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Functional representation of the superconformal group in two dimensions
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A functional representation for the local supersymmetry transformations of the superconformal

group in two dimensions is explicitly constructed. The representation kernel acts on functionals of
both a commuting field and a Grassmann field.

Superconformal transformations in two dimensions
form a doubly infinite transformation group. ' Its action
on the coordinates (x, t, 8, 8) of Minkowski superspace,
with 8 and 8 Grassmann variables, takes the pairs of
coordinates (x +t, 8}and (x t, 8} in—to pairs of arbitrary
functions of the corresponding variables: (x+t, 8)
~(V+(x+t, 8},B(x+t,8)), (x —t, 8)~(P (x t, 8),—
6(x t, 8))—V+ a.nd B,B are, respectively, commuting
and anticommuting functions. In the following, we re-
strict the discussion to one component of the group,
transforming (x +t, 8) but not (x t, 8)—
[7 (x t, 8)=x —t, B(x t—, 8)=8.]-

The infinitesimal transformation of the coordinates
(x+t, 8),

from which Eqs. (3) arise as Euler-Lagrange equations.
The Hamiltonian density is simply &=—,X +(i /2)gg.
Canonical quantization of this first-order theory leads to
the following equal-time relations:

[X(t,x),X(t,y)] =i 5'(x —y) =k (x,y),

[ P(t, x), g(t, y) ) =5(x —y),
[X(t,x), g(t, y)]=0 .

(5)

At fixed time, the generators of conformal and local su-

persymmetry transformations are formally given by

QI
—

—,
' f dx X(x)f (x)X(x)

5& &(x + t) = f (x + t)+i—8((x + t),
5I (8= —,'8f'(x + t) —g(x+t)—,

+—fdx [P(x)f (x)g'(x) g'(x)f (x)—P(x)),
4

Q &
i f dx X(——x )g(x }P(x) .

(6a)

(6b)

with f and g, respectively, commuting and anticommut-
ing functions of x + t, realizes a Lie algebra with struc-
ture relations given by

(The prime will always represent differentiation with
respect to the space variable. For the sake of conciseness,
we shall often suppress the space-time arguments and use
a matrixlike notation when spatial integrals appear. )

The minimal two-dimensional field theory which is in-
variant under the superconformal transformations (1) in-
volves a scalar X(t,x) and a Majorana-Weyl spinor P(t, x)
satisfying the self-dual equations of motion

X=X', g=P' .

(The overdot means time difFerentiation. ) The theory is
governed by the Lagrangian

L = —,
' f dx dy X(t,x)sgn(x —y)X(t,y) ——,

' f dx X (t, x)

5IX=i [QI,X]= (fX)',

5f0= t [Qf 4] =(f0)' ,'f '0——
5&X=i [Q;-,X]=i (gg)', 5&/=i [Q&,g]= —gX,

(7a)

(7b)

and it is immediate to verify that the Lagrangian (4) is in-
variant under these transformations.

It is well known, however, that the conformal genera-
tors Q& are singular as they involve products of field

operators at the same point. Here, a c-number subtrac-
tion qf will suSce to well define them. Observe that the
supersymmetry generator Q& being linear in X and P need
no such renormalization. Using the Schrodinger picture
the form of the subtraction qf is intrinsically obtained by
requiring that the representation kernel for the finite con-
formal transformations be free from ultraviolet diver-
gences. ' One thus obtains

They yield the following infinitesimal transformations of
the field operators:

+ —fdx f(t,x)[g(t, x) tb'(t,x)]—(4)
q'=lim —tr(F

~

k
~

) —tr F1 k
f 4 ik [
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where the limit operation amounts to the substitution
F(x,y)~f (x)5(x —y), F(x,y)~(i/2)[f (x)+f (y)]
X5'(x —y), and the renormalized generator is defined as

canonical relations (5) are realized by identifying X(x)
and P(x) at fixed time with the following Hermitian
differential operators:

(9)
X(x)%(u,g)—: — P'(x) i — )P(u, (I)),

1, . 5
(1 la)

The two terms in (8) correspond, respectively, to the re-
normalizing subtractions of the bosonic and fermionic
parts of the charge (6a).

