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Nonperturbative treatment of the functional Schrodinger equation in QCD
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Use of the functional Schrodinger equation in QCD is complicated by the need to maintain gauge
invariance at the same time one is dealing with nonperturbative effects (at least at long distances).
Moreover, asymptotic freedom must be recovered at short distances. In this paper we show how to
set up and solve a set of Ward identities which ensure gauge invariance of the wave functional,
which can then be parametrized simply and used with various nonperturbative algorithms (e.g, ,
variational). Parametrizations are found both for the vacuum wave functional and for J =0++
quantum soliton states of QCD. A nonperturbative algorithm, based on the observation that a wave

functional is really a partition function in the presence of a special kind of source, is set up and ap-

plied; this algorithm is based on dressed-loop expansions of partition functions. One recovers this

way some earlier results found from the study of Schwinger-Dyson equations, plus some new results

concerning the 0 + soliton, whose wave functional involves the Chem-Simons secondary class
function.

I. INTRODUCTION

The functional Schrodinger equation (FSE) approach
to QCD has been advocated by numerous authors, ' but
its practical implementation is difficult. For example,
simple Gaussian wave functionals, which work as expect-
ed for scalar field theories, do not allow one to incorpo-
rate either asymptotic freedom or local non-Abelian
gauge invariance.

This paper has two purposes: The first is to discuss
how to ensure gauge invariance and how to do nonper-
turbative calculations; the second is to discuss applica-
tions. We show how gauge invariance (or alternatively,
Gauss's law) can be imposed on a simple parametrization
of the wave functional, both for the vacuum state and for
soliton states, while retaining the power to deal with non-
perturbative problems. (That is, order-by-order perturba-
tion theory will certainly respect Gauss's law, but is use-
less for QCD at long distances. ) Once we have
discovered an appropriate gauge-invariant wave function-
al, which will, in general, contain an infinite number of
functions (ultimately to be related through the FSE), we
need some nonperturbative techniques for finding these
functions. At short distances the nonperturbative tech-
niques must yield the usual asymptotically free results of
renormalization-group-improved (RGI) perturbation
theory. A simple Gaussian trial wave functional, while
certainly capable of uncovering nonperturbative results,
is neither gauge invariant nor does it show asymptotic
freedom. In this paper we show that the infinitely many
functions which necessarily appear in the wave functional

f are related by Ward identities similar to those obeyed
in ghost-free gauges by the Green's functions of QCD,
and we show how to solve these Ward identities and write

1' in a manifestly gauge-invariant form. The answer is
not, as one might naively expect, that f depends only on
field strengths (which are not gauge invariant in QCD
anyway). Other gauge-invariant quantities, depending on

tt =e —s, (1.2)

S=g —, A, Q, A +—A, A) AkQtk+
1 (1.3)

and that the Ward-identity constraints on the Q,J, . . .
necessary for gauge invariance have one solution where

the gauge potential, are available, such as Wilson loops or
constructions of the type

J (dg)tttt A f(x)), (1.1)

where the A, (x) constitute the space components of the
gauge potential at zero time, A,g is A; gauge transformed

by the gauge transformation g (x), and g is some sort of
possibly noninvariant trial wave function. Our result,
given in Sec. III, uses the so-called gauge technique to
restrain the functions in 1( to a manifestly gauge-invariant
set, at the same time reproducing perturbation theory
(and thus, asymptotic freedom) at short distances. The
gauge technique of Cornwall and Hou introduces mass-
less poles into various vertex functions, but these are lon-
gitudinally coupled (i.e., pure-gauge terms) and never
enter the S matrix, as discussed in some detail in Ref. 4
and by Cornwall and Hou. The massless poles are akin
to similar poles associated with composite Goldstone par-
ticles in dynamical symmetry breaking but, of course,
there is no symmetry breaking in QCD. These poles can
be recovered by doing the integrations over all gauge
transformations in (1.1), as the reader can easily check for
QED, with a simple Gaussian for Pt A, I.

It is, of course, useless to try to deal practically with an
infinite number of functions in f, just as one cannot treat
the infinitely many Green's functions occurring in the
Schwinger-Dyson equations. Fortunately, the gauge tech-
nique is well suited to a truncation in which only one in-
dependent function remains, yet 1( is still gauge invariant.
We will show that 1(t for the vacuum has the form
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the 0 functions with three or more indices are entirely
expressed in terms of the two-point (and conserved) func-
tion Q, . [In (1.3), the sum is over space coordinate and

group matrix indices; the 0 functions are translationally
invariant functions of the coordinates of the spacelike
matrix of gauge potentials A, (x). See Sec. III for details. ]
As discussed in Ref. 4, where a similar treatment is given
for the Schwinger-Dyson equations, this simple trunca-
tion yields one-loop asymptotic freedom in the ultravio-
let, and the omitted degrees of freedom are unimportant
in the infrared. This kind of truncation can be systemati-
cally improved but we will not deal with that issue here.

What nonperturbative means are available for deter-
mining the Q functions (or, after truncation, the single
function Q,, )? The two obvious ones are direct substitu-
tion in the FSE and a variational approach. In this paper
we introduce a third algorithm very similar in spirit to
dressed-loop expansions of a partition function in the
presence of a source. ' The reason for the similarity is
that g is, in fact, a partition function, in the presence of a
source linearly related to the argument A, (x) of g. In
Sec. II we develop the dressed-loop expansion for g in the
context of a scalar field theory, ending up with an ap-
proximate dressed-loop equation for the two-point 0
function. This equation is cognate to the one-dressed-
loop propagator equation of Ref. 2 for scalar field theory,
or in a gauge theory to the similar development of Ref. 4.
In essence, the equation for the two-point 0 function is
the on-shell version of dressed-1oop Schwinger-Dyson
equations for propagators. It should be noted here that
in a gauge theory the dressed-loop expansion requires
vertices to be dressed as well as propagators, as done in
Ref. 5 but not in Ref. 2. The gauge technique automati-
cally furnishes an appropriate dressed vertex, obeying the
needed Ward identity.

