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Charged-vortex solution to spontaneously broken gauge theories with Chem-Simons term
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We study the charged-vortex solution to the classical equations of motion for a non-Abelian

Higgs model with a Chem-Simons term. We determine the energy of the vortex and the values of
the magnetic and electric fields by means of a power-series expansion and also using a variational
approach.

I. INTRODUCTION AND RESULTS

It is by now well established that gauge theories in
2+ 1 dimensions present a variety of very interesting
phenomena, ' particularly when a Chem-Simons term is
included, as first proposed by Deser, Jackiw, and Tem-
pleton and Schonfeld.

Since at high temperatures a relativistic quantum field
theory becomes effectively three dimensional these
theories have physical applications at high temperatures.
In this context it has been shown that fermionic, CP-
violating effects induce at high temperature the Chern-
Simons action.

An interesting effect of the addition of a Chem-Simons
term to spontaneously broken gauge theories is the possi-
bility of having topologically stable solutions both with
magnetic and electric charge " (without Chem-Simons
term, it can be shown that Nielsen-Olesen vortices' do
not admit electrically charged generalizations' ' ). In
particular, it has been shown in Refs. 9 and 10 that only
charged vortices are admissible when a Chem-Simons
term is present. Moreover, not only the magnetic flux
but also the electric charge (and the angular momentum)
of the vortex solution are quantized already at the classi-
cal level.

Although various Ansatze have been proposed for these
charged vortices " no detailed analysis of the corre-
sponding solution has yet been presented.

It is the aim of this work to give such a detailed study
of the charged-vortex solution for the case of an SU(2)
spontaneously broken gauge theory with the addition of a
Chem-Simons term.

The plan of the paper is as follows. After a review of
the charged-vortex Ansatz proposed in Refs. 9 and 10
(Sec. II) we study the resulting radial equations of motion
in Sec. III. Although two different vector-meson masses
are in principle possible when a Chem-Simons term is
present, ' we show (details of the proof are given in the
Appendix) that only one charged-vortex solution sur-
vives: namely, the one which corresponds to a larger
mass (which we call m+).

In order to analyze the properties of the solution we
first compare it with the neutral one, since for the latter
an exact solution is known for a particular relation be-
tween coupling constants' (which corresponds to the
Ginsburg-Landau parameter A, = 1) and very accurate nu-

II. REVIEW OF THE CHARGED-VORTEX ANS A TZ

We describe for simplicity the SU(2) vortex Ansatz'9
but the SU(N) generalization can be obtained following
the same steps. '

We start from the (2+ 1)-dimensional Lagrangian

,' trF„„F""+trD—„Q—D"P+trD„QD I'Q

—V(p, g)++e petr(F ~A r,'eA A—~A—r) . (2.1)

Here A „ is the gauge field, taking values in the Lie alge-
bra of SU(2), A„= A „'t ' with t' the SU(2) generators nor-

malized according to

(2.2)

p and p are two Higgs fields in the adjoint representation

merical calculations exist for various values of A, (Ref.
17). In particular, we obtain a perturbative expansion for
the energy of the charged vortex [Eqs. (3.9)—(3.11)] with
the Chem-Simons coeScient as expansion parameter.

We also study the behavior of the solution expressed as
an expansion in powers of the radial variable, showing
that it corresponds to a well-defined vortexline (when
both the scalar- and vector-meson masses are of the same
order). It carries both electric and magnetic fields de-
creasing monotonically with characteristic length 1 im+
and the scalar field increasing with the same length from
zero at the origin to its vacuum value at infinity.

We also present a variational solution using an ap-
proach developed in Ref. 18 which significantly reduces
the number of degrees of freedom and makes the analysis
tractable for arbitrary values of the various physical pa-
rameters of the model. As an application of the solution
we discuss at the end of this section the possible relevance
of the charged-vortex solution when considered as a
cosmic string formed at the grand unification phase tran-
sition.

