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The global Minkowski Bessel (MB) modes, whose explicit form allows the identification and

description of the condensed vacuum state resulting from the operation of a pair of accelerated re-
frigerators, are introduced. They span the representation space of a unitary representation of the
Poincare group on two-dimensional Lorentz space-time. Their three essential properties are (1)
they are unitarily related to the familiar Minkowski plane waves, (2) they form a unitary representa-
tion of the translation group on two-dimensional Minkowski space-time, and (3) they are eigenfunc-
tions of Lorentz boosts around a given reference event. In addition the global Minkowski Mellin
modes are introduced. They are the singular limit of the MB modes. This limit corresponds to the
zero-transverse-momentum solutions to the zero-rest-mass wave equation. Also introduced are the
four Rindler coordinate representatives of each global mode. Their normalization and density of
states are exhibited in a (semi-infinite) accelerated frame with a finite bottom. In addition we exhibit
the asymptotic limit as this bottom approaches the event horizon and thereby show how a mode
sum approaches a mode integral as the frame becomes bottomless. This is the infinite Regge-
Wheeler volume limit.

I. MOTIVATION AND SUMMARY

There are reasons to believe that the quantum mechan-
ics of a relativistic system with infinitely many degrees of
freedom, e.g., the Klein-Gordon wave field, manifests it-
self in a qualitatively different way relative to linearly
uniformly accelerated frames than to inertial frames.
Consider different inertial frames. They are all
equivalent. This is expressed by the fact that the ground
state of a relativistic wave field is the same relative to
these inertial frames. Thus, all inertial refrigerators pro-
duce the same quantum state, the familiar Minkowski
vacuum. By contrast a pair of refrigerators accelerating
linearly into opposite directions produce a different quan-
tum state. It can perhaps best be described as a "con-
densed" vacuum state. ' The peculiar feature of such a
state is that even though it manifests itself in each coac-
celerating frame as a no-particle state, i.e., as a vacu-
um, in an inertial frame it manifests itself as liquid light
in the form of a superfluid. '

What is the most direct way of identifying such a quan-
tum state? One certainly could use the quantized Min-
kowski plane-wave modes. But this use lacks directness.
A superior way, it turns out, is to quantize the global
Minkowski Bessel (MB) modes. Their existence has in
part already been known for some time, ' but their sim-
ple global construction and properties as we11 as their
usefulness as a working tool do not yet seem familiar to
theoretical physics. The purpose of this paper is to
remedy this gap.

Minkowski Bessel modes are the global extensions of
Sommerfeld's cylinder waves to Minkowski space-time.
These modes allow one to relate at a glance (a) the wave
field dynamics (e.g., emission and absorption) and its
quantum properties (e.g. , of the ground state) in an ac-
celerated coordinate reference frame to (b) those in an

inertial frame.
Linearly uniformly accelerated observers produce

world lines in Minkowski space-time which in Euclidean
space would correspond to circles. This correspondence
extends not only to coordinate systems (i.e., Rindler coor-
dinates, a type of Fermi-Walker transport induced
coordinate system, corresponding to polar coordinates)
but also to the wave equation and its solutions. Thus,
corresponding to the Klein-Gordon (KG) wave equation,
one has the Helmholtz equation. An inquiry into the KG
wave field (solutions) relative to an accelerated frame
demands, therefore, that one exhibit that which in Eu-
clidean space corresponds to Sommerfeld's construction
of cylinder waves from plane waves. The Minkowski
Bessel modes are the Minkowski space-time analogue
corresponding to Sommerfeld's cylinder harmonics. This
correspondence prevails in regard to all major properties
of these modes except one: space-time has a causal struc-
ture characterized by observer-induced future and past
even horizons which partition space-time into four coor-
dinate charts. See Fig. 1. Euclidean space has no such
structure. The presence of these event horizons has a
dramatic effect on the Minkowski Bessel modes. Because
these horizons divide space-time into the four Rindler
coordinate charts, a Minkowski Bessel mode has four
coordinate representatives, the four Rindler modes for
each of the four Rindler sectors I, II, F, and P. Two of
these, for sectors I and II, are well known, but the other
two, for sectors F and P, do not seem to enjoy that status.
The Minkowski Bessel modes together with each of their
four coordinate representatives are pictured in Figs. 2(a)
and 2(b).