The final step in these formal developments is to dis-
cuss the corresponding problems for solitons. Of course,
classical QCD has only instantons as solitons, but non-
perturbative quantum effects can lead to quantum soli-
tons, which have no classical counterpart, of a quite
different character from instantons. [As an example, the
Bardeen-Cooper-Schrieffer (BCS) electron-phonon La-
grangian of superconductivity has no classical solitons,
but the Ginzburg-Landau Lagrangian, which describes
nonperturbative effects, does. ] A soliton is described by a
wave functional g for which A;(x) has an expectation
value, just as for solitons in scalar field theories. This ex-
pectation value, termed A, (x), must be gauge invariant
(since f is) and will obey some equation involving the Q
functions. This notion of a gauge-invariant expectation
value of A, is unfamiliar, but it is inherent in any discus-
sion of gauge-theory solitons. The point is that in the sol-
iton wave functional QI A;, A, j only the coordinates A;
undergo gauge transformations, and under them f is in-
variant; parameters of g, such as A, , are c numbers under
gauge changes of the A, . We show, in Sec. III, how to
express these ideas in a more familiar form by writing A;
in terms of a classical potential A, which transforms as
usual, and in terms of a special unitary matrix which is a
function of A, . The combination which forms A, is au-
tomatically gauge invariant. Gauge-invariant soliton

wave functionals are discussed for J =0+ + glueball
states corresponding to massive solitons which can be ex-
hibited as static spherically symmetric objects. The 0 +

soliton wave functional involves the Chem-Simons secon-
dary class function. Other soliton states which QCD may
have (e.g., vortices, which are responsible for
confinement ) will not be discussed here.

Let us briefly discuss applications of these formal tech-
niques. In many cases the applications yield results
which have already been published and to avoid an exces-
sively lengthy paper, details of the FSE approach will not
be given.

We have already said that the vacuum wave functional
P of (1.2) and (1.3) can be expressed, in a certain approxi-
mation, solely in terms of the two-point function 0;.
which is conserved and can be written in momentum
space as

k, k.
Q; (k)= 5,, — Q(k) . (1.4)

Q(k)=(k +m )'

In perturbation theory Q(k)=
~

k
~

. The nonperturba-
tive one-dressed-loop equation for 0, discussed in Secs. II
and III, conveys the same information as the one-
dressed-loop Schwinger-Dyson equation for the propaga-
tor. This was shown in Ref. 2 for P theory. It turns out
also to be true for gauge theory, provided one uses the
modified and gauge-invariant propagator of Ref. 4. Now
in P theory with no Lagrangian mass term, the vacuum
expectation value (P ) will induce a mass through the
seagull graph, which can be seen either from the FSE or
from the dressed-loop expansion of the partition func-
tion. Similarly in QCD, a condensate (G„,), which
necessarily implies a condensate of (among other things)
( A„A„), will also drive a gluon mass, in a sense we
make specific below. Of course, it is not only the seagull
graph which is responsible; that by itself would not be
gauge invariant. Either the FSE technique used here or
the Schwinger-Dyson techniques of Ref. 4 ensure a
gauge-invariant description of this process of gluon mass
generation.

It should be emphasized that generation of a gluon
mass is not inconsistent with confinement; indeed, part of
this process is the induction of long-range pure-gauge po-
tentials (associated with the vortices mentioned earlier )
which are responsible for confinement. This mechanism
has been known for a long time. ' Moreover, lattice-
gauge-theory simulations ' show evidence of a gluon
mass of 600-800 MeV, consistent with the estimates of
Ref. 4. Of course, the gluon mass is not directly measur-
able, any more than a confined quark mass; it is simply a
parameter which appears in various theoretical calcula-
tions the way a mass usually would. In the present case
the mass m appears in the function Q(k) of (1.4), where it
serves as an infrared cutoff. As we will see in Secs. II and
III, 0 has the significance of the on-shell energy of a par-
ticle, thus, for a massive particle one would have
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instead of the free kinetic energy
~

k
~

. QCD is gauge in-

variant even in the presence of such a mass term by vir-
tue of the long-range pure-gauge terms discussed before
and which are seen, for example, in the kinematic tensor
of (1.4). The precise solution of the one-dressed-loop FSE
equation for 0 is well approximated by (1.5) which will

be adequate for our purposes here. Detailed discussion of
this equation and its solution will be given elsewhere.

Given that Q(k) has the form (1.5), one can discuss sol-
itons of the theory which owe their existence to the mass
term and which are strongly coupled. The soliton picture
is quite different from that found in the familiar weak-
coupling semiclassical approach, " but, except for some
brief remarks at the end of this section, that is all we will
discuss here. If we use (1.5) in the semiclassical expres-
sion for the soliton energy as a function of the soliton po-
tential A;(x), we find an effective action whose 0++ soli-
ton solution has already been thoroughly discussed, ' '
and we will not repeat that work here. This salitan is im-
portant for chiral-symmetry breakdown'3 since it has
three-dimensional fermion zero modes. ' In itself it has
no topological character and, thus, is unstable ta decay
when coupled to quarks. However, it can couple in in-
teresting ways to topological solitons. '

There is also a 0 + soliton (glueball) for which we can
construct an approximate trial wave function by multi-
plying the 0++ functional by the Chem-Simons secon-
dary class integral W given in (3.28) below. This is really
a quantum-mechanical soliton, and owes its existence to
fluctuations around a potential minimum; it has no classi-
cal interpretation as an object sitting at the bottom of a
well, any more than the first excited state of a harmonic
oscillator does. Just like this first excited state (which is a
good analog to the 0 + soliton, in having odd parity), the
0 + soliton is heavier than the 0++ soliton, as we very
crudely estimate in Sec. III. We show that the 0++ and
the 0 + states mix with each other under changes of the
8 angle of the vacuum. '

Past the semiclassical approximation, things get very
complicated. Higher-order dressed-loap corrections cor-
respond, in part, to what is called soliton entropy (e.g.,
Ref. 16) in a four-dimensional Euclidean context. For the
case of particlelike solitons such as discussed here, de-
scribed by thick world lines in the four-dimensional con-
text, Stone and Thamas' have shown how to map a par-
tition function of such world lines onto a scalar field
theory, with an effective field S(x) for the 0++ world
lines, and a field P (x) for the 0 + world lines. If the en-
tropy in the partition function is large enough, the world
lines condense and S gets a vacuum expectation value.
Presumably there is some way of describing all this from
the FSE but it is unknown to the authar. However, it is
of some interest that an earlier phenomenological descrip-
tion' of scalar and pseudoscalar glueballs invoked all the
features mentioned above: S-P mixing under charge of 8;
(S )+0; M~ & Ms, etc.

