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Axial anomaly and staggered fermions in the coordinate-space interpretation
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The U(1) axial anomaly is derived in the framework of the coordinate-space interpretation for
staggered fermions. The derivations are performed explicitly on a two-dimensional Euclidean lat-
tice.

I. INTRODUCTION

Symmetries are of vital importance for physical
theories even when they are broken. In particular, a cer-
tain symmetry of a theory can be broken anomalously
when the theory is promoted to the quantum level.
Anomalies so produced have helped us to understand the
physical world and have guided us in the building of new
theories. In this work we are concerned with the anoma-
ly of the global U(1) axial symmetry in the staggered-
fermion regularization scheme.

The global U(1) axial invariance of a Dirac action is
anomalously broken when the theory is quantized and
this is known to be the result of the incompatibility of
chiral and gauge symmetries. ' An example in the class of
lattice fermionic regularizations is the Wilson fermion ac-
tion, where gauge invariance is maintained but chiral
symmetry is broken explicitly by a term different from
the usual mass term. It has been shown that ' one
cannot recover the axial symmetry in the continuum lim-
it; it is precisely the chiral-breaking term in the action
that gives rise to the anomaly.

The study of chiral anomalies on a lattice is important
and has been successful. Not only does it provide a check
on the validity of certain lattice regularization, the ap-

pearance of anomalies is also the foundation of the well-

known Nielsen-Ninomiya no-go theorem, which ex-
cludes the realization of chiral fermions on the lattice un-

der reasonable assumptions.
As an illustration, we consider the so-called naive fer-

mion action on an even-d-dimensional Euclidean lattice

S =(a )'g P(x)[8(x,y)+m&„~]g(y),
x,y

where a is the lattice spacing and 8 is the lattice Dirac
operator

g(x,y)—:g y [U (x)5 „—U„(y)&„,
&

] .1

The gauge link is parametrized as

U„(x) =exp[iga A „(x) ] .

It is clear that both chiral and gauge invariances are
preserved for this action. As a result, a straightforward
definition of chiral current

J„(x)„„„,—= —,'[1b(x)y„ysU„(x)tb(x +aP)+H. c.],
cannot reproduce the anomaly. In fact, we have

(b„J„(x))—:Z&
' f e g —[J„(x)—J„(x—aP)]

1

a

yy U„+ p —U„—p —p +H. .

=trI [y&8,(8+m) '](x,x) ) =tr[ys I 8,(9+m) 'I(x, x)]

=2m (lb(x)yslb(x) ), (3)

where

Here and in what follows we use Hermitian y matrices,

iy, yq, d =4k+2,
y&

. . yz, d =4k,

(4)

together with dimensionful coordinates and fields. Fur-
thermore, repeated indices are summed over unless
specified otherwise.

The absence of the anomaly term in (3) is reached at
the expense of extra species. As the naive fermion action
describes 2 fermionic species instead of one, Karsten and
Smit have shown that these doublers are generated in
such a way as to cancel the would-be anomaly.

To recover the anomaly the cancellation has to be re-
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moved. This can be done by decoupling all but one of the
species as in the case of the Wilson fermions mentioned
above. Alternatively, one can introduced a lattice chiral
transformation such that all species transform in the
same way. That is, the transformation is no longer a
symmetry of the action although it reduces to the usual
form of its counterpart in the continuum limit. The
modification is possible due to the freedom we have on
the lattice to add irrelevant terms. Sharatchandra, Thun,
and Weisz adopted the latter strategy for naive fermions.
They have introduced, by means of a doubler interpreta-
tion, another current different from (2} so that the contri-
butions from various species add up. In either way of re-
moving the cancellation, the important role of the species
interpretation cannot be more emphasized.

The staggered-fermion formulation is yet another
class of multispecies lattice gauge theories. Because of a
certain remnant of chiral symmetry, the formulation is
useful for the study of dynamical behavior relating to the
symmetry. As will be seen in the next section staggered
fermions enjoy a close link with the naive ones. This, in
turn, enables the authors of Ref. 6 to reduce their naive-
fermion chiral current to that of the staggered fermions.
The correct anomaly was then subsequently derived.
However, staggered fermions themselves also admit an
elegant flavor interpretation in coordinate space, which
has been employed extensively in numerical simulations.
It is, therefore, important and interesting to investigate
the U(1} chiral anomaly in the framework of this inter-
pretation.