II. GLOBAL PROPERTIES

A Minkowski Bessel mode is a linear superposition of
those plane-wave modes:
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FIG. 1. The four coordinate neighborhoods (= "Rindler"
sectors) induced by the world line of an accelerated observer.
The asymptotes U=t —x =0 and V:—t+x =0 divide Min-
kowski space-times into two causally disjoint accelerated frames
I and II. A relativistic wave field is thereby partitioned into a
pair of mutually exclusive and jointly exhaustive subsystems.
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The new coordinates

U=t —x, V=t+x,
are the retarded and advanced times ("null coordinates"),
respectively.

A Minkowski Bessel mode in two dimensions is given
by
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FIG. 2. Global Minkowski Bessel (MB) modes B„—+(kU, kV)
and their coordinate representatives. A global MB mode is re-
lated to its representatives in the respective Rindler charts I, II,
F, and P by Eqs. {4.2) and (4.3).

Property 1

The global Minkowski Bessel modes B+(kU, kV) are-
by means of the unitary transformation (1/2n. )'~ e
related to the plane-wave modes P& (kU, k V). The upper
(lower) sign refers to positive (negative) Minkowski fre-
quency modes. The two-dimensional Klein-Gordon inner
product

f Pz (kU, kV)e ' d8 .v'2 (2.3)

(2.4)
This is the defining property. Thus, we have the follow-
ing. can be used to verify the sign of the Minkowski frequency
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(Pe, P g ) =+25(8—8' } . (2.5)

One readily sees the well-known fact that a unitary trans-
formation such as ( I /2')' e ' preserves the KG inner
product. This can be verified by inserting Eq. (2.3) into
Eq. (2.4); one obtains

(B,B—
) =+25(co—m') . (2.6)

From the point of view of quantum theory the upper
plus (lower minus) sign of the related modes Pe and 8*
refer to a field whose quanta are absorbed (emitted). The
absorption-emission distinction is the same for Pz and
8 . Consequently the quantization of the Klein-Gordon
field in terms of the set of global Minkowski plane-wave
modes P& is equivalent to that in terms of the global
Minkowski Bessel modes 8*.

of a mode. The inner product of two plane-wave modes

Pz and P& is
tary representations. A typical group element can be
realized by the 3 &(3 matrix

cosh~ sinh~ t

g(r, t, x ) = sinhr coshr x
0 0 1

=g (O, t, x)g( r, 0, 0) .

The two unitary representation kernels are

T,+, .(r,—t, x) =B„—,„(kU,k V)e

where U = t —x and V = t +x. The group element

g (r, t,x) is the product of a pure boost

cosh~ sinhr 0

g(r, 0,0)= sinhr coshr 0
0 0 1

and a pure translation

8 +— (k(U+ Uo), k( V+ Vo))

= J 8,+—„(kV,kU)B +—. (kUo, kVO)da)' .
M —C0

This can be readily verified by using Eq. (2.3). Thus,

8+—, „(k Uo, k Vo )

(2.7)

is the unitary kernel for the space-time translation
(Uo, Vo). By contrast the kernel for the plane-wave rep-
resentation is diagonal and is given by

Pe (kU, kV)5(8 —8) .

It satisfies an addition law analogous to Eq. (2.7).
The plane-wave modes evidently constitute irreducible

representations, but the set of Bessel modes constitutes a
reducible representation of the translation group.