There seems to be no reason to believe that the soliton
glueballs occurring in the FSE are any difFerent from con-
ventional glueballs, ' ' but we have no evidence that they
are the same either. %ark is in progress on this and oth-
er diScult points of strongly caupled saliton theory.

II. SCHRODINGER WAVE FUNCTIONALS

Before turning to gauge theories, we brieAy discuss the
FSE for scalar field theories such as 4 . This will help us
to understand how to develop various nonperturbative
techniques for solving the FSE. These techniques are
closely related to the dressed-loop expansion of the
efFective action, as was long ago recognized for the
Gaussian approximation to f Ho. wever, as we noted ear-
lier, this approximation is neither gauge invariant nor
asymptotically free, so some further developments are
needed. Among the most important of these is an algo-
rithm, usually called the gauge technique, for ensuring
that three- and four-point vertices obey certain Ward
identities. A closely related algorithm, which we need
not discuss in detail here, extends the dressed-loap expan-
sion of the efFective action to include fully dressed ver-
tices, a step which is essential in maintaining gauge in-
variance. (Presumably the same results could be found
using a background gauge. ')

We begin by exploring the relation between the wave
functional g and the partition function Z (J) for the
theory in question, in the presence of a source J which
turns out to be linearly related to the coordinates of f.
Our only concern here will be to find f for the ground
state or vacuum; later we will see how to address the
question of low-lying soliton states.

A. Scalar Sell theory

Consider the vacuum wave functional QIP(x) J of a
scalar field theory The Ha. miltonian H (with Hg=EP)
1s

'2
3 + ] 2

2

L

P'+ V(P) (2.1)

Assuming that QI0) &0, we write

r/[4)tpjof= lim eX I (dC)exp —JCx
x

(2.2)

The functional integral goes over all fields 4(x, r) with
4(x,0)=0 and 4(x,P)=iI)(x) and Xz is the Euclidean
Lagrangian

XE ———,'(B„4) + —,'m 4 + V(4) —=Xo+ V(4) . (2.3)

The unadorned integral sign stands for f~zdr f d x.
The right-hand side (RHS) of (2.2) is formally given by
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lim e~ exp — V
P—+ oo J=0

where

Zp(J) =f (dP) exp —fXp+ f JP

=exp PE—p —,' f—dx d'y P(x)Q ()j(y)

(2.4)

(2.5)

The following notation is used in (2.6): Q is an operator
~hose matrix elements are

(x
~

Q
( y) =(x

~
( —V'2+m }'~

~
y)

~

~ ~

d'k
(k2+ 2)l/2 —(k (~—y) (2 7)

(2n }

Also,

Jx x

+-,' » oxy Jy
e

(2' ) and

SlnhQ 7
Pp(x) = ((t)p(r, x) =

p P(x }
sinhQ P

(2.8)

hs(x, y)=(x [s(nhQses)nhQs(() —e'&8(e' —e&+s(nhQ e's(nhQs(P —e)8(e—e')] y) .
Q sinhPQ

(2.9)

is the inverse of the operator —(0—m ) or
—(92—QP ); it vanishes at r=O, P. In (2.6), Ep= ,' TrQ-
is the free-field zero-point energy. Note that the term
quadratic in P in (2.6) can be written as

—,
' f d'x d'y p(x)Qs&(y)= &(m —,

' f (h,pe)s+(Q te)s
P~ oo

:Ip(gp) (2.10)

where Io is the free-field action. Also note that for pur-
poses of calculating the energy E we may replace ho by
the usual Euclidean propagator

hslx, y) (x e "i' e(
y)

~o

2no

1
ik (x —y)

d4k '
(2n) k +m

(2.11)

(2.12)

which still obeys the boundary conditions of vanishing at
~or r'=0, ~.

We now make the elementary remark that Zp(J) in
(2.5) can be written as a functional integral with (i)(x)-
independent boundary conditions:

Zp(J)= f (dC&) exp Ip(4} Ip(gp)+ f—J(C&+P—p)

(2.13)

Here we used (2.10) to rewrite the second term in the ex-
ponential of (2.6). Using (2.4} and (2.13}in (2.2), we find

This is the formal p~ Q() limit of (2.9), less a term which
does not contribute in the graphs for E. However, the
substitution (2.11) cannot be made when calculating the
()(-dependent terms in (2.4). A suitable form for (2.9) in
the limit p~ &)Q is, for this purpose,

~Eif)[$(x) j =N f (de) exp —Ip(4 ) —f V(4+Pp)

—Ip((I)p) (2.14}

where N is a normalization constant, and the limit p~ (&Q

is understood. The formal shift of variables 4~gp yields

g as (up to overall factors) a partition function Z(J) in
the presence of the source J= bp 'Pp. This —source
seems to vanish if one uses (2.8), but the factors of b,p

' in

J are always compensated by factors of ho from the Feyn-
man rules. It is, in fact, just as simple to use the form
(2.14} without shifting variables so that f is a partition
function in the presence of sources that excite composite
operators.

Either through the above remarks, or by direct substi-
tution, one sees that g has the generic form

()('=e, S=g TrQtv Pi
—s 1

~ Nt (2.15)

where Tr indicates an integral over the spatial variables
x, , . . . ,xz (and any necessary other index sum), and the
Qz are translationally invariant operators in the x;, with
P;=(It)(x;). The time-honored ways to determine the Qz
are by direct substitution in the FSE, or variationally.
Another way, which exploits the fact that g is a partition
function, is to use dressed-loop expansions which are usu-
ally done for the efFective action, the Legendre transform
of lnZ(J}. All of these ways are closely related even in
the face of necessary approximations which keep the
problem tractable, and a11 are capab1e of dealing with
nonperturbative phenomena.