Finally in the Appendix we discuss the boundary con-
ditions obeyed by the vortex solution and also sketch the
proof on the nonexistence of the lower-vector-meson-
mass solution.
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D„=B„+e[A„,] (2.3}

needed in order to have a complete symmetry breaking
[N Higgs fields in the adjoint representation are needed in
SU(N) (Ref. 10}]. The covariant derivative D„ is defined
as

A(oo )=—1/e,
Ap(~)=0,

f( co ) =i},
(2.10)

Finite energy requires the following boundary conditions:

and

F„„=B„A„—B„A„+e[A„,A„] . (2.4)

where g and g' correspond to the minimum gf V.
One also has

SU(2) vortex solutions are associated with spontaneously
broken gauge symmetries via Higgs fields. In order to
have topologically stable vortices, the relevant homotopy
group n, (G/.H) must be nontrivial (G stands for the
gauge group and H for the invariance group of the vacu-
um. ) For 6=SU(N) and the Higgs fields in the adjoint
representation it is convenient to have maximum symme-
try breaking of G so that the vacuum is only invariant un-
der the unit matrix in the adjoint representation. Then
H=Z~, n, (SU(N. )/Z~)=Z~, and one has N —1 topo-
logically nontrivial homotopy classes besides the ordinary
vacuum. This leads to Z2 vortices for 6=SU(2). Max-
imum symmetry breaking is achieved in the SU(2) case
with the two Higgs fields [N in the SU(1V) case] in the ad-
joint representation and a potential of the form

A (0)=0,

f (0)=0,
Ap(0)=c&0 .

(2.11)

5V D„D"f=—

D FP,v v+ ) vaPF
P 2

D„D"P=— (2.12a)

(2.12b)

(2.12c)

It is important to stress that the charged-vortex solutions
exist only if Ap(0)&0 (cf. Refs. 9—11).

Otherwise it can be proved (see the Appendix) that the
coupled nonlinear radial equations of motion have no
nontrivial solution.

With Ansatz (9) the equations of motion

+ 1g~~2(paya)2 (2 5) become

8mS=fd xX~fd xX +p w(g), (2.6)

where w(g) is the winding number of g:

The last term in (2.1) is the Chem-Simons term. Be-
cause of its presence, the corresponding action is not in-
variant under gauge transformations

dx 1 dx z dy

dH 7 dr
"' dr'

d2y 1 dy 2 5dx
r dr r dr '—gz

dz 1 dz xz 2+— — +y z+ z(1 —z ) =0,r dr

(2.13a)

(2.13b)

(2.13c)

w(g)= fd'x er~ tr(g 'Brgg 'B@g 'B,g) .1

(2.7)

Equation (2.7) can be converted to a surface integral
which is not zero but takes an integer value m, w (g) =m,
which characterizes the homotopy equivalence class to
which g belongs.

Only for homotopically trivial g does w(g) vanish.
Then the requirement that the phase exponent of the ac-
tion be gauge-invariant enforces a quantization condition
of the parameters

where we had defined dimensionless quantities

x (r)=1+eA (r),
y(r) = Ap(r)/ri,

z(r)= f(r)/r1,
with

(2.14)

a=peg,
5=}u/ei} .

(2.15}

(2.16)

We now define an "electromagnetic field" 9' (Refs.
20, 21, and 9):

(2.8)

A simple Ansatz that separates the equations of motion
into radial and angular parts is' '

cosP 0
P=f(r) sint|}, tP=i}' 0

0

P'F""'

The electric and magnetic fields then take the form

F.; =Pp;, H= ,'e; O'J . —.
The magnetic Aux of the vortex is given by

(2.17)

(2.18)

0 0
(2.9) 4= fd xH (2.19)

Ap ——A(r) 0
1

Ap ——A p(r) 0
1

from the Stokes theorem and the boundary condition one
gets
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(2.20)

The magnetic flux is related to the topological number
k associated to the hoinotopy classes of G/H:

k=— (2.21)2' '

The present SU(2) Ansatz corresponds to k=1[m, (G/
H ) =n, (SU(2}/zz ) =Z, ]. Concerning the electric charge
of the vortex configuration note that Eq. (2.12b) for v=0
[or Eq. (2.13b)] can be written in the form

x(r)=c, rK, (pr)[1+O(e ')],
y(r}=czKp(yr}[1+O(e r'}],
z(r)=1+c&Kp(ar)+O(e ') .