III. TWO IRREDUCIBLE UNITARY
REPRESENTATIONS

Property 2

The Minkowski Bessel modes form a (reducible) uni-

tary representation of. the translation group acting on the
two-dimensional Lorentz space-time:

1 0
g(0tx)= 0 1 x

0 0 0

by the amount t =(U+ V)/2, x =(U —V)/2. The uni-

tary representation kernels corresponding to the pure
boost g (r, 0,0) are

T,—„.(r, 0,0) =5(co—a)')e

The kernels for the pure translation g (0, t, x ) are

T;„,„-(O,t,x)=8,—.. .„(kU,kV) .

An arbitrary element of the Poincare group in two di-
mensions (2D) can always be decomposed into a product
of a boost, a translation, and a boost; in other words,

cosh(r —cr) sinh(r —o ) t coshr+x sinhr

sinh(r —o } cosh(r —o ) t sinhr+t coshr

0 0 1

=g(r, 0,0)g(O, t, x)g( —o,0, 0) .

If the group is the Poincare group in two space-time
dimensions then the MB modes yield two irreducible uni-

The unitary representation kernels corresponding to this
generic group element are

I cod'I dm"T„+„.(r, 0,0)T,+„-(O,t—,x)T+„(—o—,0,0)=e ""'8+(kU, kV)e'"—

If the two Lorentz boosts are equal and opposite, i.e., ~=or, then

1 0 t cosh~+x sinh~

g(r, 0,0)g(O, t,x)g( —r, 0,0)= 0 1 t sinhr+x coshr
0 0 1

and the corresponding unitary kernels are

8+ (kU, kV)e "" "'—=8+ (kUe ', kVe') —.

This agrees with our physical expectations which demand that these kernels refer to a translation relative to a frame
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Lorentz rotated ( =boosted) by the amount r
There are two distinct representation spaces. They are spanned by 8+ (kU, kV) and 8 (kU, k V) with —oo & p) & oo.

The two unitary representations T and T of the Poincare group act, respectively, on these two representation

spaces. The + sign refers to the space of positive Minkowski frequency modes, and the —sign to the space of
negative-frequency modes. One or the other set of modes plays the same role on the Lorentz plane in relation to the
Poincare group that the familiar spherical harmonics play on the unit two-sphere in relation to the rotation group.

IV. LOCAL PROPERTIES

A linearly uniformly accelerated observer, whose world line is

t =(sin hr, U= —ge ', x =gcoshr, V=ge', y =yp z =zp,

induces a division of two-dimensional Minkowski space-time into four coordinate charts: I, II, F, and P. See Fig. 1.
Each chart is endowed with the local Rindler coordinates g & 0 and —oo & r & co.

t =gsinhr, x =gcoshrI:, , (right-hand Rindler sector), (4.1a)

t = —g sinhr, x = icos—hr
II:

U =pe ', V= —ge' (left-hand Rindler sector), (4.1b)

t =gsinhr, x =gcoshr
F: . , „, (future), (4.1c)

t = —g sinhr, x = —gcoshr
P:

U = —ge ', V= —ge' (past) . (4.1d)

A pair of accelerated observers confine themselves to
sectors I and II, respectively. Relative to either coordi-
nates the metric has the form

ds = —dUdV+dy +dz = /dr +dg —+dy +dz

For sectors F and P the metric has the form

ds = —dUdV+dy +dz =g dr dg +dy +d—z

A global Minkowski Bessel mode, Eq. (2.3), can easily
be evaluated in the accelerated coordinate frame sector I.
One obtains the coordinate representative for sector I:

8*(kU, kV)
~ p ——(1/2') f e '"~"'"' 'e '" d8

8 T ere/2H 1,'2
( k g)e ieer —

(4 3b)
2 l OP

These coordinate representatives are Sommerfeld's
cylinder waves generalized from Euclidean space en-
dowed with polar coordinates to Minkowski space-time
endowed with Rindler coordinates (see Fig. 2}. These
waves are expressed in terms of

