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A method is described for converting a fermionic lattice theory into an equivalent Ising-type sys-
tem which may conveniently be simulated by standard Monte Carlo heat-bath techniques. Fluctua-
tions in physical quantities such as chiral expectation values are found to be controlled. The
method is applied to Dirac theory in two space, one time dimensions and excellent agreement is ob-

tained with analytic lattice results.

I. INTRODUCTION

One of the most difficult problems arising in the ap-
proach to lattice gauge theory based on Monte Carlo
simulation of the Euclidean path integral is the accurate
treatment of dynamical fermions. Several approaches
have been proposed to date for handling this problem —
the pseudofermion method,! exact computation of the
fermion determinant by finite-rank update,? Langevin
techniques,® or the microcanonical approach*—but all
are highly computationally intensive. An approach
which treated fermionic and bosonic degrees of freedom
more symmetrically (thereby avoiding what is in some
sense a problem of nested Monte Carlo simulations),
would clearly be attractive.

The interconvertibility of fermionic and bosonic fields
is well known in connection with the bosonization of fer-
mionic theories in one space, one time dimensions.?
These techniques have their roots in the Jordan-Wigner
representation® of anticommuting variables in terms of
spin operators. In fact, this representation can also be
applied to fermionic fields in higher than one space di-
mension.” In this case, however, it is usually the case
that the resulting bosonic action is nonlocal. Recently,
there has been an interesting attempt by Gausterer and
Lang® to apply Langevin techniques to bosonized
(2 4+ 1)-dimensional Dirac theory. Their formulation of
the bosonized Hamiltonian contains large relative factors
in the matrix elements, however, and this leads to
difficulties with fluctuations and slow equilibration, as
well as the necessity for taking a highly asymmetrical
spatial lattice.

In this paper an alternative formulation of the boson-
ized Dirac fermion is given which appears to avoid the
above difficulties. In this form, the system can be simu-
lated by a heat-bath algorithm in which only the very
small fraction of permissible spin configurations (cf. Sec.
III) are generated. The fermionic problem is thereby re-
duced to a simulation of an Ising-type system. The non-
local string terms contribute to a sign factor which is in-
cluded in measurements of physical operators but is ir-
relevant for the updating procedure. Most importantly,
one finds that the fluctuations in the physical quantities
such as () in this approach are controlled, and one is
able to obtain excellent agreement with explicit analytic
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results over a range of bare masses well into the continu-
um region.

In Sec. II the Jordan-Wigner transformation of
(2 + 1)-dimensional Dirac theory is reviewed. Section III
describes the Euclidean path integral (strictly speaking,
path sum) appropriate for generating finite- or zero-
temperature expectations of physical quantities such as
the chiral expectation (). A heat-bath algorithm is
explained which generates all and only those spin
configurations with nonzero weight in the path integral.
Finally, in Sec. IV the results of the simulation are
presented and compared with explicit analytic formulas.

II. BOSONIZING LATTICE FERMIONS

To obtain a bosonic transcription of a lattice fermion
theory in terms of Ising-type spin variables one may em-
ploy the Jordan-Wigner representation® of any set of an-
ticommuting variables in terms of spin variables which
commute at different sites. Namely, if

{¢I7¢j}=8i] (1
one sets
¢;= [ liog))a; )
Jj<i

with 0,07 =(0}+ic})/2 Pauli algebras commuting on
separate sites j. The representation (2) presupposes a
linear ordering of the fermion fields on any given time
slice of the lattice. We shall henceforth consider theories
in two space, one time dimensions and order the fermion
fields along the canonical path indicated in Fig. 1. In this
case, the transcription of a local fermionic theory into
spin variables results in nonlocal terms (strings of o vari-
ables) in those parts of the Hamiltonian arising from y
links in the original fermionic kinetic energy.

To be specific, let us take a free, massive Dirac theory
in 2 + 1 dimensions, more or less the simplest case exhib-
iting the nonlocality. The lattice will be Ly X L X L with
spacings a,,a in the time and spatial directions, respec-
tively. A site on this lattice will be labeled (j4,/j,,j,). In
terms of dimensionless staggered® fermion fields ¢ A the

lattice Hamiltonian is (on a particular time slice,
suppressing j,)
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FIG. 1. A canonical ordering of fermions on a two-
dimensional lattice.
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Note that we take free boundary conditions spatially. In
(3) py=ma is the fermion mass in units of the spatial lat-
tice spacing and the ¢ j,j, T€ normalized according to

;
(8),,085:1=8, 18, . . @)

Jihr J2)2

Ordering the ¢j1j2 along the canonical path indicated in

Fig. 1 and performing the replacement (2), the Hamil-
tonian becomes

)/'(U;:jz
(1 *ig+ -
thp 2= 0590,
+%2(01?:120j_1,j2+l+H-c- )2]‘112 . (5)
The string variable 2 Jiis
operators along the canonical path connecting the sites
(ji,j2)and (ji,j,+1):

aH = ;3 (— o) 41,5, tH.c.)

is the uncanceled product of o

Ejlfzz(—-)jl+1 H o} (6)

J
J1dy <i<ipip+l
for L odd, and

Ji+i
yroe o}

S =(— :

J1/2

(7N

j]jz <Jj <j|»j2+l
for L even. As we shall see below, the evaluation of zfxlz

is only relevant to the measurement procedure, not to the
updating of the spin variables, and in practice consumes
an ignorable fraction (typically 2—3 %) of the computer
time in an actual simulation.