We devote the next section to a cursory review of stag-
gered fermions and their coordinate-space flavor interpre-
tation. There we introduce a new formalism suitable for
subsequent calculations. In Sec. III we give a form for
the lattice chiral current in the flavor interpretation.
This current is then proved to possess the right anomaly
explicitly in two dimensions with a background Abelian
gauge field. In most other anomaly derivations on the
lattice, the Ward-Takahashi identity is employed. The
identity is the expression of the invariance of the generat-
ing function under some change of the field variables.
One then still has to identify the chiral current to express
the identity as the lattice divergence of the current on one
side and the anomaly-producing term on the other. In
this work, however, after identifying the current we cal-
culate the continuum limit of the lattice divergence
directly. Some general criteria for choosing the appropri-
ate axial-vector current will also be mentioned. The last
section contains some concluding remarks.

II. STAGGERED FKRMIONS

Without loss of generality we will work with massless
theories. There are two approaches to derive the
staggered-fermion action from that of the naive fermions
(1). Sharatchandra, Thun, and Weisz use a projection
operator to restrict the Grassmann measure; namely,
naive-fermion fields are projected onto a one-dimensional
subspace. We, however, follow Kawamoto and Smit and
use their unitary transformation

g(r)= I „l,P(r), P(r) =P(r)I „l. ,

r
I /a rd /aI,/. =r& rd

to diagonalize the y matrices of the naive action. The re-
sulting form then contains a piece bilinear in P (r), which
is replicated for 2" values of the spinor index o.. The
desired action for the one-component Grassmann fields

P(r) and P(r) at each site is thus obtained by discarding
all but one of the copies:

S =a"g a„(r)i'(r) [U„(r)P(r +aP)
pir

—U„(r ap )P—( r —aP )],
(6)

( 1
(r)+ +r„))la

X„(x)= dl, p(x+ai)) .
1

2d /2

(8)

Then by means of a unitary transformation, gauge-
covariant quark fields with spinor (a) and flavor (a) in-
dices are defined as

q '(x)= Q I „'ll (x)X„(x),

q-(x)= „,yX„(x)et(x)r„"-,
(9)

where

Q„(x)—:[U, (x)] ' [Ud(x+a(rl, + +i)d, ))] "

is the product of link variables U„(r) along a definite
path going from x to x +ay. Lattice operators can now
be constructed in terms of these local (hypercube-
confined) quark fields. In fact, in the next section lattice
chiral currents are formed this way. But when (8) and (9)
are substituted into the action (6) the resulting form is
rather complicated due to the appearance of Q„(x). So,
instead, we work directly with the one-link action (6).

We define the vectors X(x) [X(x)] whose i)-component
is X„(x) [X„(x) ], and the matrix I"„ T~ with the
(iI, rI')-component

This action describes 2" species and these can be
identified as different flavors either in momentum space
or in coordinate space. We will work in the (quasi)local
coordinate-space interpretation. A proof of the
equivalence of these two interpretations in the continuum
limit has been given elsewhere. '

First, we partition the lattice into hypercubes

Xpr„=x+ag„, EZ, g„=0 or 1
2a

and introduce the notation

X„(x)=— p(x +a i)),1

2d /2
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(r„N 7;)„„.—= „,tr(r'„r„r„.r, ),l
2d/2

where

T, =r,'=r,' .

The multiplication rule is

(r„~s rc7'D}„„—= y(r 7'ii)„e(rc7'D)g„

Sp(I „ST )= g(I „gT )„„

=(trI q )(trI ii)=(trI q )(trTs ), (13)

with tr as the ordinary trace. These matrices thus behave
in exactly the same way as direct products of ordinary
matrices. To arrive at the results, we have used the
orthogonality identity

2ung P (14)

The definition follows the usual matrix definition of lat-
tice propagator with positional vectors (x,y) being the in-
dices; the only difFerence here is that (ri, i)') are dimen-
sionless; hence, the multiplication rule has to be modified
accordingly. It can then be shown that

We next rewrite the action (6) as

S =(2a)2~+X(x)G '(x,y)X(y),

where we have substituted into (6) the identities

(15)

