluon interaction arising from
V&(A) is shown in (a); vertices are taken to be points. The
dashed-wavy line represents a fictitious gluon line. Order-g
and -g corrections to the gluon self-energy appear in (b). A
large class of planar diagrams sum in (c) to produce vertex
corrections for the fictitious gluon.

ment that they have no qualitative effect in the infrared
limit. Since neither quark fields nor momentum fields
P (p) are directly affected by anomalous interactions, the
only way they can scuttle the self-consistent model is for
them to generate two- and/or four-gluon interactions
which are infrared singular. A definite statement requires
a reliable nonperturbative calculation. Such a calculation
is difficult even with the simplified perturbation theory.

The structure of V, ( A ), as shown in Fig. 4(a), is that of
a closed loop of D-type Coulomb propagators bisected by
a fictitious gluon line that carries momentum, color, and
spin, but does not have a propagator. An effective two-
gluon coupling is derived from the operator-product ex-
pansion of each D,b(p, k;x) in (A2). fSee Fig. 4(b).]
Gluons in the expansion couple either to external parti-
cles or to the opposing Coulomb line. Keeping just pla-
nar diagrams, one can sum the terms of Fig. 4(b) to give
Fig. 4(c). If all vertices are replaced by points, the
effective two-gluon action due to V, ( A ) is

g 4+2fdr Vi(A)= — fd pd k 5 (p+k)A (p)A '(k)
16(2ir )

I J

fd's s, (p —s) D(s)D(p —s)fd't t, (k t) D(t)D(k —t)— (6.1)
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This expression is to be compared with the A (p)A (k) term in (2.9). The s and t integrals in (6.1) are infrared conver-
gent but ultraviolet divergent in order to cancel g divergences in the standard Coulomb Hamiltonian and V2(A). If
the s and t integrals are cut off at infinity and evaluated with D(s) ~M'~ S and A(0)=1/M, the factor in large
parentheses is proportional to M . Compare this result with the propagator function F2(k) which has a divergence pro-
portional to A, (p) and a finite term proportional to 1/k for a linear confining interaction.

Although (6.1) does not have an infrared singularity, there is the possibility that a singularity could develop from
nonperturbative effects at the vertices in Fig. 4(c). However, vertex corrections do not alter infrared behavior. The
conclusion is that when V, ( A ) is treated like the Coulomb interaction, it does not produce an infrared singularity.

The three terms in I V2(A) are analyzed in the same way. Again there are real and fictitious gluon lines. The
modified Coulomb interaction appears explicitly. The apparent singularity from F(p) is suppressed by gluon-projection
operators. Wherever it appears, F(p) is replaced by the nonsingular function F(p). Figure 5 summarizes the contribu-
tions of V2( A) to the two-gluon action in the point vertex limit. There is a singular term of the form

2+2f V2( A)dt = — f d p d k 5 (p+k)A (p)A, '(k)
8(2n )

&& J d s d t s, s tr[P(s)P(s —t)] [g D(s)D(s)D(s+p)]+d
J 8g

(6-2)

"&VMV~"

hhhhg
'l 1

4 4
&vV+

where d[gD(p)]/dg =F(p). Note that the infrared-
divergent s integral is multiplied by an ultraviolet-
divergent t integral. This term must cancel a higher-
order term in the standard Coulomb Hamiltonian. Other

integrals in I V2(A) match the 1/k divergence in the

propagator function F2(k). Together with contributions
from the Coulomb interaction, these terms produce a re-
normalizable correction to the calculation of the gluon
propagator function A(p). Thus, in the infrared limit,
the only effect of the anomalous interactions is to pro-
duce small corrections to the fundamental equations.
They do not generate a qualitatively different momentum
dependence or alter the nature of the singularity.

B. Vertex corrections

AAI%Aii
C

C PP % PWP A% APC

C 4
4m~ v+&Vv MV&

h+ ++h

Lr4~ ~&eve~

FIG. 5. The anomalous interaction V2( A) produces seven di-
agrams which contribute to the gluon self-energy. All have two
fictitious gluons (dashed-wavy line), two D (p) propagators
(dashed line), and a single F(p) (double-dashed line). Vertex
eftects are suppressed. The first three are produced by the first
term in (A3); the second three come from the second term in
(A3). The final diagram arises from the third term.

All calculations in this model are done in the limit of
point coupling of gluons to Coulomb lines. Appendix E
contains a discussion of vertex corrections due to a finite
number of gluon lines connecting across the external
gluon. Examples are shown in Figs. 6(a) and 6(b). The
general conclusion of power-counting arguments is that
vertex integrals are convergent. No renormalization is
necessary. More importantly, there are no infrared
singularities. A point vertex is proportional to p, and
vertex corrections are proportional to p in the infrared
limit. Replacement of vertex functions by point vertices
has no qualitative effect. A numerical calculation of Fig.
6(c) in the infrared limit finds a 5% shift in the coefficient
ofp in D (p).

A more general vertex correction is produced when the
two Coulomb lines on either side of the gluon interact to
form a bound state. As shown in Appendix F, the singu-
lar function F(p) is the color-singlet bound state of two
D-type Coulomb lines when the total momentum is zero.
However, this infrared singularity is unlikely to affect
vertex functions. Color-singlet binding across a vertex is
suppressed in the N~ 00 limit of SU(N). In addition the
total momentum zero region is an infinitesimal part of
the intergration volume sampled by a vertex integral.