Since the subtraction is a c number, the transformation
laws (7a) are not affected when QI is replaced by:QI. .
On the other hand, the commutation rules of the genera-
tors Qf f Qf+Qg which from (5) appear to represent
(2), do get modified under Qf ~:QI. by the occurrence of
central elements. One has

['Qf' 'Qg') 'Q(f g)'+ ( 2 ) fdx(f g g f)

f(x)%(u, (t )
—= — u (x)+ )I)(u, (I)) .l 5

2 5u x
(1 lb)

The kernel that represents simple conformal transforma-
tions has been recently obtained (see Refs. 3 and 4 for its
explicit expression). Here we shall devote our attention
to the kernel U&(u, uo;P, (to'r) that represents the finite

—I VQ~
supersymmetry transformation e ~ in the functional
space. This kernel obeys a Schrodinger-type equation,

[Q(,Q'„]=i:Q('(„).+ f dx(rig" vari")—,

(loa)

(10b)

i d, U~ ——Q)Ur

with

Ue(u uo'P Po'0)=5(P —Po)5(u —uo)

(12a)

(12b)

[Qg Qif':]= Qi(g f)

with

(f,g ) =fg
'

gf ', ((—, 9 ) =2i rig,

(k f)= ,'f7 fk'-—

(10c)

l gS S

X,(x)—=e rX(x)e r=X(x)+ir[g(x)$(x))', (13a)

as a boundary condition.
Information on the solution of this equation can be ob-

tained by considering the action of finite supersymmetry
transformations on the field variables:

Notice that the central charge arising in the commutator
of two supersymmetry generators is nothing else than the
renormalizing subtraction of Q('& „).

Functional representations for the finite elements of
the superconformal group can be obtained using the
Schrodinger picture. The representation kernels act in
the space of all functionals %(P, u) of a commuting field

P(x) and a Grassmann field u(x). In this picture, the

S

f,(x):e tg—(x )e

=P(x) —rg(x)X(x) — g(x)g'(x)g(x) .
2

(13b)

These transformations imply the following two constraint
equations on U&.

I)'( () xi —U& —— Po(x)+i +ir g(x) uo(x)—
5 x o X 5u() x

(14a)

u (x)+ U&
—— uo(x) — rg(x) Po(x)+i-

u x uo X o X

ir', 5
g(x)g'(x) uo(x)—

uo X
U4 . (14b)

It is convenient to write the kernel U& in the form

U'g(u uo'y yo'r)= exp —f ykyo exp —f uuo

&( V~(u+, v;|ti+,P;r), (15)

f dy k (x,y) p (y) ——g(y)
2 5v (y)

5
5$ (x)

(16a)

where we have introduced the notation (t+ ——it)+go,
U+ ——ukuo. Using the anticornmuting character of the
parameter g(x), [g(x),g(y)I =0, it is easy to see that (14a)
and (14b) amount to the following constraints on V&.

u (x)+ ——g(x) Vg ——0 .
5 i~ 5

(16b)



38 FUNCTIONAL REPRESENTATION OF THE SUPERCONFORMAL. . . 545

With the help of these conditions, the Schrodinger equa-
tion (12) is simplified to

one obtains

i B,V~
———f dx g(x) V~,
1 5 6
2 5 (x) 5u x

(17a) U&
——exp — uuo 5 u —uo+ gk 5(p —po) . (23)v'2

V&(u+, v;P+, P;0)=5(P )5(u ), (17b) This can also be recast in the form

and we observe that V& can be taken to depend only on
the variables P and u . The following power series in

Pj

Vg( u, P;r)= 5(P )5(v )

——f dx i(x) 5(P )

Ug =5 u uo+ —(X(1—uuo) 5(P —Po)v'2

using

exp — uuo —— 1 —u x uo x
X

(24)