K; (kg)=K;„(kg),

(kU kV)
~

(1/2 )f e+ikrsinh(8 — )e —ireedg

e+nve/2K (kg)e (4.2a)

the Bessel function of imaginary argument ikg ("Mac-
Donald functions"} and imaginary order ip). In F and P
the waves are expressed in terms of

oreg/2H), 2 e
—mu/2~1, 2 (kg )I A7 —lM

Similarly for the left-hand sector II, the future qua-
drant F, and the past quadrant P, one has the respective
coordinate representatives

8+(kU kV)
~

—(1/277) f e +'k4s)n"(8 —r)e —'~8dg

multiples of the two kinds of Hankel functions. All four
coordinate representatives are multiples of e ' '. Conse-
quently, each one is an eigenfunction of the Lorentz
boost around the reference event t=x =0. But they all
have the same eigenvalue. Thus, one has the following.

+ nro/2K ( k g }
e' (4.2b) Property 3

8+(kU kV)
~

(1/2 )f +eikgcosh( 8r) —icoedg

=+ e +" 0 '(kg)e '—' — (43a)

%e have

8;—„=—i co8;—
C)'T

(4.4)

and
in all four coordinate neighborhoods, i.e., a globally
defined Minkowski Bessel (MB) mode is an eigenfunction
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of the Lorentz-boost operation.
One can see that a Lorentz boost in an inertial frame is

simply a time (r) translation in the accelerated frame.

U. ORTHONORMALIZATION

I
CO —N . , KyCO —CO g;[,„+„)o4o+co j= s1nh e

2

x f ™K,.(kg}K;„(kg) (5.4)

The utility of the Klein-Gordon ("Wronskian") ortho-
normality, Eq. (2.6),

+2S(~ ~—') =i f (a,+-. )*a„a,+-„,d'ri' (S.l)
bypersurface

of the MB modes extends beyond their identification as
positive and negative Minkowski frequency modes. One
can also use it to obtain a very useful normalization in-

tegral in the accelerated frame. We shall do this for a
frame without any bottom (0&(& ~ ) as well as for a
frame with a bottom (b & g & oo, b ~ 0). These results we
shall use to obtain the asymptotic behavior of mode sums
in an accelerated frame with a bottom. We take the limit
as the bottom approaches the event horizon ((=0) and
the frame becomes thereby bottomless.

A. Bottomless frame (0 & f & ~ )

(3) Add Eqs. (5.3) and (5.4) to obtain the useful normal-
ization integral

K;,„k K;„.k

772
[5(a)—o~')+5(co+co')] .2' sinh +co

(5.5)

B. Frame with a finite bottom (b & g & ~ )

We consider the mode K;„(kg) which satisfies the
differential equation (k =k +k, +m )

The fact that both 5 functions occur on the right side is
a reflection of the fact that the MacDonald function
K; (kg) is an even function of co.

The result is obtained in three steps.
(1) Evaluate the hypersurface integral, Eq. (5.1) on the

(one-dimensional) spacelike hyperface r=const in both
Rindler sectors I and II. Thus, the only nonzero com-
ponent of the hypersurface element

O'X"=g""e, dx =g""v' —g [v, a]dx

1s

+co —k g K;,„(kg)=0 (5.6)

a i K;,„(kb)+a2 K;,„(kb)=0 .
d

on the domain b &g& 00, b ~0. It satisfies some fixed
and given homogeneous boundary condition at g= b:

The Wronskian integral, Eq. (5.1) can therefore be
written as

25(co —oi') =i f (8,+ )" B,+
o, B d~

Consequently the allowed modes have discrete frequen-
cies co. Let these frequencies be

0(co] (N2( ' ' ' (Ng (
The Sturm-Liouville nature of this eigenvalue problem
guarantees that these modes satisfy

+i 8,.+ * B,.+. (5.2) f K; (x)K, (x) =c„(kb)5 „. (5.7)

(
r

}
Cl) + rd

h
ir( Co + rd )

~2 2
e l(QP —A))T

It is unnecessary to use 8; because it will give the same
result.