The conclusion is that the part of vertex functions that
couple to transverse gluons does not affect the infrared
limit. The longitudinal part of the vertex is decoupled
from the theory.
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C. Screening

The existence of an infrared singular modified
Coulomb interaction is very important to the success of
the self-consistent model. It is possible that the singulari-
ty in F(p) is eliminated by the screening effects of quark
and gluon pairs. When one includes quark and gluon
loop insertions in the singular Coulomb propagator, the
function F(p) is replaced by F'(p) in the Bethe-Salpeter
equations of Sec. V and inside the integrals of (3.21). The
two functions are related by

{c)

F'(k) '=F(k) '+IG(k)+Ig(k) .

The gluon loop integral is

(6.3) {e)

IG(k)= ——Jd sd t5 (s+r —k)tr[P(s)P(t)]
2

A (s) A (t)
A (r) A (s)

X
2aA. +co(s)+co(t)

[2aA, +co(s)+co( t)] —ko
(6.4)

and the quark I&(k) has a similar form. Both integrals
are logarithmically divergent, functions of ko as well as
k, and of order A, '. They are also proportional to k in
the k~0 limit. If A,~ 00, both integrals vanish. Closer
analysis reveals a problem. If one considers the depen-
dence on the cutoff parameter p, one discovers that IG
and I& are proportional to p " k . Therefore, if
F(k) —'~(k +p )",

F'(k) '=(k +p )"+Pp" k (6.5)

Integrals with F(k) replaced by F'(k) diverge as p~O,
but the actual p dependence is not consistent with
A. ~p, ". In other words, if (6.5) is true, the infrared
singularity in F(k) is not maintained in higher order.

When (6.3) is renormalized, the problem goes away.
The quark and gluon integrals are both proportional to
k . If F(k)=f(k)/k, F'(k)=f'(k)/k, and IG(k)
+Ig(k) =k I(k),

f'(k) ' —f'(v) '=f(k) ' —f(v) '+I(k) —I(v) .

(6.6)

The subtraction renders the integrals ultraviolet finite.
Choosing v=O and requiring f'(0) '=f(0) '=0, one
finds

f'(k) '=f(k) '+I(k) —I(0) .

Since I(k) —I(0) is proportional to k as k~O, the in-
frared singularity in f (k) is maintained in f'(k). One
can safely let p~O, A, ~ u&, and [I(k)—I(0)]~0. While
it might seem that an obvious point has been belabored,
the existence of the infrared singularity in F'(k) as well as
in F(k) is absolutely crucial for the whole model. Screen-
ing does not remove the singularity.

FIG. 6. The first correction to a point vertex on a D-type
Coulomb line is shown in (a), while (b) suggests the complexity
of higher-order vertices. Substitution of (a) into the equation
for D(p) requires evaluation of (c). A second correction to
D(k) is produced by (d). The double-dashed line is an F(p)
propagator. Diagrams (e)-(h) are the g corrections to the
gluon self-energy associated with the two-gluon term in the
operator expansion of F,b(p, k;x). Each diagram shows one of
three positions for the singular Coulomb line. Diagram (i) is the
quark-loop term in the gluon propagator, and (j) and (k) show
gluon and quark-loop corrections to the Coulomb interaction
between gluons.

D. Limit ordering

The gluon effective propagator is not affected by the in-
sertion of the quark loop in Fig. 6(i). The rules for count-
ing powers of A. suggest that the quark loop should be of
order A, '. On the other hand, the loop integral is qua-
dratically divergent. Using dimensional regularization,
one finds that the coefficient of the pole at d =3 dimen-
sions is proportional to k . In addition the quark loop is
an explicit function of ko. The renormalization prescrip-
tion used in Appendix D involves subtractions at k =0
and k =v . After subtraction, the residual finite integral
vanishes as A, ~O. The prescription for handling the in-
frared limit is valid even when renormalization is per-
forrned before setting p =O.

K. Finite higher-order corrections

The renormalized integral equation for F(p) represents
a one-loop calculation. Self-consistency in the infrared
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limit was only approximate due to the appearance of a
complex power law. Higher-order corrections in the
equation for F(p) are generated by using F(p)
=d [gD(p)]ldg on the corrections to the equation for
D(p). Figures 6(c) and 6(d) show possible corrections.
Power counting in A, shows that Fig. 6(d) is of order A,

[The antisymmetric coupling of F(p) to A&' and P, '
suppresses the singularity in F(p) when gluon type is
summed over. ] There are three D (k) propagators in Fig.
6(c), and differentiation generates three diagrams. Two of
them are equivalent to replacing the point vertex in the
lowest-order calculation by a dressed vertex. In the third
diagram, the central Coulomb propagator in Fig. 6(c) be-
comes singular. [When F(p) is thought of as the zero-
energy bound state of two D-type lines, this diagram is
the crossed box correction to the kernel of the ladder ap-
proximation Bethe-Salpeter equation. ] Numerical evalu-
ation of just this diagram together with the correction to
D(k) produces a 2%%uo shift towards eliminating the corn-
plex power law in the Coulomb interaction. If vertex
corrections are partially included, the shift is away from
a real power law. What is needed is a simultaneous solu-
tion of Dyson equations for vertex functions and propa-
gator functions.

Corrections to the gluon propagator functions are of
interest. The full set of nonvanishing order-g diagrams
is displayed in Figs. 6(e)—6(h). As shown in Appendix E,
there are no infrared divergences. Integrals are finite in
the A, ~~ limit. These diagrams produce small correc-
tions in the propagator functions but do not a6'ect the in-
frared divergence that removes gluons from the physical
spectrum.

