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The problem of assigning a frequency spectrum to the Casimir effect is studied. The specific case
of a massless scalar field with periodicity in one spatial direction is investigated in both two- and

four-dimensional spacetime. The spectrum is defined by introducing spectral weight functions

which distort the original spectrum of quantum fluctuations and hence reveal the contribution of
each frequency interval to the finite Casimir energy. The result is a function o(co) whose integral
over all frequencies is the total vacuum energy. In order to have o(co)~0 as co~ 00, it is necessary

to specify a nonzero tolerance hen which is the allowed uncertainty in the measurement of the spec-
trum. In the limit that hco~O, o.(co) approaches a discontinuous function which does not vanish as

I. INTRODUCTION of length L) can be expressed as (see Sec. II)

In recent years the Casimir effect' has been extensively
studied. Finite vacuum energies have been computed for
quantized fields which satisfy various boundary condi-
tions in flat spacetime as well as for those on curved
background spacetimes. A typical calculation for the
vacuum energy in a cavity in flat spacetime might
proceed as follows.

(1) Solve the classical wave equation subject to the ap-
propriate boundary conditions and determine the eigen-
frequencies co„ofthe normal modes.

(2) The formal vacuum energy E= —,
' g„to„ is divergent,

so introduce an artificial prescription for rendering the
sum finite. For example, introduce a cutoff function
which suppresses the contribution of high-frequency
modes.

(3) Subtract from this finite sum the corresponding re-
sult in the absence of boundaries. The latter is an in-
tegral containing the same cutoff function as in (2).

(4) Take the limit as the cutoff is removed. This should
yield a finite, unambiguous result for the vacuum energy.
We interpret this vacuum energy physically as being
dominated by the contributions of modes whose wave-

lengths are of the order of the characteristic dimension of
the cavity (more precisely, its smallest dimension). The
contribution of shorter-wavelength modes is effectively
canceled by the subtraction at step (3}.

However, this interpretation is not made quantitative
by the above procedure. It is necessary to sum over all
modes at step (2} before performing the subtraction. A
more precise interpretation would require a spectral func-
tion whose integral over all frequencies is the finite vacu-
um energy. This finite energy sometimes appears at step
(4) naturally expressed as such an integral. For example,
the energy density of a massless scalar field in S'XR
(two-dimensional fiat spacetiine with spatial periodicity

i J~ todco 7T

6L

II. SCALAR FIELD IN S' XR

Here we consider a massless scalar field in two dimen-
sions which satisfies periodic boundary conditions:

$(x, t ) = ttt(x +L, t ) .

The eigenfrequencies of the normal modes are

(2.1)

co„=
~
k„~, k„=, n =0,+1,+2, . . .

L

The formal, divergent, vacuum energy density is

(2.2)

po ——(2L )
' g co„. (2.3)

Let us introduce a spectral weight function W(co) which
has the effect of weighting some regions of the spectrum
differently from others, and define

pu, =(2L )
' g to„W(to„) . (2.4}

If W(to } vanishes sufficiently rapidly as to~ oo then pu, is
finite.

We can rewrite this sum using the Plana summation
formula, which states that

This form has a suggestive interpretation as an integral
over a thermal spectrum with a temperature equal to
L '. However, one must be cautious about this because
there are obviously an infinite number of integrals on co

which yield the same result. A more careful treatment is
required and will be offered in the subsequent sections of
this paper.
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g f(n)+ —,'f(0)= f f(x)dx
n=1

+ l
~ f(it) —f( —it)

dt .
0 e2mt

(2.5)

Here f(z) is assumed to be analytic for Rez &0. The re-
sult is CI

a
pgr= coW co co

277 0

2n t[W(2mL 'it )+ W( 2m.L-'it)]
df12 e 2n't

(2.6)

n-10

If W—= 1, then the first term above is the usual divergent
vacuum energy density of R, Aat spacetime without
periodicity. The second term becomes the finite vacuum
energy density p of S'XR, Eq. (1.1). For a general
choice of W, let us call the second term o".