(2) Use Property 3 and insert the coordinate represen-
tatives, Eqs. (4.2a) and (4.2b) into Eq. (5.2). The result is

Our objective is to obtain the normalization constant
c„(kb) as kb~0. Thus one can make a transition from
an accelerated frame with a finite bottom (b & 0) to a bot-
tomless one (b =0). In quantum field theory or in
condensed-matter physics such a transition is called "go-
ing to the thermodynamic limit. " Comparing Eq. (5.7)
with (5.5) one writes this transition as

x f K, (kg)K, .(kg) (5.3)
VT2

c„(kb)5 „~ . 5(co —o~') (as b~0) .2' sinhm co
(5.g)

Our interest lies in the integral, which is not deter-
mined by this equation when co+co =0. This, however, is
not a problem because K, (kg) is an even function of co,

&.e.,

K, (kg)=K; (k() .

Consequently,

This is a useful equation because one can now work with
finite quantities [namely, the right-hand side (RHS)]
which in the thermodynamic limit become infinite (name-

ly, the LHS when ~=co').
One can evaluate Eq. (5.7) exactly in terms of K; and

its derivative with respect to co (Ref. 10). But we shall use
the WKB approximation because it is more transparent.
In this approximation (kg:—x).
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K; (x)= 7r

2 slnh7Tco

' 1/2

(
z x 2)1l4

)C cos co —x +const2 dX

X —,
' [1+cos( ) ]

whenever kg «co.
Consequently

dx ~ rt 1

kb
"" x kb 2sinhmco +~2

(5.9)

(5.10)

a2 82

, +k,'+k,' /=0
Bg Bz

on the domain L /2 —&y, z & L /2. The corresponding
equations are well known and are given by

'2

lim 5 „5 „=5(k»—k»)5(k, —k,'),L~ oo 2K
(5.12')

'2

bottom (b &0).
Equations (5.12), (5.13), and (5.14) have their analogue

in Carteseian coordinates where the modes satisfy the
differential equation

Upon integration the term cos( ) averages to zero. One
obtains, therefore,

d(modes) L

de dkz 2' (5.13')

f K;,„(x)
77 CO+ +Co —k b

ln2' sinhmco kb

kb (co& 00 . (5.1 1)

n = —con
V 2

( )~f f dn»dn( )

Using this normalization integral to compare Eq. (5.7}
with (5.5) one obtains the desired relation for Eq. (5.8):
namely,

k~b2
lim —ln 5 „=5(co —t0„) .
b~0 V

(5.12

C. Mode sums in an accelerated frame

Our fina objective is to establish the corresponding re-
lation between a mode sum and a mode integral. The al-
lowed normal mode frequencies co are determined by the
"Bohr quantization" condition applied to Eq. (5.9). One
has

dn (co) 1
1

co+'(/co kb-=—ln kb &co& 00 .
dao m kb

(5.13)

It follows from Eq. (5.13) that the transition from a mode
sum to a mode integral is established for small kb by

oo kb small dng():fdn()=f dco ()
kb dN

1 co+ (/cil —k b
den —ln ( ).

kb 7T kb

(5.14)

Combining Eqs. (5.12) and (5.13) one obtains the expected
result

oo kb small

g& „() =f d~&(~0 —~ )().
n=1 kb

(5.15)

Equations (5.14) and (5.15) show how mode sums for a
bottomless (b =0}accelerated frame are the asymptotic
limit of corresponding sums for accelerated frame with a

Ccl „ /
& co —x +const =n m .

kb X

The density of states is obtained by differentation with
respect to co and then doing the integration

To achieve our Anal objective of relating a mode sum in
a bottomless frame to a mode integral in a frame with a
bottom one first multiplies Eqs. (5.13) and (5.13'}:

r T

d(all modes) L co+'(/t0 kb-
(dk )(dk, )(des) 2m.