F„(3T~I ~(3) TD ——I ~I ~T~T~,
and, when taking the generalized trace Sp,

(12) X„(x+2aPri„) =ri„X„(xQ2aP )+ (1—ri„)X„(x)

to get the inverse propagator

[G '(x,y}]„„.= „«z tr(l vy„„) I „( + ri)ri„„+z,ti» — I. + rt 0'9l —i,p, «

+ [U„(x +art)rt„' —U„(x +a i) —ail}')ri„]5„»] . (16)

assuming that A is slowly varying and agA„«1 as usual in the anomaly derivation on the lattice. (These assump-
tions can be derived from the single assumption of a 2gFP «1 with an appropriate gauge choice I am grateful to Sen"
foi pointing this out to me. ) We can, after the expansion

U„(x +art —aP) =1+iga A„(x +art aP)+—
expand A „(x+a ri —aP ) around x up to the necessary orders in a to obtain

6 '(x,y)= I e'»'" «'I[y„li sin2ap„+yst„t&(cos2ap„— 1)]
2a p

+igaA&(x)[y„l(cos2ap„+1)+y~et„t&i sin2ap„]]+higher-order terms in a

f e'»'" "'[So '(pa)+igaA„(x)Q„(pa)]+higher-order terms in a,
20 p

(17)

where the shorthand notation

«z. g~p

p ~na (2~)~

has been used. Note that as x and y are the coordinates
on the coarse lattice with spacing 2a, the resulting Bril-
louin zone is [—m/2a, m/2a] .

We have concealed in "higher-order terms" in (17}
terms of order 0 (g ) and derivative terms, with ap-
propriate powers of a, coming from the Taylor expansion
of A„(x +art —aP) around x. This is equivalent to the

Taylor expansion in momentum space of the interacting
vertex, up to O(g), in al where I is the gauge-field
momentum. Slowly varying field A„means that it only
has low-momentum components; its Fourier transform is
only nonvanishing for

~
al

~
&&1. The vertex Q„(pa) is

then arrived at as the lowest order of the expansion and
all the other terms containing explicit powers of a (from
powers of al) are represented by the "higher-order
terms. " The expansion is permissible for the anomaly
derivation since there is no gauge-field propagator contri-
bution. That is, up to one-loop order as the anomaly is
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one-loop effect, we only have internal fermion loops.
The first term on the right-hand side of Eq. (17) is the

free inverse propagator denoted by Go '(x,y), and the
rest of the terms are denoted by V(x,y) with the
definitions t„=y„'=y„', t5 =y5 ——y5. In the derivation of
this equation, the anticommutators (4) together with the
representation of q„,

2d /2 tr[P„y„ys(ysy )I „.(y y )]

=(y&y.tst. )» .

In the series expansion of the full propagator

G(x,y)= Go g ( —VGo)" (x,y),
n=0

(18)

enable us to cast the various structures into the newly
defined matrix notation. For example,

only the first few terms contribute to the chiral anomaly
as will be seen in the next section. In fact, we only re-
quire two terms; so from (17) and (18) we get

)
So-i(pa) . 2 k( )

So-1(pa+ka)QP(ka)SO-1(ka)
G (x,y) =2a e't'(" 2iga — e'~" +"' ~'A„(p)

p den(pa) p k " den(pa+kgb)den(ka)

+higher-order terms in a, (19)

with

den(pa)=——4+sin ap

and

A„(l)—:(2a) g e '"A„(x), 1 &
2a 20

d

III. U(1) AXIAL ANOMALY IN d=2 DIMENSIONS

We restrict ourselves to the case of d =2 as it already captures the features of the calculation without having to tackle
the complexity of the mathematics in higher dimensions. The calculation can be extended readily to d=4, say„and also
to non-Abelian gauge fields.

Some time ago Sharatchandra, Thun, and Weisz derived the axial anomaly for naive fermions with the chiral current

Jp(»)sTW= y1 (»)y~ys y e(»+ P(+t+g)
I g:g =+1, vvI

(20)

where we have put all the gauge links equal to one. The corresponding current for staggered fermions can be obtained
in the same way as in the derivation of the staggered fermion action (6) from the naive one (1), i.e., via the transforma-
tion (5). In the context of the coordinate-space interpretation (9), we can write this current as

J„(x)sTw———,'q(x) I y„ys I[2q (x +2ap)+2q (x)+q (x +2ap+2av)+q (x +2a p —2a&)+q (x +2a m)+q (x —2aO)]

+o„„t„ts[q(x +2aP+2a&) —q(x +2aP —2a&)+q(x +2a&) —q(x —2av)]I, p&v . (21)

Being interpreted in this way, the current clearly is not of minimal form as it contains extra Dirac-flavor structure com-
pared to that of the chiral current in the continuum. This correction, at the tree level, is 0(a) which vanishes in the
continuum limit. When interactions are switched on, however, the current does not have a simple expression.