2m t[F(it)+F( it )]-
ET =- dt,

L 2 p
(2.7)

where F(x ) = W(2mL 'x ).
So far, one could regard W(co) as an arbitrary cutoff

function whose sole purpose is an ultraviolet regulator
and which should now be eliminated. However, we wish
to regard it as having a physical significance as a weight-
ing function which alters the usual contribution of a
given frequency interval to the total vacuum energy. In
the limit in which W is sharply peaked about one fre-
quency, we can expect to discover that frequency's con-
tribution to the vacuum energy. Note that W(co) has an
effect equivalent to that of a dielectric function. Howev-
er, we require that W be analytic for Re~ &0, whereas
dielectric functions are analytic for Imago&0. The effects
of dielectrics on the Casimir effect for the electromagnet-
ic field were investigated by Lifshitz. '

We now tnake an explicit choice for the function F(x ):

C7

0.7 0.8 0.9 1.0
x/x

1.2 1.3

n.

1s

If we substitute Eq. (2.8) into Eq. (2.7) for (T the result

where

4'
G(n, xo),L2

(2.13)

G(n, xo) = ( —1)" 2n

2n ! x,

FIG. 1. The weight functions F„(x,xo) for various values of

F(x)=F„(x,xo)
2n

(2n )!

„t "+'cos(2nt /xo)
p e 2m't

(2.8)
The integral may be evaluated to write

(2.14)

The functions F„have the properties

f F„(x,xo)dx =f F„(x,xo)dxo= 1 .
0 0

(2.9)

1 n
G(n, xo) =

4 2n ! xo

' 2n+1
coth"n+"

Xp

F„(xo+,'bx, xo) = ,'F„(xo,xo) . —— (2.10)

Furthermore, F„ is sharply peaked about x =xo if n »1.
This is illustrated in Fig. I. Thus lim„„F„(x,xo)
=5(x —xo). The width b,x may be defined for finite n by

2n+1+ XO (2.15)

We may use the expansion coth(y)=1+2+(" (e ~'~ to
write (for n »1)

Note that for n &) 1, we have approximately
' 1/2

F„(x,xo) =xo — e
n

'jj

—2n [x /xo —1n(x/xo ) —1 j

This form may be used to show that for large n
' 1/2

ln2
Ax =2xp

n

(2.11)

(2.12)

' 1/2
n + I

—2n[l/xo)+In(l/xo) —(]
n, xp ——

7T

2n+1+ XO (2.16)

The latter form is especially useful for numerical evalua-
tion when n is large. The results of such evaluations for
various values of n are shown in Fig. 2. %'e see that for
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Go(x, xo) = I4& [(x—")
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(3.1)

a
PO

The Green s function in S XR3 can be expres d
image sum:

Qo

IG(x,x') = g Go(x x—'+nzL, t t— (3.2)

!7 f
V

L is the eriod-w ere zis eh
'

th direction of periodicity an L '
p

ene-icit lengt . e seeh. W that G is a solution of the homog
CI 6=0, and that it satisfies the re-ous wave equation,

quired periodicity G(x —I'+, —' = — —r
~ ~ ~ Lz r r')—=G x —x,r —r

The renorma ize r1' d G een's function can be defined as

G =G GoR (3.3)

i.e., GR is given y q.b E (3.2) with the n =0 term omitted.
The energy ensi ydensit for a massless scalar field is
—,(y + Vry ) so we can obtain the finite vacuuin ener-

gy density as a coincidence limit

Cl
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p= —,
' lim [(B,i3, , +V V')G„]=—

X ~X

m2

90L
(3.4)

Xo

FIG. 2. The spectral function 0.(co) for a scascalar field in S' &(R
is plotted as a function of xp =Lani(2~) fofor n = 100 (solid curve)
and n =250 (dotted curve).