VII. DISCUSSION

This paper presents a model of the confinement process
in QCD. In a domain where conventional perturbation
theory is useless, progress is possible only if assumptions
are made about the physics of the infrared limit. The re-
sults are believable only if the assumptions are shown to
be consistent with the fundamental theory and if they
lead to a reasonable picture of the world. Consistency
with QCD is self-consistently verified by direct calcula-
tion coupled with stability against corrections. The
reasonable world picture is built in by the nature of the
assumptions.

Are there problems with the model that are sufficiently
serious to render it useless as a theoretical laboratory?
The choice of gauge constitutes an "in principle" objec-
tion that is addressed at length in the introduction. Ar-
guments are presented that the Coulomb gauge, or a
gauge much like it, is necessary for any detailed discus-
sion of confinement ~ Ward identities are a test of the
gauge nature of the underlying theory. Appendix G
presents a naive Ward identity calculation in the quark
sector. Infrared singularities match in the X~ ~ limit.
However, there are too many unanswered questions
about the derivation to take the result seriously.

In this model the confining interaction is instantaneous

and transforms as the fourth component of a four-vector.
Conventional relativistic bound-state calculations show
that the dominant part of the potential can be legitimate-
ly treated as instantaneous. Phenomenology in the
charmed- and bottom-quark sectors favors a long-range
interaction that has the structure of a Lorentz scalar.
That conclusion is based on lowest-order relativistic
corrections to the simplest potential model. There are
corrections to the interaction in the self-consistent model
which are not instantaneous and which have a different
Lorentz structure. Bound-state exchange is one example.

There is the annoying problem that in lowest order the
infrared limit of F(k)~k " is almost, but not quite,
consistent with the favored value n =2. The fact that
n =2+i e is of concern. Many possible corrections vanish
in the infrared limit. On the other hand, the power
dependence of F(k) is fixed in a way that makes it sensi-
tive to corrections. The behaviors of the Green's func-
tion D(k) and the propagator function A (k) are fixed by
matching powers of rnomenta in the consistency equa-
tions. F(k) is subject to the more demanding require-
ment that the coefficients of the power must match.
Higher-order corrections do not change the power depen-
dence of D(k) and A (k) but do affect F(k).

The ordering of infrared and ultraviolet limits is a deli-
cate point. When the infrared limit is taken first, the
three-gluon, four-gluon, and quark-quark-gluon vertices
are eliminated from the theory. All that remains are cou-
plings to Coulomb lines. Reversing the order would re-
store the correct asymptotic freedom limit without
significantly altering the low-momentum structure, but
the cost would be a large increase in complexity. As it
stands, perturbation theory is still complicated by the
need to treat nonlocal interactions of indefinite order in
the coupling constant. Strict perturbation theory to or-
der g" requires order-g" terms from the Coulomb Hamil-
tonian (and anomalous interactions) as well as g" contri-
butions from higher powers of the Hamiltonian. The
operator-product expansion helps, but one needs a
method to identify the most important infrared finite am-
plitudes. As a general rule calculations in the quark sec-
tor are simpler than in the gluon sector. There is only
one type of quark-quark-Coulomb coupling. Gluons cou-
ple to Coulomb lines in pairs at the end, singly in the
middle, and through anomalous interactions.

The technical problems of the self-consistent model
should not detract from its usefulness as a theoretical lab-
oratory for the study of bound states. The spectrum and
wave functions in the nonrelativistic limit are similar to
those found in ad hoc treatments of heavy-quark phys-
ics. The advantage here is that there is a clear
identification of possible corrections to lowest-order cal-
culations. When weak-electromagnetic interactions are
included, the calculation of static matrix elements is con-
ceptually straightforward. Extension to bound states of
three quarks is possible. The presence of a zero-mass
pion in the limit of massless quarks opens the area of
chiral-symmetry breaking. Purely hadronic processes
are calculable in principle. Wave functions for bound
states in motion are required. The Bethe-Salpeter equa-
tions of Sec. V provide a framework for calculating such
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wave functions. The two-quark Green's function con-
tains a set of bound-state poles with calculable residues.
A purely hadronic process such as pion-pion elastic
scattering can be extracted from the qqqq ~qqqq scatter-
ing amplitude. The meaning of a scattering amplitude for
infinite-energy particles is not obvious. Although inter-
nal quark lines are suppressed, there are enough problems

with hadronic intermediate states to make such calcula-
tions impractical.

ACKNO%'LKDGMKNT

This research was supported in part by a grant from
the National Science Foundation.

APPENDIX A: ANOMALOUS INTERACTIONS

In configuration space V, ( A ) is given by'

2

Vi ( A ) = — f d r d r 'd r"f,&,fb„[D,b (r, r', t )V' '5 ( r ' r) ][D,&—( r, r";t )V "5 ( r" r) ] . — (A 1)

In momentum space this becomes

2

fdt V, (&)=(2~) f dpidpzdkidkzdxidxz5 (pi+pz+ki+kz)5(xi+xz)
8

(A2)

Although f dt V, (A) appears to be of order g~, the first nonvanishing term is of order g . If either factor of the

modified Green's function D,„(p,k;x) is replaced by its zero-order value 5,b5(p+k)/p, J V, (A) vanishes. The
configuration-space form of V2( A ) is complicated. In momentum space the expression is marginally simpler:

2Qf dt Vz( A ) = 2n—fd. p d k F„(p,—p;0)tr[P(p)P(p —k)]

3
—2i(2ir) f d p d k d sd t d r dxidx25(xi+x2+rp)5 (p+k+r+s+t)f„,~f /bf~«

XD,b(s, t;x, )F&(p, k;x2) A'(r) P(s+r) P(t+k) t

(2~)'g'
+ d p d k d s d t d s'd t'd r d r'dxidx2dx3

X5 (p +t +r'+s")5'(k +t'+s +r)5(x, +x2+x3+rp+rp

~be~~fb'3~3«~~o'~'Fef(p'kix3 Dob( ' ~xi )Do'b'

X [ A'(r). P(s+ r) t'][ A"(r') P(s'+ r').t], (A3)

where P; (p)=5; —p;p /p . The first term is manifestly ultraviolet divergent. Contributions from V2(A) are needed to
cancel ultraviolet divergences that arise from the Coulomb interaction.