Let us take up the dressed-loop expansion. The idea is
to resum the perturbative series for f arising from (2.14)
so that it depends not on free quantities such as Qo but
only on their fully dressed counterparts. In perturbation
theory, the zeroth-order or free-field values for the Qz of
(2.15) are Q2 ——Q, all other QA =0. From now on we use
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the simple notation 0 in place of 02 to indicate the
coeScient of the quadratic term in S, and our task is to
resum the graphs contributing to S so that as much as
possible they depend on 0, not 0 . We write the poten-
tial for our field theory as

V(4) =—4 +—4g 3 ~ 4

3t 4I
(2.16}

and show, in Fig. I, some of the Feynman graphs contrib-
uting to S. Solid lines indicate free propagators as in
(2.12) and heavy dots indicate the field Po of (2.8). Begin
with the Born term of Fig. 1(a); it is easily found to con-
tribute to S a term

—,Tr(Q, +Q2+Q3) (2.17)

where, in momentum space, Q; = (k; +m )
' ~ . Among

the possible corrections to the graphs are those which are
one-particle reducible, such as Fig. 1(e). Straightforward
calculation shows that these have the effect of replacing
the Q; in (2.17) by Q;, where

n,0;=0 +
2Q;

(2.18)

(2.19)

~ ~
~ ~ +
~ ~

(b) (c )

(e)

~ + ~

where II; is the on shell pr-oper self-energy. On shell
means that in the proper self-energy H(co;, k;) we must
replace co; by Q;. We will soon see that (2.18}is the per-
turbative expansion of the equation which determines the
fully dressed quality Q. Since the factor (Q Q;) ' in
(2.17) comes from doing the r integrations over the fields

Po of (2.8), and since the Q; get replaced by Q;, it is clear
that one part of the resummation process is the replace-
ment of the field Po, depending on Q, by the field P:

With this substitution, one-particle-reducible graphs such
as Figs. 1(e) and 1(f) that have self-energy corrections on
them can be dropped. Please note that this does not re-
move all one-particle-reducible graphs; for example Fig.
1(i) survives as a skeleton graph.

Now turn to the one-particle-irreducible (1PI) graphs,
e.g. , Figs. 1(c), 1(g), and l(h). The general structure of
the sum of such graphs is

—,'g ( T[4 (x)4 (0)]),p, =II(x),p, , (2.20)

where II,p, is the one-particle-irreducible proper self-

energy, that is, the proper self-energy which emerges by
leaving out all graphs involving (4). (We leave it to the
reader to complete the discussion by including such
graphs. ) Taken by themselves, Figs. 1(c), 1(g), and 1(h)
would involve a convolution of II with two powers of Po,
but the one-particle-reducible graphs such as Fig. 1(f) in-
tervene to change Po to P. A similar discussion holds for
graphs in II which involve the A.4 coupling, such as Fig.
1(d).

Based on these findings, we are led to conjecture that
the following equation for Q essentially captures the im-
portant nonperturbative phenomenon which can be
found in a dressed-loop expansion:

—,
' Tr/QJ=Io(P)+ —,

' fPHP, (2.21)

where the fully dressed proper self-energy H is construct
ed by replacing the frequency by Q. Equation (2.21) sim-

ply equates the quadratic term in S of (2.15) to the sum of
the free-field contribution [see (2.14)] and the resummed
contributions of graphs such as shown in Fig. 1.

Even if there were, in principle, no corrections to
(2.21)—and there doubtless are —it is necessarily ap-
proximate in the absence of exact knowledge of the func-
tional dependence of H on Q. We have investigated
(2.21) with the simple approximation of replacing Q by
Q in the free propagator (2.12), and then using this prop-
agator in the standard skeleton graphs for II (with bare
vertices). To one-dressed-loop order, this yields the same
result as direct solution of the FSE (and slightly im-
proved results over a Gaussian variational wave function-
al). At two-dressed-loop order some differences appear,
which we can highlight by studying the anharmonic os-
cillator in quantum mechanics, which is a 4 theory in
zero space dimensions. Except for renormalization
effects, one can easily convert the results given below to
true 4 field theories by letting 0, which is a number in
quantum mechanics, become an operator and symmetriz-
ing various denominators.

Consider the Hamiltonian

(g ) H =—,'p +—,'co x +—x2 I 2 2 ~ 4

and corresponding ground-state wave function

(2.22)

~ + g=e ', S=—'Qx +—Q4x +—Q6x +
4I 6t

(2.23)

FIG. 1. Some Feynrnan graphs contributing to the connected
ave functional. Solid lines indicate free propagators and heavy

dots represent $0.

obeying Hg =Eg. Table I shows a comparison of the
three methods we have referred to, to O(A, ); the last
column gives E for co =0, the strong-coupling limit,
where of course perturbation theory fails. It is only a
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TABLE I. Comparison of methods and results for the anharmonic oscillator. The exact numerical result for co=0 is shown in the

upper right-hand corner.

Technique used 0, equations 04 equations O6 equations Energy E for co=0
(E =0.420''~3)

3A. 21K, 3A, 33 A, 15K,'
Perturbation theory 0=co+ 2

—
5 + . &4= ———

4 + ' &6= —
3 +

8~ 64~ 2~ 32 ~ 4~

Gaussian
variational

Minimize

0 u 3A,

4 4Q 16'2
—( —, A, )'~'=0. 429K' '

Direct substitution
in Schrodinger
equation

Equation (2.21)

=67 + 2 04+

Q (@2+~2)+
160

3A2

1280

3X ~6 5 n43

2Q 8Q 6

(a) 0 =0, 1V&6:

( —'k)'" =0.4541'"
32

(b) 0 =0, N&8:

( —,'„X)'"=0.404k, '"
' I/3

=0.420K, 'i3
64

coincidence that the dressed-loop expansion, Eq. (2.21),
gives the correct numerical result to three figures. Note
that, to 0 (A, ), direct solution of the Schrodinger equation
and Eq. (2.21) give the same answers. Had we included a
gx coupling as well, this remark would also hold to
O(g ), and it also holds for the 4 -4 field theory with
V(4) given in (2.16). The strong-coupling results are
reasonably insensitive to the order of truncation, as
shown in the third row of Table I.

(expressed more compactly in matrix notation):

A; VA V '+g 'VBV

H; VHV ', H;—= —i
5A;

(2.28)

Here V(x) is a unitary representation of the gauge group.
For the time being we will concern ourselves only with
"small" gauge transformations, with generators

B. Gauge theory a"n' a"=s'a+ (2.29)

1

2ia

(2.24)

connecting the anti-Hermitian potential matrix A„and
the components 3 „'; the matrix generators A,, are nor-
malized to

The main problem we face here is, of course, maintain-
ing gauge invariance. In the canonical formalism' of
gauge theory there is no momentum conjugate to the
time component Ao, so we may set Ao =0 and the wave
functional g depends on A;(x). Here we introduce the
notation

Questions of "large" gauge transformations with nonzero
winding numbers will be discussed later in connection
with the P soliton. Since [D II,H]=0 the eigenfunctions
of H form representations of the gauge group and we will

only be interested in singlet representations:

D. 6 /=0.
I

(2.30)

This is, of course, Gauss's law on physical states.
We can construct a formally gauge-invariant P, for the

vacuum by writing In/, as an infinite (functional) power
series in A,'(x), with coefficients related by Ward identi-
ties:

Trk.,kb =26,b .