(3.1)

It is easy to derive from Eq. (2.13) the following rela-
tions:

but as we show in the Appendix only one of them corre-

sponds to a solution. Indeed, let us propose for large ~
the following forms:

O'E; —pH =a,
where the charge density cr reads

(2.22)
a=A. , p=y,

c, (P —1}=—5c,P,

(3.2)

tr—:e& Jp=e f Ap .2 2 (2.23}

Since lim „E;=0 one gets from Eq. (2.13b} that there
is a relation between the electric charge Q,

Q= fd'xa, (2.24}

cz(P' —1)= —5c,P .
(3.3)

Relations (3.3) are consistent if one of the following con-
ditions hold:

and the magnetic flux:
or

Cl =C2 (3.4a)

(2.25)

This important relation first obtained in Ref. 2 implies a
quantization condition for Q. Indeed from Eqs. (2.8),
(2.20), and (2.25}we get

n——e
2

(2.26)

The charge quantization can be connected with the an-
gular momentum of the vortex

J=fd xe xTpj.

For the vortex Ansatz one has

(2.27)

nJ=
2e 4

(2.28)

Concerning the energy per unit length of the vortex solu-
tion one can easily see that it takes the form

E = T~d2x
2 2 r

1 dx dy dzrdr — + +
0 dr dr 1

x z A,+yz+ + (1—z ) . (2.29)
4

(2.30)

Compare this expression with that corresponding to the
action, which in terms of x,y, z reads

r

S=—E+m.g v. d~ 2 +y z +2—yx
00 dy 22

0 d'T 7

Ci = —C2

which then lead to

5++5'+4
2

if c) ——c2,

—5+&5'+4
2

if Ci = —C2

(3.4b)

(3.5)

In terms of the original parameters of the model an
equivalent equation to (3.5) can be found:

m~ =(-.'j '+e'n')'"+-, '
I ~ I

~ (3.6)

The possibility of having two different vector-meson
masses in spontaneously broken gauge theories when a
Chem-Simons term is present is due to the fact that this
term is parity odd as first observed in Ref. 15. One can
prove, however, that only one vortex solution, namely,
that corresponding to m+ exists, as is shown in the Ap-
pendix. Note that this mass is bigger than that of the
neutral vortex one which corresponds to Eq. (3.6) with

p =0.
Before proceeding to the numerical study of the

charged vortex, let us compare this solution with the neu-
tral one. For the latter, an exact solution is known for
3,=1 (Ref. 16) and very accurate numerical calculations
exist for various values of A, (Ref. 17).

Since for 5=0, Eqs. (2.13) become those of the neutral
vortex we propose the following expansion for the
charged solution:

x(r, 5)= g x„(r)5",
n=0

III. THE CHARGED-UORTKX SOLUTION

In order to find a solution to the vortex equations
(2.13) let us first analyze their asymptotic behavior.
There are in principle two possible behaviors for large ~

y (r, 5)= g y„(r)5",
n=0

z(r, 5)= g z„(r)5",
n=0

(3.7)
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x2k+](~)=z2k+i(r)=0,

y2k(r)
(3.8)

Inserting (3.7} in Eq. (2.29) one gets, for the charged-
vortex energy,

with xo(r) and zo(~) obtained from a neutral-vortex solu-
tion' [y (~,0)=0]. Invariance of the equations of motion
under 5~ —5 and y ~—y implies that

a2 ———0.249S,

bo ——0.0250,

c, =0.6030 .

(3.16)

order to compare our solution with the exact neutral-
vortex one. '

We quote the values obtained for a2, bo, and c& when
5=0.05, a case which can also be compared with the ex-
pansion in the power of 5:

E
=eo(A. )+e25 +2 (3.9) We have computed for these values the energy of the vor-

tex solution:
where eo(A, ) is the neutral-vortex energy. In particular,
for the exact (A, = 1) solution e= 1.0006 (3.17)

eo(1)=1 . (3.10}

Concerning e2 one can show that it does not depend on A,

and it takes the value

1E2=— (3.1 1)

Indeed one can easily see that

y, (r) =—'xo(r),

x,(r)=—xo(r},
8

z2(w)=0 .

Then for the explicit expression for e2 one gets

(3.12)

e, = 2f rdr-
2

dXO j dXO
+ Xp+ZOXOdr 7 d7

(3.13)

which can be integrated to give (3.11).
We then have an expression for the energy of the

charged vortex [given by Eq. (3.9) with eo(A, ) known from
Ref. 16 and e2 given by (3.11)] reliable for small values of
5 =}ule r).

In order to study the behavior of the charged vortex
for arbitrary 5 we can follow Ref. 16 seeking an expan-
sion of the form

x(r)=[1—(1—e ") ],
y(r) =c[1—(1 —e ')'],
z(r)=1 —e

(3.18)

where a, b, c, and d are four variational parameters.
These parameters have to be determined by minimizing

which can be written in the form (3.9) with ez ——0.24.
In Fig. 1 we plot the modulus of the scalar field and the

magnetic and electric fields as a function of ~. One can
see that if the scalar mass m =gg is of the order of the
vector mass m+(A, -P) then we have a well-defined vor-
tex line.