APPENDIX B: COULOMB OPERATOR-PRODUCT EXPANSION

When the integral equation for D,b(p, k;x ) is iterated, the result is an infinite-series expansion in powers of the cou-
pling constant g. Substitution of this series into (2.16), the definition of F,b(p, k;x ), leads to the relation F=d [gD]/dg.
The structure of the Coulomb interaction operator F,b(p, k;x) can be calculated from that of the Green's function
operator. The infinite series for D,b ( p, k;x ) is
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1 5~b5(p+k}5(x) 1, 1
D,&(p, k;x ) = +igf„& A'(p+k, x ).p

(2m) p p2 ] 2

+ g (W fac&e~Ie~c&e& fe„&c„b
ll =2

d's d's
1 n

n

p'(p —si)'
1

. , 5' p+k —gs; 5 x —gs, o

n —1

XA '(s, ) pA '(s2) ~ (p —s, ) A "(s„) p —g s;
1

(81)

The nth term in this series is comprised of n+ 1 zeroth-order Coulomb propagators, I/p, separated by n vertices at
which gluon fields are coupled. Momentum is conserved at each vertex. If D,b(p, k;x ) is a subunit in a Feynman dia-

gram, some of the gluon fields attach to other elements of the diagram, and the rest become gluons that are emitted and
reabsorbed by the Coulomb line itself. (See Fig. 1.} An alternative expansion of D,b(p, k;x ) is

D,i, (p, k;x)=(D,i, (p, k;x))+ Jd s D,'i'. ;(p, k;x;s)A (s)5 (p+k —s)5(x —so)

+ g Jd s, ' d s~Do'"' , ~ b;, . . . ; (p, k;x;si, . . . ,s„)
n =2

&&:A,
' (s, ) A;" (s„):5 p+k —g s; 5 x —g s,a (82)

where the:: notation indicates that the gluon fields are to
connect to external (i.e., not the same Coulomb line) ver-
tices. Thus, for n =2, the contraction between the two
field operators is zero. Equation (82) constitutes an
operator-product expansion for D,b(p, k;x).

The first term in (82) is the VEV of the modified
Coulomb Green's function. One can either calculate it in
perturbation theory or use invariance arguments to show
that

(a)

(D,i, (p, k;x ) }=,5(p+k)5(x)D(p) .
(2n }

(83)

The one-gluon function D'",&, ;(p, k;x;s) has the st. ruc-
ture of Fig. 7(a). There are two factors of the VEV of
D,&, and the gluon is emitted from a vertex function
which in lowest order is proportional to igp, . :

(b)

+ Q 0 ~

D,",' , (p, k;x. ) = D(p)[igf„„[p,+I;(p, k)))D(k) .
(2n }

(84)

The vertex function I;(p,k) is one-line irreducible.
There exists an integral equation for irreducible vertex
functions (see Appendix E). The two-gluon function [Fig.
7(b)] is more complicated, but generalization to n gluons
is straightforward, at least in principle.

The utility of the operator expansion is that the one-,
two-, etc., gluon vertex functions are benign. They are
ultraviolet finite and do not change the nature of the in-
frared singularity. In Appendix E it is shown that each
vertex represents a finite, calculable correction to a

mm n + mmmmmmm + W

+ + +

FIG. 7. The one-gluon term in the operator-product expan-
sion of D,q(p, k;x ) is given in (a) and the two-gluon term in (b).
In the absence of vertex corrections, F,b(p, k;x) has the opera-
tor expansion in (c).
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lowest-order result.
If the vertex functions for gluon emission along a

Coulomb line are replaced by the momentum factor of
lowest-order perturbation theory, the operator expansion
of the modified Green's function has exactly the structure
of (Bl) with each 1/p replaced by D(p). Gluons couple
to external vertices, not to other gluons along the line.

I

The approximation is justified by the goal of identifying
the dominant contributions in the zero-momentum limit.

The operator of interest is F,b
d——[gD,b)/dg. When

the nth term of (Bl), with 1/p ~D(p), is multiplied by
g, there are n + 1 factors of D(p, } and n + 1 powers of g.
Thus, the operator expansion for the Coulomb interac-
tion 1s

F,b(p, k;x ) = 5,b5(p+k)5(x)F(p)+igf„b[F(p)D(k)+D(p)F(k)] A'(p+k;x ) p
1

(2m )'

+(ig) f,« f«, & Jd s[F(p)D(p —s)D(k)+D(p)F(p —s)D(k)

+ g (l'}"f„,
n=2

+D(p)D(p —s)F(k)]:A '(s) pA '(p+k —s;x —so) (p —s}:

n —1

f, , &fd s, d s„:A'(s,) p A "(s„) p —g s;
1

g" +'D(p)D(p —s, ) D p —g s„
1

x5 p+k —gs; 5 x —+so
1 1

(B&)

The Feynman rules used here are based on this expan-
sion. The general structure of the nth term is a Coulomb
line with n + 1 segments. One of the segments is infrared
singular, F(p), and others are nonsingular, D(p). The
singular Coulomb propagator occurs in n + 1 different lo-
cations. When external gluons are attached, the modified
Coulomb interaction in Sz has the form shown in Fig.
7(c). The external gluons at either end can be replaced by
quarks.