The functional Hamiltonian H is
2

H=Jdxg —— +—'(6 )4
a I

with

(2.25)

(2.26)

P, I A,') =exp

+ g ~ A 3'A'0, '"+.. .
I J k IJk

(2.31)

(2.27)

and H is invariant under spatial gauge transforrnations

Here the 0's are operators in the spatial variables
x;,x, . . . and the sum is over group indices, spatial in-
dices, and the x;. The 0's depend only on differences
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x, —x, by translational invariance. Under the
infinitesimal gauge transformation corresponding to
(3.24),

g g a g ~a++&abcg c~b (2.32)

of (2.31) is invariant, provided that the bilinear
coefficient Q; (x; —x. ) is transverse,

Q,, =(5,, a—, a, V ')-Q, (2.33)

and that all the rest of the coefficients obey Ward identi-
ties of the simple type found in ghost-free gauges, e.g. ,

abcQ jk (Xi 'X2 X3)
t}Xi;

e Qjk(x2 x3)[5(x,—x2) —5(x, —x3)] . (2.34)

Similarly, B,Q;j„;"is related to sums of Qjk't, etc. These
Ward identities simply project out the part of A, which is
gauge independent [cf. Eq. (1.1)].

Just as for the spinless field theories discussed earlier,
the Q coefficients can be determined from direct substitu-
tion in the FSE, by variational means, or through an ana-
log of (2.21) which resums terms in a partition function.
All of these are capable of generating nonperturbative
effects, such as spontaneous generation of a gauge-
invariant gluon mass, but certain minimum require-
ments must be satisfied. As is well known, the require-
ments of gauge invariance can only be met if all graphs
with the same number of loops are kept in a given pro-
cess. This applies to graphs containing dressed loops as
well as the usual perturbative expansion. For example,
consider the usual gluon proper self-energy H„. This is
not gauge invariant (although it is certainly possible to
construct a gauge-invariant proper self-energy by adding
certain terms coming from the vertex and other graphs;
see Ref. 4), but gauge invariance requires that
q "11„„(q)=0. To one dressed -loop ord-er the tu/o graphs
shown in Fig. 2 must be present in a ghost-free gauge
(and a ghost graph as well in gauges with ghosts) in order
that this be true, and moreover the fully dressed vertex
shown by the open circle must obey its own Ward identi-
ty. Unfortunately, a Gaussian trial wave functional, with
only the first term in the exponent of (2.31) saved, yields
an equation for 0; which is equivalent to saving only
Fig. 2(b). This is clear from the discussion of Ref. 2 con-
cerning scalar field theories. Not only does a Gaussian g

Q;/(1)Q/k'(ki, k, k3)+Q~/(2)Q/, "k'+. Qki(3)Q/, ' e'" r—;J„

[Q;/(1) =Q;/(k, ), etc. ] . (2.35)

The left-hand side (LHS} of this equation comes from the
cubic term in (5S/5A) in Hf„and the RHS comes
from the cubic term in 8 itself plus a term from the five-

point 0 function, which is itself determined by an infinite
sequence of other equations. When only the cubic term
in H is saved, I, .

k reduces to the perturbative vertex I,"I, .

~ijk / f(k l k2 k5ij + k2 k3 i5jk

+(k3 k, ),5,„] (2.36)

It is necessary that l,~k obey a Ward identity of its
own if the Ward identity (2.34) is to be satisfied. This
identity for I,JI, is

fail to implement gauge invariance, it also does not show
the effects of asymptotic freedom, because Fig. 2(b) is
momentum independent.

We will show below how to construct three- and
higher-point Q's in (2.31) so that they are guaranteed to
satisfy Ward identities such as (2.34). The construction
will involve only one unknown operator, the two-point
function Q defined in (2.33). Direct substitution in the
FSE will then yield an equation for 0 plus new identical-
ly conserved terms in the higher-point 0 functions.
These last terms, which can be straightforwardly includ-
ed, are not important for a qualitative understanding of
nonperturbative effects, since they vanish in the zero-
momentum limit and are of higher order in g than the
other terms saved. Dropping them corresponds to the
usual implementation of the gauge technique. It is evi-
dent that working at the one-dressed-loop level of Fig. 2
requires us to understand the Ward identities through the
four-point Q function, which is of 0 (g ). Keeping terms
of formal order g and higher corresponds to looking at
graphs with two or more dressed loops, which we will not
do here.

Since the Hamiltonian H is gauge invariant, direct
solution of the FSE automatically yields 0 functions
obeying the Ward identifies. We write the relevant equa-
tion for the three-point function 0';I,' as

1

p,v 2
k/; I;/k ——[Q,-k(3) —Q k(2)], (2.37)

2
~ ~ ~ ~ ~+

FIG. 2. One-dressed-loop Feynman graphs for H„(in a
ghost-free gauge) corresponding to the minimal terms in @
necessary to implement gauge invariance and asymptotic free-
dom.

which is readily checked in lowest order [where
Q (k)=

~

k
~

]. Equation (2.37} follows from (2.34) and
the transversality of 0, . Below we will show how to
solve (2.37) (modulo identically conserved term) for I,/k
in terms of A. First, we express 0, z' in terms of 0; and

I, k. This is easily done by writing out the k; k k terms
in Q,", using (2.34), and the result is
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Ic(;

Q;,'„'(k„k„k,)=[Q(1)+Q(2)+Q(3)] 'e'" I „,+ Q(1), [Q(2),„—Q(3),„]+c.p. (2.38)

where c.p. stands for cyclic permutations. This should be compared to (2.17), the corresponding result for scalar 4i
theory; a naive guess based on (2.17) would give the first term in large square brackets in (2.38), but not the other terms,
which are necessary to maintain the Ward identities. The reader should check that the divergence of (2.38) does yield
(2.34},as it must, if (2.37) holds.

It only remains to construct I; k explicitly as a function which is totally antisymmetric, obeys (2.37), and reduces to
(2.36}in lowest-order perturbation theory. In fact, this construction has already been given (Cornwall and Hou, Ref. 3),
with the result

r,,„=r'„„——' ", ,"(k, —k, ),ft„,(3)+[P; (1)f1 (2)—f[; (1)P (2)],' +c.p. (2.39)

where P; is the transverse projection operator A. 0++ solitons

P, (1)=P, (k, )=5~-
% &P & &P

1
2

(2.40)

and ft& expresses the difference between the free and
dressed versions of Qk .