On the other hand, the first term on the right-hand side of (21) is of familiar form for lattice chiral current, corre-
sponding to a particular split-point definition, which has just the required Dirac-flavor structure. To illustrate the use
of the coordinate-space interpretation in the derivation of the anomaly, we will work with, say, the gauge-invariant
current, up to renormalization,

J„(x)—=—,'q(x)y„ys I U„(x)U„(x+ap)q (x +2ap)+Hc. (22)

This is the gauge-invariant generalization of the current obtained by Kluberg-Stern, Morel, Napoly, and Petersson in

the free case from the lattice Ward-Takahashi identity associating with a lattice chiral transformation. In the block-
variable formulation of Susskind fermions, namely, the Dirac-Kahler theory, and its generalization, a current of this
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form but with gauge links defined on the block lattice has also been employed. '

We can define a current in several ways on the lattice which all reduce to the same continuum form naively. Howev-
er, they are not all equivalent. To reproduce the anomaly additional criteria have to be met. The current (22) is chosen
on the bases of locality, gauge invariance, and, at least in the free theory, it corresponds to the correct assignment of the
chiral charge to the species. Such an assignment should hold for interacting theories, as will be confirmed in the calcu-
lation below, for interactions do not a8'ect the global axial transformation.

We now evaluate directly the continuum limit of the vacuum expectation value of the lattice divergence

5„J„'(x) = g [J„(x) J„'—(x —2aP ) ] (23)

in a background gauge field. From (22) together with the formalism developed in the preceding section we can rewrite
the vacuum expectation value of (23) as

(b,„J„(x)) = (q(x)y„y51[U„(x) U„(x +up)q(x +2ap) —U„(x —ap) U„(x —2ap)q (x —2ap)]+H. c. )
4a

= —Sp I [E,G](x,x)], (24)

where we have defined

[E(x,y)]„„—= z tr(I „y„y51 „.)[W„„.(x)5 2
—W„„(y)5„z, ], (25)

and, from (9),

W„„(x)='Mt(x)U„(x)U„(x+ap)Q„(x +2ap) . (26)

Taylor expanding the gauge links around x up to the necessary orders in a as in the derivation of the inverse propaga-
tor before, we get

K(x,y)= ' I e'—"'" ~' y„y51 —sin2ak„+igA„(x)(y„y512cos2ak„+tr„„t„t5i sin2ak„)
a

+higher-order terms in a, (27)

where once again the "higher-order terms" also contain various partial derivatives of A„(x) with appropriate factors of
a.

In the commutator of (24) the first term (the second term) on the right-hand side of (27) combines with the second
term (the first term) of the propagator (19) to yield the only nonvanishing contributions as a ~0 as will be shown later.
We thus have, from the cyclic property of taking the trace,

So '(ka +pa)Q„(ka)So '(ka)
t, b„J„(x))=I I e't'"iga A„(p)Sp yzy581 —[sin2a (kz+pz) —sin2akz]

p k a den(pa +ka)den(ka)

So (pa +ka) So (ka)
+— — (y„y512cos2ak„+o „„t„tsi sin2ak, )

a den pa +ka den ka

+irrelevant terms . (2g)

We now expand the above expression in ap, the external gauge-field momentum, and rescale the internal momentum
k~k/2a. As will be seen in Eq. (31) later, there is in fact no infrared singularity in the expression above to prevent
such a Taylor expansion. Then in the continuum limit the integration over p gives the partial derivative of A„(x):

lim (E„J„(x))=(B„J„(x))=gIiqBi A„(x),
a~O

where I&„ is independent of x. After calculating the various traces of y matrices, we get

(29)

sink&
" Bkz den(k/2)

sink& g cosk„—1

2 Bkz den(k/2)
(30)
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2x

To arrive at the last expression, trivially vanishing integrals, i.e., those whose integrands are odd functions, have been
omitted.

Direct integrations by parts in (30) would naively yield a vanishing result. However, such an operation is illegitimate
since the integrands on the right-hand side (RHS) are singular at the origin except the last term which has a removable

singularity there. We thus partition the integration domain as shown in Fig. 1. In the region excluding the origin we

can now integrate by parts and only some of the surface terms survive; Taylor expansions of the integrands in the inner
region, on the other hand, cancel each other:

k = —ee&„, cosk& sink„'
dk,

den(k/2) k„=E

E' 6A= -"4 dk =2
2 ~ P ~2+k2

P

(31)

We thus obtain the correct anomaly for a theory containing two flavors.
To complete the proof we now show that this is the only nonvanishing contribution by a a power-counting argument.