APPENDIX C: INFRARED-SINGULAR LIMITS

L =1+G+ Q+F+D —g n {C2)

If there are no external Coulomb lines of either type,

(C3a}2F=nggF +n qqF +n FgD

FgD +2 DgD +nggD + nqqD (C3b)

Equations (C2) and (C3) can be used to write M in terms
of the number of vertices of each type.

Consider an arbitrary Feynman diagram with G inter-
nal gluon lines (of any type), Q quark lines, F singular
Coulomb lines, and D nonsingular Coulomb lines. The
number of vertices of each type is specified by n, where
a indicates the particles coupled. If there are L momen-
tum loops, the amplitude corresponding to a given dia-
gram is of order A, , where

M=F+L —G —Q .

The number of loops is related to the number of lines and
the number of vertices of all types.

The identity

"gggg "ggg "qqg ' (C4)

"Fg ="gg +"qqD (C5)

APPENDIX D: RKNORMALIZATION

Divergences in the integrals of Sec. III are absorbed
into seven renormalization constants and the quark mass.
The seven constants are defined by D(p)=ZDDa(p),
F{P)=ZpFa (P), A (P)=Z„R„(P), g =Zsgll,

+Gl(p} Zl[ +GlR(p))& +G2(p} Z2[ +G2R(p)]&
and g'=Zggz. A distinction is made between the gluon-
gluon-Coulomb coupling constant g and the quark-
quark-Coulomb constant g'. They are equal in lowest or-
der, but their renormalization differs by a finite, calcul-
able factor.

The subtracted and renormalized version of (3.1) is

led to additional cancellations in (C4). This last relation
is derived from the observation that a single Coulomb
line couples at the ends to either two gluons or two
quarks. The Coulomb line is segmented into VEV's of
Coulomb operators separated by vertices with gluon
emission. (See Appendix B.} The linearity of the rela-
tionship F =d[gD]/dg means that only one segment
along a line is F type and all the rest are D type. If the F
segment is at the end of the line, then for that line

n~zrl ——1 =n~D+nq~D If the F s.egment is in the middle,
the nrs22 2=nssD——+n~22 Thus, (C5.) holds for each
internal Coulomb line and for a complete diagram with
an arbitrary number of Coulomb lines.
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ZDD„(k)= [1—Zs Z„ZDg„I„(v)] 1—1 —1
Z ZAZD

gR[IR(k) I—z(v)]
1 Z—

g Zw ZDgRIR (v)
(Dl)

and

ZD =1+g„I„(v) (D2)

Z ZD ZA —1

Eq. (D 1) becomes

(D3)

gqDq(k)=
k I 1 —g [I (k) —I~(v)]j

When the running coupling constant g(k)=k gRDR (k) is introduced, (D4) is equivalent to

1 1 —[I&(k) IR (v)]-,
g~

and gz ——g(v). Equation (3.21a) is the result of subtracting (D5) once more at k=0.
The renormalization of (3.4) for F(k) proceeds in the same way:

ZFFq(k)=k D(k) [1+g J(k)]=
2 [1+Zs Z„ZFgq J~(v)]

A

(D4)

(D5)

The choice

Z ZAZF
X 1+ z 2 gg [Jg(k) —Jg(v)]

1+Z& Z&ZFg& J&(v)
(D6)

ZF ——ZD [1+Zg ZqZFgq JR(v)], (D7)

converts (D6) into (3.21b).
Two subtractions are needed to render finite the Fz integral in (3.15). This is accomplished by writing (3.15) in the

form

1+F)(v)+[Ft(k)—F)(v)]
A (k)

1+F((v)+[F)(k) F)(p)] 2
—

2
F2(v) —F2(p)

=(k —p ) 1+
A (p) V —P

2 2

+F2(k ) F2(p ) —
2

—
2 [F2(v)—F2(p )] .

V —P

Next renormalization constants are introduced and the subtraction momentum p is set equal to zero:

1+Zs ZFZqF)~(v) 1+f ([FUt (k) F(~(v)] 1+—f ) [F)~(0)—F(~(v)]

ZA A (k) A (0)

(D8)

Zg ZF F2q(v) F2~(0)—
1+

V

2

k +f2[F2R(k) F~~(0)]— [F—2„(v) F2q(0)], (D—9)

where Using the conditions

(D10a)

(D10b)

g F Afi=
1+Z ZFZwFiR(v)

Zg ZF /ZA

Zg ZF F2R ( v) F2~(0)—
1+

A V and

2
ZA (D 1 1)

1+Z ZFZ~FiR(v)

Zg ZF F2„(v) F2„(0)—
1+

A V
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Z ZFZA1=
21+Z ZFZ„F,R(v)

(D12)

where

X I 1+g2[IG2a (k) —IG2„(v)]),
(D13b)

ZFZ
g1= 2'

1+ZFZ . IG,„(v)
ZFZ Z2/Z,

R2=
ZFZ Z2

1+ IG2a (v)
1

(D14a)

(D14b}

one finds f i f——
2
——1, and (D9) becomes (3.21c). Equation

(D12) is compatible with (D2), (D3), and (D7) if the diver-
gent parts of J„(v)and F,„(v)are equal. The condition
on the renormalizability of the mean-field model is
satisfied. The coupling constants at the DgD and ggF
vertices remain equal after renormalization. In addition,
Z„is finite.