This approach to the calculation of p suggests an alter-
native way oot obtain a spectral density for the asimir en-
ergy. is is o aTh' '

t t ke the coincidence limit in the spa
'

coordinates on y an en1 d th n Fourier transform the result-
ing function of t —t':

H(t-t')= ,' lim[(o, d,—+VV')G„]
X~X

f "odx, =p=— (2.17)

large but ni e n, o.b fi't as a function of xp contains sharp
k t

'
t ger values of xp. In the limit n ~ (x, o. ap-

mof 5-proaches the difference between a discrete spectrum o
k t

'
t ger values and a continuous inear

spectrum. This is the type of spectrum which one rnig t
have naive y pre ic e1 d' ted based on the consideration that

tained sub-the finite vacuum energy is effectively obtained y su-
tracting a continuous spectrum fromf m a discrete spectrum.

f fi 't n o. is a well-behaved continuous
spectrum whose integral over all frequencies is t e o a
vacuum energy [note that xo =Lani(2n ]

—2 n 'L '+ 3(r —t ')'

[n L (r t')—]—
Note that H(0) =p. Define the spectral density by

o (co)= —f H(t)e '"'dt .0"0 co

This function has the property that

p= f o'Odxo
0

and is given explicitly as

N
o (co)= — S(coL),&0

(3.5)

(3.6)

(3.7)

(3.8)

We can interpret o as the result of measuring the spec-

Aco=2m'L 'bx. As long as Aco~0, o.~0 as xp~oo.
What is not well defined is the spectrum that would arise

Eco =0.if infinite precision is demanded, so bee=

III. SCALAR FIELD IN S ' X R

A. Spectrum from the Green's function

In this section we consider a mass. esless scalar field in
four-dimensional flat space-time with periodicity in one
spatial directionn (S')&R ). The total vacuum energy can
be calculated using a mo ed ode sum with cutoff functions, or
b tructing the Green's function in this space. Let usy cons
review the latter aPProach. Let Gp(x xp,

4.point function in R:

where

sinnxS(x)= g
n =1

(3.9)

For 0&x &2m. , x = —, ~—, S( ) = —,'( —x ) otherwise S (x) is defined
d 't S(x+2m. )=S(x), and is hence a

It maximum magnitude grows w'with increasing co, but it
nite.oscillates so that its integral over all co is nit .

B. Spectrum from weight functions

Let usnowsu ystud the spectrum of the vacuum energy
S'XR sing the spectral weight functions intro uce

nerin Sec. II. Here the forrnal, divergent, vacuum ene gy
density is expressible as
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=(4n.L) ' I dk k g co„W(co„) .Pv= (3.11)

The weighted energy density is defined as

cT =pgr——(8 ') ' I dk k f dk, coW(tg),

N=( + zk )' Using the Plana formula, we find

(3.12)

ao
C%ca

dt t
dp p [ W( 277' tp/L )cr 4m L

+ W( 2n—itP/L)] .

(3.13)

8 Here

27rt

L

i /2

(3.14)

I
0 1 2 3 4 5

Xo

8 8 9 N

and we have used

[(+2nit /L )'+k')'"

IG 3. The discontinuous spectral fu1 function eo (correspond-
ing to n = (x) ) for a scalar field in S )&

Let

[k (277t/L ) ]'~2, k )2~t/L,
+i [(2nt/L )~—k. ~]'~~, k & 2rtt/L .