X 5(u )+5
5v x (18)

clearly satisfies (17). The series can be summed by using
a "functional integral" representation

r

V&(u, g;r)= f 2)p2)8exp i fpP—

x exp f 8v exp —fp&8
2

(19)

with 8(x) an anticommuting function. Performing the
p(x) and 8(x) integrations, one finally obtains

Ug(u uo'P Po'r)= exp —f PkPo exp —f uuo

&(5 u —uo ——( 5($—Qo) .
2 5P

(20)

i~ 55 u —uo ——
g2 5$

We have not succeeded in writing down an expression for
U& which does not involve the derivative 5/5$. The
difficulty resides in the fact that the solution of the con-
straints (16) requires the "inversion" of the anticommut-
ing parameter g(x ), an operation which we could only
define implicitly through Eq. (19).5

The above expression for U& can be transformed into
equivalent formulas that sometimes prove more practical.
From the representation

—:det(1 —uuo) .

Note that the Grassmanian 5 functions in (23) and (24)
are well defined despite the presence of the operator X(x)
in their arguments. Indeed, for x&y, g(x)X(x) anticom-
mutes with g(y)X(y); when x =y, one can safely say that
[g(x)X(x)] =0 irrespectively of the singular products of
two X(x) because g(x) =0, strictly. The coherence of
this rule within our framework is established as follows.
On the one hand, if one accepts that (gX) =0, the expres-
sion (24) for U& is seen to verify the Schrodinger equation
(12) by direct substitution. On the other hand, we know
that (24) is equivalent to (20) which in turn has been
proven to satisfy the Schrodinger equation without
recourse to the relation (gX) =0. No inconsistencies
therefore arise. Finally, notice that the above representa-
tion for U& is unitary with respect to the natural inner
product on functional space.

Let us now say a few words on the convolution of two
supersymmetry kernels. In general, the composition of
two local supersymmetry transformations gives as a re-
sult a superposition of conformal and local supersym-
metry transformations. However, when the parameters
of the two supersymmetry transformations are propor-
tional to each other, composition yields again a pure su-
persymmetry transformation. Explicitly one has

9 Ug Q~ 0 ~ ~ ~ T] U( Q & Qo& & 0& T2

= U'r(u, uo', P, Po,'r(+ r2) (25)

which can be easily checked using, for example, the form
(23) for the kernel. When the parameters of the two su-
persymmetry kernels are different, the projective compo-
sition rule

T

= f2)8exp f 8 u —uo ——g
2 5P

and the fact that

exp —f PkPo exp ——fg'
2 5$

(21)

—i 7Q ~ —i ~Q', —i 7q~ —iQ Q (+.Qh. )

(26)

with g=g+r) —H(i/4)(gr)g'+gQ') and h =irrig, can be
established in a r power series. [Equation (26) has been
explicitly checked up to 0 (r ).]

Finally, let us observe that the kernel U& can be used
to compute how states transform under local supersym-
metry transformations:

exp —fPkPo, (22)
. 6=exp — g' Po i—2 5p

0'(u, P)~t(u, $)
= fQP2)u U&(u, u;P, P;r)O(u, P) . (27)
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In particular, for f(x)=af (x), with a an anticommuting
constant and f an arbitrary function, the Gaussian

perconformal transformations generated by g(x)
=(a,ax).

(u, P)=exp —,' —JQQQ exp —,
' Juju

is transformed into

(u, P) = exp —I u (co —1)g(Q —k)P

X+n„(u,P) . (28)

The supersymmetric vacuum of the theory (4) has for
wave functional the Gaussian with covariances Q=

~

k
~

and to= —k/
~

k
~

. From (28) one can check that this
state is invariant under the OSp(1, 1) subgroup of the su-
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5We could also write

U~ ——limNexp — k 0 exp — uQp
A, ~O

1T
X 5 u —uo+ g(P —Pp)

2A,

X exp — f (P—$0)
2A,

where ¹isa A,-dependent normalization factor such that

1
limN exp — (P—$0)t =5(P—$0) .
A~0 2A,

One can check that this expression for U& satisfies (12a) for
finite A, , although the boundary condition is recovered only in

the limit of small A,.