Quark propagators are renormalized in a similar way.
Equation (3.19) takes on the form

Zi [1+ G1R(k)]= [1+ZFZs. IGia (v)]

X I 1 +g i [IG,z (k) —IG,z (v}]I,
(D13a)

ZFZ ~ Z2
Zi[1+G)ii (k)]= 1+ IGzR (v)

Z1

The quark and gluon couplings to a Coulomb line differ
by a finite factor after renormalization, a consequence of
the suppression of certain diagrams. (When N =3,
Z /Z =0.57.) In order to recover the results of con-
ventional QCD renormalization, one must hold the diver-
gent constant A,(p) fixed both for the po intergrations and
also for renormalization. Only after renormalization
should the A,~ ao limit be taken. The missing diagrams
are not expected to make finite contributions to any am-
plitudes.

APPENDIX E: CORRECTIONS

Perturbation theory in the mean-field model is
simplified by the elimination of quark and gluon self-
energies and the suppression of certain vertices. The
price of that simplification is a nonlocal Coulomb interac-
tion. The derivation of the self-consistency equations re-
quired, as a practical matter, a number of approxima-
tions. In particular calculations in the effective field
theory were carried out to order g . Section VI and this
appendix are devoted to a discussion of a variety of
higher-order diagrams.

The operator-product expansions for the Green's func-
tion and the modified Coulomb interaction were
simplified by the neglect of vertex corrections at the
points where gluons are emitted from a Coulomb line.
Figure 6(a) shows the first correction to a point vertex. If
a gluon of momentum p+k is emitted by a D-line carry-

and IG;(k) stands for the integrals on the right-hand side
of (3.19). One of the factors in the integrand is the
infrared-finite quark energy function

E(s)=Zi [s ( +Gia ) +ma (1+G2q ) ]'

OSOOOO~g~~yy TI

=Z, Eii(s) . (D15)

The renormalized quark mass is m„=(Z,/Z2}m =—', m.
If

Z, =1+ZFZ ~ IGiR(v),

ZFZ ~ Z2
Z2 ——1+ IG2~ ( v),

1

ZFZ & —Z1 )

(D16a)

(D16b)

(D16c)

all divergences cancel, gi ——g& ——1, and (D13) becomes
(3.24).

The divergences in the various integrals can be ana-
lyzed with dimensional regularization. Poles appear at
d =3 dimensions. Certain ratios of renorrnalization con-
stants are finite. In particular

Zs /Zs

[1—F,„(v)]1—
' 1/2

5 N —1

2X

1 IGiR (v}—
T

F2a(v}—Fox(0}
Q2

(D17}

FIG. 8. Two D-type Coulomb lines interact by gluon ex-

change. The ladder diagrams and crossed ladder diagrams are
separately summed to produce Bethe-Salpeter-type wave func-
tions.
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ing momentum p, the factor A(p+k) p is replaced by
A(p+k) [p+I (p, k)] where

I;(p, k)= —a f d s D(p —s)D( —k —s)p P(s).k

X A(s)(p —s), . (El)

The integral is convergent; no ultraviolet renormalization
is necessary. There are no infrared singularities. The in-
frared limit of (El) is obtained by scaling all momenta by
a common factor y and using the infrared limits of
D(s) ~s and A(s) ccs . One finds that both the point
vertex term p; and I, are of order y. Hence, the use of
(El) in the operator-product expansion makes no qualita-
tive change in infrared or ultraviolet properties.

Figure 6(b) depicts a generic higher-order contribution
to I;(p, k). Simple power counting for a diagram with N
internal gluons and 2N internal D-lines shows that there
are no ultraviolet divergences in any order. The scaling
argument indicates that the infrared limits of D(s) and
A (s) are matched so that 1, cc y in any order. Moreover,
as a vector, I;(p, k) is proportional to a linear combina-
tion of the vectors p and k. In the limit p ~0,

A(p+k) I (p, k) vanishes. There is as much infrared
suppression from the full vertex function as there is from
a point vertex. Thus, on the assumption that higher or-
der in g means smaller, the neglect of vertex corrections
in the operator-product expansion is justified.

Smallness of finite higher-order corrections can be test-
ed with Fig. 6(c). One has a vertex insertion in the in-
tegral I(k) used in (3.1) and (3.2) to calculate D(k). Nu-
merical evaluation is necessary. Consistent with the scal-
ing behavior of the vertex, there is no change in the k~0
power dependence of D(k). If D(k)-gk 5~2, then
(3.21a) leads to a condition of the form 1 =g Io. The ver-
tex correction changes this to 1=g Io+rI I, =rt IO(1
+I, /Io )=q Io(1+0.11). There is a 5% shift in the
coefficient g.

The full operator-product expansion for F,b(p, k;x)
was not used in the calculation of effective propagator
functions. Two gluon terms in the expansion produce the

g corrections to the gluon self-energy shown in Figs.
6(e)—6(h). Unlike diagrams with three-gluon, four-gluon,
or quark-quark-gluon vertices, these contributions do not
vanish in the infrared limit. The gluonic corrections to
F, (k) and F2(k) are

and

2

F)' '(k)= f d sd tA(s)A(t)[(k —s) P(t) P(k) P(s) (k+t)] [g D(k+t)D(k+t —s)D(k —s)]
4 g dg

(E2)

F2' '(k)= f d sd t[A(s)/A(t) —1]tr[P(s) P(t)][(s+t) P(k) (s+t)] [g D(s+t) D(s+t+k)]3 3 1

2 g dg

+a f d s d t [(t—k) P(s) P(t) P(k) (s+t)] [g D(k —t)D(k —t —s)D( —t —s)] .
A (t) g2 dg

(E3)

The quark loop diagram of Fig. 6(h) adds to (E3) but is suppressed by a power of X. The coupling constant derivative
generates the singular function F(k) through F =d[gD]/dg. In each integral there are factors that eliminate the 5
function in F(k)=A5 (k), and there are no manifest infrared singularities in (E2) or (E3). For comparison the lowest-
order terms in (3.11) are singular. A scaling argument indicates that (E2) and (E3) have the same k ~0 behavior as
(3.11). Hence, the higher-order terms in the operator-product expansion of F,b(p, k;x ) do not generate singularities but
rather produce finite, higher-order corrections.