(3.15)

00

(3.10)p=(4nL) ' f. dk k g to„,
0 n= —oo

'2 n /L ) ]' We again introduce awhere co„=[k + i 2mn

spectral weight function W(co} and define

Lcd
W(to ) =F„,xo (3.16)

where t eh the F are defined in Eq. (2.8), and perform the t
integration in Eq. (3.13) to find

4 id P'" n4~L PP 8(2n)l x

2n +1 3
Xo

coth' " ' p +(Zn+1)(2n+2)(2n+3)
xp

(3.17)

~ ~

uce a cutoff at the lower limit of integrationve diver es as p~, eirve d' p 0 th
'

sum is finite if we introduce a cuto a eAlthough each term above d g p
and then remove it after performing the p integration. e

( —1}J—. coto =n2L(2tt+ 1}(n+1}(xo/
1=0

I'

nj 1n(2nl /xo )—2nl /xon (n+1)(2n+1) 2 2 gn'I. '
2n +3

n
(3.18}

This spectral function has the property that for any n,
its integral on xo is eth total vacuum energy density

p= f 0'dxp
0

(3.19)

result of numerical evaluation of o. for variousThe resu o
in Fi . 4. We see that for large n,

and x not too large, o is closely approximate yan x0 no
ein the n~~ limit ofectral function oo, the latter being fspec ra

~0 as x ~00, as was theo.. However, for 6nite n, o~0 as x0~
case in Sec. II.

IV. DISCUSSION AND CQNCI. USION

ave seen that it is possi-In the receding sections we aven e p
asimir effect, but that itble to assign a spectrum to the Casim'

is quite i erend ff t from the simple, monotonic spectrum
rance of asuggested by q.E . (1.1). However, the appearance

1-like s ectrurn in expressions for the energyener den-
1. Thi b bsity is n't '

not entirely coincidenta .
arin the Green's function for a nonsimp y1 connect-

as g'&&g [Eq. (3.2)] with the thermal
in Minkowski space. e a er

periodic in imaginary time with period p=, an
hence



532 L. H. FORD

C7

C7

C7
e

LA
:, l

,

'

fl
t&

is that discussions of symmetry breaking for field theories
in S' XR are completely analogous to those of symme-

try breaking at finite temperature. ' A simple example
is the Goldstone model" of global-symmetry breaking
based upon the classical potential

(4.3)

which at zero temperature in Minkowski space has a
stable minimum at $=(3m /A, )'~ . The lowest-order
quantum correction to this potential yields

(4.4)

O
LA
I

0.0 5.0 10.0 15.0

FIG. 4. The spectral function 0. for a scalar field in S'XR'
for n =300 (dashed curve) and n =600 (dotted curve). The solid
curve shows pro, the n ~ ~ limit of cr.

Gz. —— g Go(t+iPn, x), (4.1)

where Go is the vacuum two-point function, Eq. (3.1).
We see that the Euclidean thermal Green's function,
GET(~, x)=Gr( i7,x)—is related to the Euclidean
Green's function GE(r, x)=G( —w, x) in S'XR by

GET(r, x,y, z)=GE(z, x,y, r) . (4.2)

This relation leads to the fact that the vacuum energy
density in S'XR, Eq. (3.4), is equal in magnitude (but
opposite in sign) to the energy density of a thermal bath
with P=L. Another consequence of this correspondence

In a thermal state, (P ) = T /12, so the symmetry is re-
stored if T& T, =(12m /A, )'~ . Similarly, in S'XR,
( P ) = 1/(12L 2), so the symmetry is restored if
L &L, =(12m /k) ' . This correspondence also holds
in higher orders of perturbation theory.

The main point of the previous two paragraphs has
been to illustrate that there are limited circumstances in
which quantum fluctuations in a system of finite spatial
extent are similar to thermal fluctuations. Vacuum
effects in S')&R and thermal effects in R are equivalent
only when one is dealing with a quantity (e.g., the magni-
tude of the energy density or (P )) which is not sensitive
to the interchange of arguments displayed in Eq. (4.2).
More generally, quantum fluctuations are quite different
from thermal fluctuations. As we have seen, the spectral
functions cr defined in Secs. II and III are quite different
from the Planck spectrum. Not only is o an oscillatory
function, but in order to have 0 vanish at high frequen-
cies, one must accept a dependence upon hco, the toler-
ance with which frequency measurements are made.
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