Q Pkp QPkp+——ftkp . (2.41)

III. 0++ QUANTUM SOLITONS

The development of these solitons is somewhat analo-
gous to the corresponding treatment for scalar field
theories, but complicated by the need to maintain gauge
invariance. The strong-coupling soliton picture is very
difficult because of entropylike effects (see the Introduc-
tion), and we will carry out explicit calculations only to
the point of finding an effective Hamiltonian which
(presumably) describes solitons in the presence of a con-
densate which we do not describe self-consistently. Our
main line of approach will be through a trial wave func-
tional, but we begin by discussing properties of the exact
functional.

Equations (2.38) and (2.39) are major results of this sec-
tion; they are the minimum constructs which are con-
sistent with gauge invariance and the structure of the
FSE. In lowest-order perturbation theory they give the
correct solution to the FSE. Of course, (2.39) is not a
unique solution to (2.37), since totally conserved terms
can be added, and indeed in higher order of g the FSE re-

quires such transverse terms. These transverse terms are
of 0(g ) in Q;Jk, and, hence, contribute only at two (or
more) dressed loops; vanish in the infrared limit, where
nonperturbative effects come into play; and are relatively
unimportant in the ultraviolet where g is replaced by a
small running coupling constant. For these reasons, we

will drop transverse terms in I,jk from now on, although

they can easily be included.
In principle, constructions similar to (2.38) and (2.39)

could be carried out for four- and higher-point 0 func-
tions. In practice, we will not need to record the explicit
formulas, which become very lengthy.

Ps[ A,'] =exp —gg 'A,'MA, .'——g A,'Q; bA b. . .

——~~ 3'3 "3'0'.'+
i j k ijk (3.1)

Here M is an operator to be chosen so that ( A ) = A,
the 0 functions appearing here are not the same as in

(2.31), but we do not note this explicitly to avoid cumber-
some notation. The background gauge potential A, is

unchanged under the gauge transformation (2.28).
At this point, one should be concerned about the

orthogonality of gs and g„ the vacuum wave functional.
If the S soliton were topological (it is not), it+ of (3.1) and

g, of (2.31) would be automatically orthogonal in the
infinite-volume limit. It is easy in principle to orthogo-
nalize 1('s to p, by mixing of these two states, but in prac-
tice one encounters delicate problems similar to those en-
countered in discussing the entropy of condensation. We
will not discuss orthogonalization further here, but will
siinply use (3.1) as it stands.

We can, just as we did for p„ find a series of Ward
identities for the coefficient functions in (3.1) which en-
sure that Ps is gauge invariant. Under the infinitesimal
gauge transformation (2.32), we require

a, a,'=0, (3.2a)

This soliton we will term S (for scalar); it is to be
identified with the similarly named phenomenological
glueball of Ref. 18. In a scalar field theory one would

proceed from the vacuum wave functional (2.15) to a trial
S functional by shifting P by an amount P(x). Thus, if S
in (2.15) describes a P theory, i.e., the sum is over even N
only, we have for the vacuum state (P) =0 and for the S
state (P) =P. This introduces terins with odd N in S,
notably a term linear in P. Likewise, in the gauge theory
(2.31) is supplemented with a term linear in A in the ex-

ponent, and the kinematical structure of the 0 functions
is different from, e.g. , (2.33) or (2.38). The Q functions
will now have the kinematic structure of X-point func-
tions for a gauge theory in a background gauge potential.

For the S wave functional Ps we write
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(3.2b) the first few terms of the series are

as the first two in an infinite sequence of equations. The
rest of these equations are formally the same as before,
but with different solutions.

Assuming that (3.2a) holds, we solve (3.2b) by + ~ ~ ~ (3.10)

6»'=g, K —g', —Ex,K+A, )&8, , K1 2 1 1 1 1

fl;. =Me,„, (8;A' —B, A )+05, 5;—
where

(3.3)

A;=U 'AU+g 'U 'a U, (3.4)

where U is a unitary matrix, and assume the gauge trans-
formation laws

VA, v-'+g-'va, v-',
U~ VU,

(3.5a)

(3.5b)

the first of which has already been given in (2.28). It is an
elementary calculation to show that A; is formally gauge
invariant. To discuss the conserved nature of A, it is
convenient to introduce the auxiliary potential C, ,

The second term on the RHS of (3.3) is of the kinematic
form already discovered in (2.33). The FSE shows that M
and 0 both depend on A, so (3.3) and its successors are
not linear relations in the external potential. If one saves
only the N =1 and 2 terms in the expansion of S, then
the choice M =0 ensures that ( A ) = A,'.

At first it may seem unnatural to introduce a potential
A which is gauge invariant and identically conserved.
In fact, such potentials do occur naturally in gauge
theories, in the form of a decomposition into a gauge po-
tential in an arbitrary gauge and an auxiliary group ma-
trix. We write (using matrix instead of component nota-
tion)

IC =a,~, ,

(A XB),—=e,b, AbB, .

(3.11)

(3.12}

y{ vA, v-'+g-'va, v-' —A, j

=q{v(A, —v-'A, V}v-'+g-'va, v-'»

One may check by direct substitution from (3.9)—(3.12)
that U satisfies (3.5b) if A; satisfies (3.5a). From these de-
velopments it follows that a gauge-invariant conserved
potential such as A; can always be constructed formally
in terms of a potential A; subject to no restrictions,
transforming in the usual way.

At this point we could proceed by direct substitution in
the FSE, just as in Sec. II. We leave that exercise to the
reader, and instead give our explicit form for a trial wave
functional to be used variationally. This trial wave func-
tional, analogous to the soliton wave functional of scalar
field theory which is found by shifting the argument P of
the trial vacuum wave functional, is guaranteed to be
gauge invariant.