1n
kb

(5.16)

This is the "density of all states" in a frame whose bot-
tom is at g=b. Second, one uses this density to evaluate
the mode sum

g( )=—g( )
n = —oon = —oon=l

V z

asymptotically for "small" b. Small b means

arel g s +relg

respectively. For the purpose of exhibiting the asymptot-
ic (b «g ') expression of the total mode sum g( ), we
sha11 temporarily reintroduce this acceleration explicitly.
Thus we have

where the density of all modes is given by Eq. (5.16). In-

where g
' is the Fermi-Walker ("head start") distance

of the fiducial observer whose world line is
x t =( =g —. As one readily sees from the metric

ds = gg dr„~+—dg +dy +dz

relative to the accelerated frame, this distance is at
g=g '. There the coordinate time coincides with proper
time (bs =Sr„,) and the proper acceleration is measured
to be g. Throughout this paper we have hidden this ac-
celeration by absorbing it with the relativistic "boost"
time and "boost" frequency into the dimensionless
geometrical quantities and
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troducing 0 by means of

Qk

one obtains, for bg «1,

g( )~ 1 0++0 b—g k—ln
bg 2~ bg

One concludes therefore that in the thermodynamic limit
corresponding to infinite Regge W-heeler volume, the
mode sum in an accelerated frame becomes

V&~ large
oo oo oo

g( ) = (gV,„)f" f" f"
(5.22)

xdk dk, dQ( ) . (5.17) VI. THE DEGENERATE CASE

The logarithmic factor is independent of k and k, .
Furthermore the convergence of the I dQ integral

implies that for bg « 1 this logarithmic factor becomes

n+ &n' b'g' —'«('
ln ln

bg bg

Consequently the total mode sum is

The Minkowski Bessel modes, as well as the Min-
kowski plane-wave modes satisfy any one of the three
equations

8 cl —k' /=0,
Bt Bx

(6.1)

(5.18)

provided ( ) is well behaved near m=0.
This is the asymptotic expression for the mode integral

in an uniformly and linearly accelerated frame. By con-
trast the corresponding familiar expression in an inertial
frame is

Here V =L . One sees that what corresponds to going to
the infinite volume limit in an inertial frame ( V~ oo ),
corresponds to

VRw =Lg ' in(1/—bg)~ ~ (5.19)

0'(k)=g 'ln(g (5.20)

The Regge-Wheeler coordinate straightens out the null
cone along the acceleration direction in an accelerated
frame, be it near a black hole or in flat space-time:

ds =g g ( —dr, „+dg" )+dy +dz

This coordinate is not proper distance. It pushes the
event horizon /=0 to g*= —~. In terms of this coordi-
nate /=0 lies at negative spatial infinity of the accelerat-
ed frame, and the Regge-8%eeler sE'ze of the proper inter-
val [b,g '] is from Eq. (5.20):

g*(g ') —g*(b)=g ' ln(1/bg) .

Thus the Regge-Wheeler volume of a semifinite accelerat-
ed box with bottom at (=b )0 is the product of this
length with the transverse area L:

VRw Lg ' ln(1/bg) . —— (5.21)

in an accelerated frame. Here VRw is the Regge-
Wheeler volume. Its longitudinal length is based on the
flat space-time analogue of the Regge-Wheeler ("tor-
toise") coordinate" g':

(upper sign for I U II, lower sign for F U P) depending
on which coordinates one uses. These equations are the
result of solving the Klein-Gordon equation so that

m c
k =k +k, + f2

where the individual terms have the usual meaning.
In this paper we have exhibited the set of Minkowski

Bessel modes for the nondegenerate case k )0. The de-
generate case is k ~0. This is a set of measure zero and
it is in a class by itself. It corresponds to plane waves of a
massless field traveling strictly along the x direction.
There are several ways of obtaining the solution corre-
sponding to this singular limit. One of the most direct
ways is to simply consider