This is expected as the anomaly is a quantum effect induced by the singularities only.
Generically, a term of K (x,y) can be written as

f e "~' q~'a(p, q, l)5 p —q —g l
1

and a typical term of G(x,y) as

e' "~'g m, n,
'

m —n-
m, n, I'

where Ia and I'a are the dimensionless gauge-field momenta in which we can Taylor expand. The first term of the com-
mutator in the generalized trace

Spt[K, G](x,x) j =Sp a g [K( xy)G(y, )x—G(x,y)K(y, x)]

is then
r

e"'~ "~ pp —g I l g p —g 1 n I' 5 p —n —g 1 —g I'
p, l, l', n

-f exp ix +!++1' s pp —pll g p —pip —gl —gl', 1'
p, 1, 1'

(32)

—f exp ix g l+ g I'
p, 1, 1'

XK PP —g l, l

g u+gi's»i'
Similarly, the other term of the commutator is

(33)

gauge fields attached (see Bodwin and Kovacs, ' for ex-
ample) to justify the removal of this regulator.

Lastly, the anomaly result (29) can now be shown to be
independent of the choice of paths of gauge links going
from x +ay to y +ay'. The difference between any two

Thus the commutator of the first term on the RHS of Eq.
(27) and the free propagator Go(x, y) do not contribute to
the divergence equation (24), as can be seen by setting I

and I' to zero in the last two expressions and from the cy-
clic property of taking the trace.

We next show that the trace of the commutator of the
second terms of (19) and (27) vanishes in the limit and so
do the ones involving the "higher-order terms. " From
the Taylor expansions of the functions g, l~ of Eqs. (32)
and (33) in g la and g 1'a, we see that extra factors of a
are gained for higher-derivative terms in the trace of the
commutator. Thus all the other contributions are, at
worst, O(a).

Note that in this power-counting argument we have to
introduce an infrared regulator. However, since the in-
frared behavior is the same on an infinite lattice as in the
continuum, we can appeal to the continuum result of the
vanishing, in two dimensions, of diagrams with more FIG. 1. Partitioning of the integration domain.
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such paths amounts to the difference of a closed path of
product of gauge links from unity, that is of order 0 (a )

(i.e., -a gF„„). Such a term can be absorbed into
"higher-order terms" of K (x,y) which, in turn, has just
been demonstrated to have no effect on the result.

IV. CONCLUDING REMARKS

We have cast the staggered fermion formulation into a
suitable formalism to derive the correct U(1) axial anom-
aly in the framework of the coordinate-space interpreta-
tion. The derivation makes use of a lattice chiral current
which contains just the required spin-flavor structure and
assumes some point-split definition which spreads over

two hypercubes. However, we have also checked that the
current corresponding to the second term on the RHS of
Eq. (21),

J„(x)=q(x)y„y5 Iq (x), (34)

(35)

where

which is confined to one hypercube, can also be used. To
incorporate gauge invariance, we can insert the gauge
links in a specific way as

J„'(x)=—,
' g X„(x)(y„ysI)„„(V„„+V„„)X„(x),

I I

+ q)] ~ d( +u( )l )1+ + 9d —1 qd —I+ qd ))]e

The results obtained in this work provide a "validity
check" on, from the point of view of anomaly reproduc-
tion, and illustrate the role of the flavor interpretation of
staggered fermions in coordinate space. They also agree
with the conclusion of a recent work. '

All calculations have been carried out in two dimen-
sions, but the representation of staggered fermions
developed in Sec. II is readily extendable to higher di-
mensions and non-Abelian gauge groups. We expect, in
particular, that corresponding results would hold for
QCD4. The formalism in Sec. II can also be useful for the
renormalization calculation of staggered-fermion two-
and four-point operators, especially the ones for weak
matrix element evaluation on the lattice. '

Not long ago, Oshima' proved that a reduced version
of staggered fermions, which has only 2' ' flavors,

could reproduce the anomaly. Similar to the work
presented here, one can also address the problem using
the coordinate-space flavor interpretation for that re-
duced version.

Finally, the investigation of the Abelian anomaly on
the lattice is closely related to that of the non-Abelian
anomaly. '
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