Begin by simply shifting a wave functional of the form
(2.31), yielding the functional 1(t{ A —A j. Even though
the Q functions in (2.31}satisfy their Ward identities and

A, is gauge invariant, this wave functional is not; in-

stead, it transforms as

C, =a, +g '(a, V)V '=-VA, .V-
which transforms homogeneously:

(3.6)
=/{A; —V 'A;Vj . (3.13)

C; VC;V (3.7)

We impose the condition that C; be covariantly con-
served:

[2), , C;]=0, (3.8)

U =exp —k, g' (3.9)

where 2); is the covariant divergence based on A;.
Another elementary calculation shows that this implies
the conservation law (3.2a) for A;. The reason for impos-
ing (3.8} is that C; will appear as a source [see (3.23)
below) for the classical Yang-Mills equations and, there-
fore, must be covariantly conserved. This reason aside,
imposition of (3.8), which may be understood as a set of
equations determining the matrix U, allows for the con-
struction of U as a formal series in A; such that if A;
obeys its transformation law (3.5a), then U automatically
satisfies (3.56) (Ref. 6). With the notation

The unwanted homogeneous transformation of A, can be
undone by replacing A; with U(A)A;U '(A), where
U( A) is the construction (3.9)—(3.12) but in terms of A, ,

not A;. So a suitable gauge-invariant trial wave func-
tional for the S soliton is just

ps{ A, » =/{ A, —U(A)A;U '(A)j, (3.14)

where f is of the form given in (2.31). As we have al-
ready said, the 0 functions in (3.14) are not the same as
those which describe the vacuum with no additional soli-
ton; their values wi11 depend on the A;. However, they
obey the same Ward identities, which ensure gauge in-
variance. If only the quadratic term in the exponent of
(3.14) is saved, the expectation value of A, is A;, but cu-
bic and other odd-N terms change this result; we will not
bother to distinguish ( A; ) from A, in what follows be-
cause it adds nothing new in principle.

Let us recapitulate: a trial wave functional for a 0++
soliton which is locally gauge invariant is given by
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fsI ~; I =e ' (H ) i y ~ a(II2)abg b

y IIabgagb+ g y gag bgcII abc+1

(3.15)

= —,
' g A ( —V +m ) 5„— A,'. (3.18)

At m =0 these give the usual kinetic energy tensor

g, =A, —U(A)A;U '(A), (3.16)
—,
' y(a, 7;—a, 2;)'. (3.19)

II2= —V2+m2+O(A, ) (3.17)

for further discussion.
Next, consider the terms in (H ) which are quadratic

in A,-. It is easy to show that these are of the form

where the 0 functions obey Ward identities such as (2.33)
and (2.34), and U is given in (3.9)—(3.12) as a function of
A, The soliton potential A; is gauge invariant and con-
served, and can be written in the form (3.5) in terms of an
unrestricted extended potential A, and associated gauge
matrix U(A ).

It now remains to parametrize the 0 functions in a
way which satisfies the Ward identities, and to calculate
the expectation value of the Harniltonian H. This expec-
tation value is then minimized with respect to the in-
dependent functions which appear in it. We will consider
only the case where the 0 functions are constructed ac-
cording to the gauge technique as in (2.33) and (2.38), so
there is only one independent scalar function 0 in addi-
tion to the external gauge potential A;. (Similarly in a
scalar field theory with a Gaussian trial functional, there
is one propagator; the soliton field {(l is the other function-
al variable. ) The calculation of (H ) is quite analogous to
that given in Ref. 2 for a {() field theory, differing only in
the tedious details of the extra terms in (3.15) and (3.16)
which ensure gauge invariance, and in the need to ac-
count for a cubic interaction in H. It is, in fact, easy to
envisage the results of this calculation without actually
carrying it out, by considering the results of Ref. 2, as
given there in Eq. (5.23) [in that equation, G =(20) ' in
our present notation]. The variational equation for 0 is
the same as for the vacuum state with additional terms of
quadratic and higher order in A, ~ Neglect these addi-
tional terms for the moment; then the 0 equation shows
that 0 —00 contains some terms that generate a gluon
mass, as we have already discussed in covariant form in
Ref. 4. In the P theory of Ref. 2, the mass-generation
mechanism is the seagull graph. In gauge theory, the
seagull term is supplemented by extra contributions from
the other one-loop graph of Fig. 2, which are necessary
for gauge invariance and for asymptotic freedom. This
mass contribution needs regularization, and some
relevant approaches are given in Ref. 4, which we do not
repeat here. There are also (divergent) terms in 0 —Qo
which are removed by wave-function renorrnalization
and which also contribute to coupling-constant renormal-
ization. The only point which is of real concern to us is
the nonperturbative generation of a gluon mass term in
A, so we will use the simple form

In view of the conserved nature of A, and with the help
of the decomposition (3.4), the mass term is

—,'m ( —2Tr}[A,+g '(B, U)U '] (3.20)

It is not hard to appreciate that there are extra cubic and
quartic terms in the A; which complete (3.19) to the usu-
al Yang-Mills form. According to (3.4), A; differs from
the unrestricted external potential A, by a gauge trans-
formation, so the Yang-Mills form can be written in
terms of 0;J, the field strength constructed from A, as in
(2.27). As a result we can identify a pseudoclassical con-
tribution to (H ) containing all the terms of the form

(H ) =g F(gA, , U) (3.21)

Pl+ [a, +g -'(a, U) U-']'

(3.22)

plus terms independent ofA;, which we will not consider
here. In (3.21) and (3.22), the coupling constant g should
be thought of as evaluated at a renormalization point of
order m. A more exact treatment of the FSE than we
have given here would replace this simple prescription
for g by a complicated and nonlocal dependence on A, in
the spirit of the well-known one-loop correction to the
effective action.

Equation (3.22) is the simplest gauge-invariant approxi-
mation to (H ) which allows us to see quantum solitons.
In fact, (H ) contains terms of all orders in A; including
also terms which behave like lnA, . The omitted terms
contain, essentially by definition, all those effects which
we referred to as entropy effects in the Introduction, and
they are by no means minor corrections to the soliton
phenomena contained in the simple approximation (3.22).
We are unable to deal convincingly with these effects
now, and perforce must ignore them. However, the
presumed chain of effects is that entropy dominates, lead-
ing to a condensate of solitons, and the world-line entro-
py will appear as an effective soliton (not gluon) wrong-
sign mass term. ' The soliton condensate then furnishes
the vacuum fluctuations that drive the gluon mass term,
closing the chain.

Even though (3.22) cannot be a quantitative description
of the S soliton, it certainly goes beyond purely classical
QCD, which has no finite-energy static solitons at all.