The procedure described above becomes tedious when
one tries to determine the solution for large 5, since in
this case ones does not have the neutral-vortex parame-
ters as a guide for the initial choice of a2 and c &.

We shall then describe an alternative (variational) ap-
proach' which has shown to be in excellent agreement in
the cases when one has direct comparison, with analytic'
or very accurate' numerical results.

Following Hill et al. ' we shall then use a combination
of powers of exponentials so as to engineer functions with
the short- and long-distance behavior given by (2.10) and
(2.11):

x(r)= g az„r ",
n=p

y(r)= g b2
n=p

(3.14) 08

z(r)= g c,„+,v "+',
n=p

0G

where we have used the equations of motion to determine
parity of each expansion.

One also has, from (2.11), 02

ao ——1. (3.15)

A recursion relation giving all a2„,b2„,c2„+, in terms
of a2, bp =C C ] can now be established. One then has to
determine the last three coe%cients using the boundary
conditions at infinity [Eqs. (2.10)].

We have solved this problem numerically for A, = 1 in

FIG. 1. We plot in the figure the radial dependence of the
magnetic field H, the radial electric field Er (multiplied by a fac-
tor of 100), and the norm of the Higgs field. The variable is
defined in Eq. (2.15). The parameters are 5=0.05 and A, = 1.
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the action [note that this does not correspond to minimiz-
ing the energy, compare Eqs. (2.29) and (2.30)]. Inserting
(3.18) in Lagrangian (2.1) one obtains, for the action the
following variational equations,

t)N3 s t)Nz=0 —4a'in —,
' —5o c +— =0,

ab ' a~ 2 as

C-E.o

aS, , aN, aN,=0~25a s +c =0,
ab a~ 58

t)S 2
c28 dN4

z
a&s3 t)Nz

t)d ' 2 t)8 "' 2 t)s

t)S
C

36
=0 —"ca s +5a s N3+cN4=0,

(3.19)

where N2, N3, and N4 are the contributions of different
terms appearing in the action (2.30):

Nz(s}= f d~,
0 7

(3.20a} FIG. 2. We plot the dependence of e(X,5)—eo(A. ) as a func-
tion of 5 for A, = 1.

N3(a') =—f y dr,
c 0 d7
d2

N4(8)=, f y z'ader,

(3.20b)

(3.20c)

and

b b 00' s
d a 8

(3.21)

TABLE I. Energies of the charged vortex [norma1ized ac-
cording to Eq. 13.9)] as a function of 5 and A, obtained from the
variational approach.

0.5 1.0 1.5

0.7
1.3
3.0
8.0

12.6
17.7

0.87
1.02
1.39
1.96
2.26
2.51

1.12
1.30
1.74
2.43
2.81
3.11

1.31
1.50
2.01
2.76
3.16
3.47

Equations (3.19) can be solved by selecting values of two
of the variational parameters, 8 and o, and then deter-
mining the other two variational parameters as well as
the two free parameters of the model, A, and 5.

The energy of the vortex is easily computed in this
manner. We give in Table I this energy for different
values of A, and 5 and we plot e as a function of 5 in Fig.
2. For small values of 5 we find agreement of these re-
sults with those arising for expansion (3.9).

As an application of the solution that we have found
we briefiy discuss the relevance of charged vortices as
cosmic strings.

Topological objects such as domain walls, vortices, and
monopoles have been playing a role of increasing impor-
tance in cosmology.

In the context of the hot big-bang cosmology the grand
unified theory used to describe elementary-particle in-
teractions undergoes a series of spontaneous symmetry

=GM, (3.22)

breakings which can give rise to topologically stable de-
fects.

Concerning vortices (known in this context as cosmic
strings), they can lead to very interesting cosmological
consequences. In particular, they can generate density
fluctuations sufficient to explain the galaxy formation.

Both local and global strings have been investigated in
this context. We shall show in this section that also
charged-vortex solutions can be of relevance in connec-
tion with these problems.