M"+—(vU ) =8,+—, (2&U, O)

1 f exp(+ittUe )e '" d6) . (6.2a)
277

We shall call these modes the "retarded" (superscript r)
Minkowski Mellin (MM) modes because they are (with
s =e~) a Mellin synthesis of the plane waves
exp[+ i(t —x)ae ]. The "advanced" (superscript a) Min-
kowski Mellin modes are

M;„+—(a.V) =8,—,(0,2~ V)

1 f exp(+i@ Ve )e ""d8 (6.2b)
2 7T

and they are composed of positive (upper sign) or nega-
tive (lower sign) Minkowski frequency plane waves trav-
eling towards negative x. These Minkowski Mellin
modes satisfy Eqs. (6.1) with k =0. The constant k )0
appearing in Eqs. (6.2) is arbitrary and has been intro-
duced for dimensional reasons. These MM have first
been exhibited by Hughes. ' Note that the advanced
modes considered as functions of their argument are re-
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lated to the retarded ones by VII. CONCLUSION

(3) they are eigenfunctions of the Lorentz boosts (see
below):

MJ+—= —i'~„—+, j=a, r .

Furthermore, their KG normalization, Eq. (2.4), is also
the same:

(MJ*,M~„* ) =+25(co—ca'), j=a,r,
In addition,

(M'* M'*)=0

(6.4a}

(6.4b)

as one might have expected.
The Rindler coordinate representatives of the MM

mode are readily obtained by inserting the expressions
from Eqs. (4. 1) into the definitions, Eqs. (6.2}. The result-
ing four coordinate representatives of %he retarded MM
modes are

M~™(irU)= I (i co)(irg)
1

2'
e* in I and F,

e e+~" in II and P . (6.5)

Here I is the~amma function. Except for a normali-
zation factor &2 these expressions agree with those al-
ready known for I and II (Ref. 12).

The most important aspect of these MM modes is that
they lack no property which the Minkowski Bessel func-
tions have: namely, (1) they are unitarily related to the
plane waves and hence are globally defined; (2) they form
a unitary representation of the translation group in two-
dimensional Lorentz space-time,

M"-,„( Ic(U +Un))= f M,"„+ .(x—U)M'+. „(a—Uo)dra';

(6.3)

The global Minkowski Bessel modes are the Poincare
group harmonics on the Lorentz two-plane. They are
analogous to the large l limit of the Y' (6),$), the rotation
group harmonics on the two-sphere. The three most im-
portant ideas of this paper are expressed by Properties
1 —3. They hold both for the MB modes and the MM
modes. The two sets are related by Eqs. (6.2). The
asymptotic approximation of a mode sum as a mode in-
tegral is exhibited by Eq. (5.22) for a physically interest-
ing coordinate representative.

Finally let us mention three observations which are
more technical in nature.

(1) The conventional group-theoretic treatment of the
MacDonald functions EC, and the Hankel functions H;„
view them as a representation of translations in the Min-
kowski plane. ' This does not express the true state of
affairs. Actually it is the global Minkowski Bessel modes
which play this role. The functions K,„and H, only
refer to the coordinate representatives of these MB modes
in each of the respective Rindler charts ("sectors").

(2) The group composition properties, Eqs. (2.7) and
(6.3) for the global MB and MM modes imply numerous
theorems for the Bessel related functions (E;, H „,and

H;„}(Ref. 14) and the gamma function I (ico) (Ref. 15).
These theorems are now so easy to obtain because one
merely has to insert the coordinate representatives, Eqs.
(4.2) and (4.3) and Eqs. (6.5) into the group composition
law, Eq. (2.7).

(3) If one recalls that

B .(2aU 0)=M' .(aU)

and

B„* „(0,2irV)=M„'*„(IrV),

then inserting the corresponding coordinate representa-
tives into the group composition law Eq. (2.7) yields in-

tegral relations' between the Bessel related functions and
the I" function.
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