A glance at (5) shows that the equivalent spin Hamil-
tonian has a rather simple structure: in the representa-

tion in which aj iy
(referred to in the following as a spin configuration), the
only off-diagonal matrix elements arise from flipping op-
posite spins on adjacent sites. Moreover, the off-diagonal
matrix elements of H, and hence of the transfer matrix
for this problem, though real, can have either sign, corre-
sponding to a complex Euclidean action, as noted by
Gausterer and Lang.®

are diagonal, with eigenvalues Sjii

III. SIMULATION PROCEDURE
FOR THE BOSONIZED HAMILTONIAN

We would like to be able to compute quantities such as
the chiral expectation

0 — trlexp(=BH)YY]
)= tr[exp(—BH)] ’

where H is the fermionic Hamiltonian (3), by means of a
Monte Carlo simulation of the related bosonic represen-
tation (5). Attempts based on Langevin techniques® ap-
pear to lead to severe difficulties with equilibration and
large fluctuations. We shall follow here a heat-bath ap-
proach that leads to quite stable averages, which more-
over agree with explicit analytic results available for the
simple fermionic model of the preceding section.

The simulation of (8) can be accomplished by introduc-
ing a Euclidean time spacing a, and L time slices. Then
one computes (B=ayL)

(8)

tr(1 —aOH)LOJtﬁ

(J¢>l =
U t(1—agm)"
tr(1—aol) S (=) s,
1 0147y’
_L . 9)
L tr(1—a H) °

In the above formula, the chiral expectation is composed
as an average over the zeroth time slice (j,=0). As usu-

al, one inserts a complete set of states isj i ) on each

time slice in order to arrive at a path-integral representa-
tion for quantities such as (9). As the factor

(s | 1—aoH |s;

Jo+1JJ, 101112 (10)

in this sum is not necessarily positive, we must separate
the sign factor

S(s; ;)= l.FIsgn(sjoﬂLquz | 1—aoH |5 ; ;) (11)
Jo

from the magnitude portion which will become the
(necessarily positive) Monte Carlo measure:

P(s;; )= H|<s,0+1]‘jzy1 aH |s;;, )] . (12)

Of course, because of the trace in (9), we have periodicity:

=5 .. 1
S0+ Loriria = Si0i1ia (13)

Evidently
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Jy+i
<S(sfoflfz)2(‘)' 25sof,fr‘>p

(P = (14)

where the expectation values on the right-hand side in
(14) refer to a Monte Carlo average with respect to the
positive measure P given in (12). Note that the nonlocal
string factors only contribute to S, not to the measure P,
and hence are irrelevant in the update procedure.

Contrary to the widely accepted lore on complex ac-
tions, we have found that while fluctuations in the sign
factor S [and hence in the numerator and denominator
factors in (14)] can be sizable, the ratio (14) determining
the physical quantity (¢ ) is much more stable (cf. Sec.
IV). A successful simulation depends crucially however
on an update procedure which avoids the generation of
the very large preponderance of configurations carrying
zero weight (essentially, as a consequence of the exclusion
principle) in the path integral.

From (5) we see that the only configurations appearing
in the path integral over the measure (12) are those in
which adjacent time slices are either identical or differ by
the reversal of a single active link. A link here is a pair of
nearest-neighbor sites on a given time slice; an active link
is one where the spins on the two sites are opposite. We
reverse the link simply by interchanging the spins.

In a Metropolis-type update procedure'® one might
proceed by reversing each available active link on each
time slice in turn and then checking the adjacent time
slices to see whether the resulting configuration is a per-
missible one. This scattershot approach leads to an unac-
ceptably small acceptance rate, however, on the order of
a few percent at best. Instead, we shall use a heat-bath
update in which a new configuration is selected from the
range of all permissible configurations for a particular
time slice given the fixed configurations on the adjacent
ones. The relative probability for the selection is deter-
mined by the weight (12). Thus, an update step amounts
to examining a time slice and modifying the configuration
on the slice in a way compatible with the adjacent slices
(i.e., differing at most by the reversal of a single active
link).

The heat-bath procedure is implemented by classifying
the relation of each time slice to its neighbors into the
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FIG. 2. Large Euclidean time limit of ().