As is well known, the symmetry-breaking pattern is
determined from the effective potential of the scalar fields
at finite temperature, V,z. Since V,z acquires addi-
tional temperature-dependent terms, one can adjust the
parameters so as to have a critical temperature
T,(T, -ri) which corresponds to a second-order phase
transition between a symmetric (T) T, ) and a broken-
symmetry (T & T, ) phase.

In the cosmological context, as the Universe cools
through the critical temperature T„ the Higgs field will
tend to develop an expectation value corresponding to
some point in the manifold G/H of equivalent vacua.
The choice of a point of this manifold is random and may
be different in different regions of space. Much of this
structure will tend towards spatial uniformity unless
prevented from doing so by trapped singularities: if the
angle of ( P) changes by 2m.n as one goes around a loop, a
thin tube with (P) -0 (a vortex line) becomes trapped
within the ordered phase.

The mass per unit length M =E of such string is given
by an expression which, for charged vortices, corre-
sponds to Eq. (2.29). During the subsequent Hubble ex-
pansion the strings will occasionally self-interact and
loops will be cut off and subsequently decay.

It has been found that the ratio of the contribution of
strings to the total mass density is'
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where p, is the energy density due to strings and p the en-

ergy density of matter (6 is the Newton constant).
For closed loops one has, instead of (3.22),

we have the following expansions around the origin:

P loops

p
(3.23) y(r) =5 r +O(r ),

2
(A2)

ps PfooPS
10 3 (3.24)

p p

One then gets a density contrast which, as in the case
of neutral vortices, is of the order of magnitude needed to
trigger galaxy formation. '

One can then envisage the study of evolution of these
charged vortices following the lines described in Ref. 19
for the case of neutral ones since the existence of these
charged-vortex solutions may find interesting applica-
tions in the early Universe.

Note added After. this work was completed, we re-
ceived a paper (Ref. 22) where the results that we present
in the Appendix and expansion (3.9) are also discussed.
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APPENDIX

We shall first prove in this appendix that if Ao(0)=0
then no charged-vortex solution exists, thus showing the
necessity of choosing boundary conditions at the origin,
in the form (2.11). We then sketch the proof on the
nonexistence of the m solution, as advanced in Sec. III.

In terms of fields x (r), y (r), z(r) boundary conditions
(2.10) and (2.11) read

x(0)=1, x( co )=0,
y(0)=c, y(ao)=0, (Al)

z(0)=0, z(oo)=1 .

Let us suppose that e =0. Then assuming analyticity

If one considers the grand unification phase transition,
T, —10' —10' GeV, ri -m+ la, a=e /4m-0. 02. If
we take X=1 and m+ —10' GeV we still have to fix 5 in
order to determine M. For a value of 5-1 (which corre-
sponds to p-10' ) we have, using our numerical results,
M =1.2m', which then gives

dx
(A3)

We see from (A3) that x(r) has to have at least a max-
imum at some point r, , r, e(o, r). Let us suppose that r, is
the first of these maxima. But from (2.13a) we have

dx z dy=xz +5 7 &0
d T=Pi 7=f)

(A4)

and hence r
&

cannot correspond to a maximum. We then
see there is no solution for 5 ~ 0 when a2 & 0. An analo-
gous proof holds for a2 & 0.

We shall now prove the nonexistence of the monotoni-
cally decreasing solution with the behavior (3.1a) with
P=P as given by (3.5b).

The behavior corresponds to c, = —c2 [see Eq. (3.4b)].
This implies that either

or

lim x(r)=0+, limy(r)=0

limx(r)=0, limy(r)=0+ .

(A5)

(A6)

Let us consider possibility (A5). Since y(0}&0 (as can
be easily seen following the same steps as in the precedent
proof} y(r }has at least one negative minimum.

Let us call 7, the last value of v corresponding to such
a minimum (in case there is more than one). From Eq.
(2.13a) x(r) is an increasing function at r, . Now, because
of Eq. (A5} x (r) has then to have a positive maximum in

(r&, oo). However, this is not possible as can be easily
seen from (2.13a). Then the solution is excluded if (A5)
holds. The same can be shown for the case (A6).

z(5)=c, r+O(r ) .

We consider a positive 5 (5 &0 can be treated analogous-
ly). There are two possible behaviors of x(w) according
to the sign of a2.

If a2 & 0 both x (r) and y(r) are increasing functions in
a neighborhood of the origin, y(r) then has at least one
maximum at finite ~.

Let us call r the position of the first maximum; one also
has y(r) & 0. Equation (2.13b) then implies
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