APPENDIX F: BETHE-SALPETER EQUATION FOR D-TYPE COULOMB LINES

The modified Coulomb interaction is defined in terms of a particular integral (2.19) of the product of two modified
Coulomb Green's functions. Direct calculation of the VEV of the interaction requires the ability to calculate the VEV
of the product of two Green's functions. In addition, to understand the anomalous interactions, one must compute the
VEV of products of Green's functions and/or modified interactions. Consider the quantity

5(z)H d' (p, k;q, r)=(2m) f dx dy 5(z+y —z)(D,b(p, k;x)D«(q, r;y)) . (Fl)

When the operator-product expansion of Appendix B (with point vertices) is used for D,b(p, k;x), one is faced with
summing the diagrams of Fig. 8. The two Coulomb lines interact with each other via gluon exchange. What is needed
is the Bethe-Salpeter equation for Green's-function —Green's-function scattering. In the ladder approximation the two
contributing amplitudes are related by crossing:

5(z)H,d'"(p, k;q, r) =5,b5,d5(p+k)5(q+r)D(p)D(q)5(z)

+ fdxdy5(x+y —z)(q«'"(p, q;k, r;x,y)++d, '(p, r;k, q;xy) 4o«(p, q;k, r;x,y)) .

The single-gluon-exchange amplitude is

(F2)
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f dx dy 5(x +y —z)4o,d' (p, k;q, r;x,y)

= —5(z)—f„bf„dD(p)D(k)D(q)D(r)p.P(p+k). qA(p+k)5 (p+ -+q+r) . (F3)

Since 4o is common to both ladder amplitudes, it is subtracted to avoid double counting.
A general ladder diagram has both colored and color-singlet components. Only the color-singlet component is ex-

pected to produce an enhanced infrared singularity. When the singlet part is projected out,

ah ac bd p —q k —r p+qf dx dy 5(x+y —z)4,d' (p, q;k, r;x, y)= 5(z)D(p)D(q)D(k)D(r)5(p+k+q+r)4
N —1 2

'
2

'
2

(F4)

and %(s, t; E) is a three-dimensional Bethe-Salpeter wave function. The integral equation is

4(s, t;E)=a A(s —t)(s —E) P(s —t) ~ (s+E)+af d'u D(E+u)D(E —u)(s —E) P(s —u) (s+E)A(s —u)ql(u, t;E).

(F5)

The VEV of F,b(p, k;z ) is proportional to the infrared singular function F(k), where

F(k)5(p+k)5, d = fd's s Hi', d(p, s; —s, k)

1=5,d 5(p+ k)D(k) k'+ fd's D(s)
—k+s k —s k+s

2
'

2
'

2

+4( —k, —s;0}—, ak. P(s —k) kA(s —k) . . (F6)
1

N —1

Retaining just those terms which survive the N ~ ~ limit, one finds

F(k)=D(k) [k +%(k)],
where

%(k) = f d s D(s) 4( —k, —s;0)

=a f d s D(s) s k P(s —k) kA(s —k)+a f d u D(u} k P(k —u) kA(u —k)4(u} .

(F7)

(Fg)

When (F7) is used to write 4(k) in terms of F(k), the integral equation for ql(k) becomes (3.4), the integral equation for
F(k).

This alternate derivation of (3.4) is useful because it suggests that the singularity in F(k) arises from the binding of
two D-type Coulomb lines by gluon exchange. Since there is no need to compute the derivative with respect to coupling
constant of unknown functions, it is easier in this approach to identify possible corrections to F(k). Approximations
that could be improved are the ladder approximation, the restriction to color-singlet configurations, and the use of
point vertices.

APPENDIX G: WARD IDENTITIES

In a gauge theory the Ward identities provide a system of constraint equations that can be used to prove the renor-
malizability of the theory. Unfortunately, the standard identities' cannot be used in the Coulomb gauge when the
theory is quantized in Hamiltonian form. However, there should still be a conserved color current J„(x),and one can
use old-fashioned methods. If one ignores all subtleties about canonical quantization, there exists the identity

& (0
~
T[J,"(x)g (y)g&(z)]

~

0) = (0
~
T[[J,'(x), i}'j (y)]5(xo —yo)g&(z)+l(, (y)[J, '(x), gii(z)]5(xo —y, ) I ~

0) .

The equal-time commutator on the right can be evaluated with canonical commutation rules. In the Coulomb gauge
the current can be identified from d„F,""=gJ,'. Gauss's law is used to eliminate Ao'(x). F, '(x) is replaced by the
canonical momentum field P, '(x) and a longitudinal term involving the modified Coulomb interaction. The result is
that Jo'(x) becomes

Jo'(x)= —V fd y D,b(x, y;xo)KO (y, xo), (G2)

where Ko "(z)=g(z)yo(kb/2)$(z) fb,dP, (z) Ad(z). T—he left-hand side of (Gl) is complicated by the structure of the
spatial part of the color current:



38 SELF-CONSISTENT MODEL OF CONFINEMENT 689

J (x)=lp(x)y f(x)+f b e;„A,(x)B,'(x)+gf, b, f d y Ftd(x y xo ~ICo (y xo )P, '(x)
2

g fab f d y Fbd(x y xo)&o (y xo)&i f d zD (x z xo)Eo (z xo)