(1) s,s,5,

(2) s,8,5{l},
(3) s{l},s,s ,
(4) sf{l},s,s{l},
(5) s{l},s,s{l'}.

For example, if the time slice being updated is identical
to the preceding and following time slices [situation (1)
above], the available new configurations for the central
time slice are s and s{/} (where / is any active link on s),
with relative probabilities [1—aoH,,(s)]* to (a,/2)* (for
each active link). Here H,, (s) is the mass term part of
the Hamiltonian: the coefficient of p, in (5). A similar
analysis leads to a simple set of rules for each of the situa-
tions (2)—(5) in the list above.

IV. RESULTS OF THE MONTE CARLO
SIMULATION

The chiral expectation {{y) given by (9) has been
evaluated using the heat-bath procedure outlined in the
preceding section. The Hamiltonian (3) can be solved
directly by Fourier and Bogoliubov transformations. For
L odd, for example, the result for the ground-state energy
is

2 2 172
five possible categories allowed by the Hamiltonian (5). If B 1 &k Wa mP) 2
s represents a configuration of spins on a given time slice, o= 2_1 cos L +1 +cos L+1 Ty
let s {/} be the configuration obtained from s by reversing Prpz=
the active link /. The allowed configurations admit the +iu, (15)
following possibilities for the time slice being considered _
and its temporal neighbors: and the ground-state expectation of ¥ is
]
+ 1 Ky 1
—(Py) = — . (16)
VY 2L22 - 7 . 3 2 7753
cos L+l +cos L+l +uy

The spectrum of H is roughly symmetrical, so by taking

ag~1/|E,| we ensure that the limit Ly— oo einhances
the ground state over all others via the (1 —ayH) ° factor

in (9). This is the “low-temperature” limit in which the

[
contribution of excited states is suppressed.

The approach to zero temperature (and hence to pure
ground-state expectation values) in the Monte Carlo re-
sults is shown in Fig. 2. The system simulated was a 5X 5
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TABLE 1. Estimates of (S ) and {(¢) from different runs.

Run (s) ()
1 0.296 0.228
2 0.367 0.244
3 0.212 0.234
4 0.317 0.238
5 0.243 0.233

spatial lattice with dimensionless mass pu,=0.5. () is
shown for the number of time slices L,=20, 40, 80, and
120. In the terminology used here, a sweep consists of a
single update on each time slice. In other words, the
computational requirements for a sweep grow as O (L),
not O(L?L,). The results presented throughout corre-
spond to averages obtained from five runs of 50000
sweeps each (about 100 sec on the Cray-XMP for
L,=80), with 5000 sweeps allowed at the start for
thermalization. The initial configuration is one in which
Sjivi,=T1 for j, +j, odd. The conserved fermion num-
ber in this theory corresponds in the spin formulation to
the number of up spins, and it is easy to see that all states
of nonzero overlap with the exact ground state are gen-
erated eventually by action of the Hamiltonian on this
starting configuration. The statistical errors in the plot-
ted values of (i) are at most 2—3 % and would hardly
be visible on the graph. The systematic (finite-size)
discrepancy between the measured (¢y) and the true
ground-state value (16) decreases to about 4% for
L,=280.

There are strong fluctuations in the sign factor {(S)
defined in (11), and hence in both numerator and denomi-
nator of (14). The ratio, however, which is of physical in-
terest, is much more stable. This is clearly seen in Table
I, where results for (S) and (i) are presented for
p;=0.5 and L,=80. The fluctuations in (¢3) are of
the order of a few percent, while the averaged sign factor
fluctuates almost by a factor of 2. The variation of { )
with mass u, is shown in Fig. 3. Once again, the statisti-
cal fluctuations are at most 3% for the whole range of
masses from u,=0.25 to 1.5 (in units of inverse spatial
lattice spacing). On the same figure, the values obtained
from the analytic formula (16) are also indicated. In all
cases the lattice is 5X 5 80. One sees that throughout

0.4 x x 4
) 4
N 0.3+ x i
>
=3 b
v 0.2r e analytic
x . .
0.1k X simulation i
1 | | 1 1
0.25 0.75 1.25 1.75
H £

FIG. 3. Variation of {¢y) with u,.

the stated mass range the effect of finite temporal extent
of the lattice is reduced to a few percent for a lattice with
80 time slices and a, chosen as indicated at the beginning
of this section.

The important extensions of the procedure described
here are (a) larger lattices, in particular in higher spatial
dimensions, and (b) inclusion of interactions, e.g., with
gauge fields. In the first case, one will need to go beyond
the linear (i.e., 1 —ayH) approximant to the fermionic
transfer matrix. This should not be too difficult given the
rather simple action of H on the spin variables. In the
second, one will want to know the optimal update pro-
cedure (e.g., from the point of view of autocorrelation) in
a system of interacting (bosonized) fermions and bosons.
These matters are presently under investigation and will
be discussed in a forthcoming publication.
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