[we consider m to be formally independent of g in writ-
ing (3.21)]. This pseudoclassical contribution is

(H ),=( —2Tr) f d3x
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0= —[n, , e, ]+m'[A, +g -'(a, U) U-'], (3.23)

where 2/, is the covariant derivative based on A, . The
equations of motion for U can be found in varying U in
(3.22), or more simply by taking the covariant divergence
of (3.23). The result is just (3.8), which we have already
noted is equivalent to 8, A, =0. The SU(2) hedgehog an-
satz

We have described elsewhere' ' this nontopological soli-
ton in considerable detail and thus, will be very brief
here. The equations found by varying A,. in (3.22) are

Ms (g 6& ), but which is impossible for us to calculate
accurately.

The properties of P have simple analogs in the harmon-
ic oscillator. In the potential V= K x, the lowest state is
even parity, with wave function Ps-exp[ —(2') 'kx ].
The first excited state has odd parity, and its wave func-
tion is Pp-xgz. Note that in the classical limit Pi~0,
Ps is proportional to 5(x) while f~-x5(x)=0. Thus,
parity is a concept lacking a classical interpretation.

In QCD, we proceed by constructing the trial wave
functional

P, (r) —1
A I' umiak +a Xk

2l

+—.x, x rH, (r},
2E

U=exp rxP(r—)
2

+ (~, ——x, x r}
2l

(3.24a)

(3.24b)

fp[ A, } =sinnWgs[ A; }, (3.27)

(3.28)

where gs is the scalar wave functional in (3.15), and W is
the Chem-Simons secondary class:

2

W= — e'J" d x Tr —,'A, B Az — A,. A Az

allows' ' for a finite-energy solution to (3.23}. The form
of the ansatz (3.24) is important in deducing the J
properties of the S soliton; it will not be necessary to re
peat the detailed structure of the soliton, as found numer-
ically in Refs. 12 and 13.

Although four functions appear in (3.24), only three
combinations have physical (gauge-invariant} relevance.
These are

I, —:P, sinP —Pz cosP,

I2 =f) Cosp+f2 Sill/ s

(3.25a)

(3.25b)

(3.25c)

A;( —x)= —A;(x), (3.26a)

[8, U( —x)]U '( —x)= —[8, U(x)]U '(x) . (3.26b)

Now consider the behavior of g[ A;(x) } under the parity
operation, which replaces A;(x) by —A,.( —x), modulo a
gauge transformation. One finds, using (3.26), that the
soliton wave functional l(s of (3.24) is even under parity,
as expected. As is well known, Pz is a spatial scalar,
since a spatial rotation of A; and U can be compensated
for by a gauge transformation. Similarly, Ps is even un-
der C, so we are describing a 0++ soliton.

It is an instructive exercise to show that the field A; of
(3.4) depends only on the I, as does the energy density in

(3.23). The S soliton is characterized by I, =I3——0, a
specific realization of which turns out to be' Pz H, =0, ——
P=n. In this realization, or gauge choice, it is evident
from (3.24) that

s2

( ) H(Hs)s ———'d x X ssccssslV
)

1
58'

S 5 A,-'

+ 0 ~ ~ (3.29}

where ( )s indicates an expectation value with the wave
functional fz Since.

Under the parity operation, W is odd, so gr is indeed a
pseudoscalar wave functional. Moreover, the (pseudo-)
classical limit of f vanishes, because the S-soliton wave
function A;, satisfying (3.23) and having Pz H, =0, ——
P=n, yields zero for the integral in (3.28). The reason
for using sin~% instead of any other odd function of 8'is
that under a gauge transformation with nonzero winding
number N, 8'~H'+N and thus, under large gauge
transformations sinn. 8' suffers at most a change of sign.
(We have not investigated the behavior of fz under gauge
transformation with %&0, for which considerations of
infinitesimal transformations are irrelevant. '

) One might
consider constructing Pr by multiplying fs by

Jd x 6„'„6"'orequivalently by fd x E'J"E;6,z. In the.
FSE, E; is equivalent to i5l5—A, , and acting on gs this
generates a complicated wave functional which we have
not analyzed in detail.

It is clear that P is heavier than S, on the basis of the
trial wave functional (3.27), but by exactly how much is
problematical, even if we ignore the effects of entropy of
world lines. We can make a very rough estimate by look-
ing at one term in the mass difference ( H )p —( H )s, the
term coming from the functional derivatives in H of
(2.26) acting on sinn W. This term is

B. 0 + soliton

We will construct a trial wave functional g~ for a pseu-
doscalar soliton called (as in Ref. 4) P, by a simple
modification of gs of (3.14). The P soliton will be heavier
than the S soliton by an amount which is related to

58'
5A'

2
l a

Sa
—,&;pG) ~ (3.30)

this term in the mass difference will involve the mean-
square magnetic field fluctuations integrated over a soli-
ton. The covariant form of these remarks will be
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(3.31)

2

8m

which implies' that the wave function depends on 8 as

(3.32)

(3.33)

with an unknown coeScient; we have assumed that field
Auctuations in the vacuum are not too different from field

fluctuations in solitons, since the vacuum is supposed to
be made of solitons. If we take (3.31) literally (that is, the
numerical coeScient is unity), assume Ms ——1 GeV, and
take the value of Novikov, Shifman, Vainshtein, and Za-
kharov of 0.47 GeV for the expectation value, we
would guess Mp =1.5 GeV, a not unreasonable value (cf.
the i at 1.44 GeV).

Finally, let us discuss one of the most interesting
features of the S and P solitons: they mix with each other
when the vacuum angle 8 is nonzero. Such mixing has
been invoked in Ref. 18, as a phenomenological solution
to the U(1) problem. The reason for mixing is that in the
presence of the 8 angle, the electric field and the rnomen-
tum are related' by

We have not progressed far enough in this paper to un-

derstand whether the simple phenomenological mixing of
S and P under U(1) rotations (or equivalently a change of
8) advocated in Ref. 18 is a reasonable description of
what really happens. This will require an intimate under-
standing of the phenomenon discovered in Ref. 13,
wherein soliton world lines can terminate on fractionally
charged instantons (i.e., instantons whose winding num-

ber is fractional). A classical fractionally charged instan-
ton has infinite action. The pseudoclassical massive
theory described by the four-dimensional version of (3.23)
has finite-action configurations consisting of two fraction-
ally charged instantons whose total winding number is an
integer separated by a soliton world line. Of course, as
the separation between the two fractionally charged in-

stantons grows, the action of the world line also grows in

proportion to its length. The combined system of S and
P solitons and fractionally charged instantons, in a vacu-
um with 8&0, is an extraordinarily rich structure which
we only dimly understand now.
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