If one makes a drastic approximation and replaces each Coulomb function by its VEV and transforms to momentum
space, the Ward identity becomes

ip'D(p) 45 (q+p+k) S( —k) —S(q)
(2') 2 2

= —ip(]p'D(p)(O &o'(p)g~ (q)gt3(k)
~

O)

+p, 0 d s sy' p —s+,&, „,3,"s)B,'(p —s) +g,b, d sF sE0 sP, 'p—
2

—g'f„,fd s F( )s)qs(s)[i(p s), D(p —s)]K—s'(p —s) ((sqs) ((sgsp) 0), (64)

where S(k) is the fermion propagator from (2.16) and

Ko (s)= f d t g(t)y t((s z) fbgb—Ps(—t) Ab(s —t) (G5)

This is still too complicated to evaluate explicitly.
The interesting question is to what extent the assumption of an infrared singularity is consistent with this Ward iden-

tity. The singularity does not cancel in the difference of quark propagators on the left-hand side of (G4). The fourth
term on the right is of order g A, , where F(s) =AS'(s). Keeping just that term on the right and working in lowest order,
I find

a'A, y [q]+m(q) y [—k]+m( —k) g N ~a y [q)+m(q) y [ —k]+m( —k)
2 E(q) E( —k) 4(2rr) 2 E(q) E( k)

where [q]=q[1+G,(q)] and m(q) =m [1+G2(q)]. The fortuitous result is that the two sides are equal except for the
fact that a contains a factor of (N —1/N) while a simple N appears on the right. The Ward identity is consistent with
the hypothesized infrared singularity, at least in the N ~ ~ limit.

The agreement with the Ward identity is surprising since the current densities in (62) do not satisfy the standard
commutation rules. An equivalent gluonic calculation is likely to be less successful. The anomalous interactions be-
come important. Moreover, it is likely that additional terms are needed in (G2) and (63) to preserve current conserva-
tion. What is needed is a Hamiltonian based statement of the symmetry that can be used to derive Ward identities con-
sistent with Hamiltonian quantization.

Two final comments are in order. The infrared singular term on the right-hand side of (G4) is longitudinal. It is pro-
portional to p, and does not contribute to the quark-quark-gluon vertex function. In addition, the assumptions in this

paper about the VEV's of operators probe the structure of the vacuum state. Although the assumptions are self-
consistent within QCD, they may reflect some sort of spontaneous symmetry breaking on the part of the vacuum state.
In that case there may be no Ward identities based on a conserved current ~

APPENDIX H: WILSON LOOP

A typical term in the expansion of the VEV in (4.6) has the form

I.
„

= (i)"+ tr(p(, ' l "A. ' k ) f dy, f dy, f dy„
0 0

&& ( Aq '(nR, y, ) A4 "(nR,y„)A4 '(O, z] )
. A4 (O, z ) ) .

dx, dz, . dz

A contraction between adjacent fields on one side of the loop yields
s 2(N —1)f dy; f dy, +]f dy, +2p(,„','+'( A4 '(nR, y, )A4 ' '(nR, y, +]))= 6, —,

' V(O) f dy, f dy, +z .

(H2)

The A,
' matrices satisfy (A, 'A, ')„=[2(N —1)/N]5;, . The chain of ordered integrals along a side is shortened by one for
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each adjacent pair contraction. The integral that marks the position of the contraction is empty in the sense that its ar-
gument is unity. Contractions along a side of the loop that are not between adjacent fields vanish due to the conAict be-
tween time ordering and the instantaneous propagator.

The multiple integral over z, , . . . , z in (Hl) is reordered:

f dzt f 'dzz J dz = ( —1) f dz J dz , J dz, . (H3)

Contractions across the loop from x=nR to x=O connect equal times. Since the two sides are time ordered, contrac-
tions cannot cross each other. The equal-time propagators are like rungs on a ladder. A generic term in L„hasr
rungs, s nearest-neighbor contractions on one side, and t nearest-neighbor contractions on the other side:

s+I
L„=(—1) (i)"+ N g p V(0)

[p V(R ) ]"I( r, s, t ),
s, t

(H4)

where n =2s+r and m =2t+r Th.e gauge group factor is p=2(N 1)/N—. The residual integral I(r, s, t) includes a
sum over all possible orderings of the r rungs, s contractions on one side, and t contractions on the other. Each con-
traction across the loop from x=nR to x=0 produces a factor of V(R). The trace of the product of color matrices col-
lapses to Np'+'+". Reordering of the integral in (H3) means that rung contractions are between adjacent pairs of A, ma-
trices in the product in (Hl). For example, if s =t =0, equal-time run contractions set a„=b„a„,=b2, etc. When
s&0 and t&0, pairs of adjacent A, matrices are first eliminated by (H2).

Computation of I (r, s, t) begins with a simple example. If r =1, s =1, then the integral on one side has the form

T T' T
dy, dy, dy, F y, +F y, +F y3 —— F x dx . (H5)

In general, summing over all possible ordering of s adjacent contractions along a side of length n =r +2s replaces the
original ordered integral by one of length r multiplied by T /s. . Thus, I(r, s, t) is reduced to

ys Zt
I(r, s, t)= I(r, 0, 0) .

sl l1

The remaining integral I(r, 0, 0) is

I(r 00)= f dy, J
T ~r —i pPf dwt f "

dw„5(yt—wt) 5(y„—w„)=
p r!

(H6)

(H7)

When the various factors are brought together and summed over n and m, the result is (4.8).
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