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Gravitational Faraday rotation induced by a Kerr black hole
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We study the gravitational lens effect caused by a Kerr black hole via the propagation of a polar-
ization vector along a light ray. In particular, we find a rotation of the plane of polarization due to
the presence of the black hole's spin. The rotation angle is proportional to the mass and the line-

of-sight component of the angular momentum of the black hole. This is a general-relativistic effect
analogous to the well-known Faraday rotation.

I. INTRODUCTION

General relativity predicts that the gravitational field
of a massive object can bend a ray of electromagnetic ra-
diation. Some twin quasars are thought to be two (or
more than two) images of a single quasar formed by a
gravitational lens intervening between the quasar and us. '

Some effects due to the gravitational lens were investigat-
ed by many authors, and most of the works done so far
were mainly concerned with the problems such as
deflection of light rays, amplification of intensity, and
differential time delay. Recently, Bray studied how the
angular momentum of a Kerr black hole, as a gravita-
tional lens, contributes to these effects.

In this paper we direct our attention to another effect
and study how the polarization vector of a linearly polar-
ized electromagnetic wave propagates in a curved space-
time, i.e., in the presence of a gravitational lens.

Stark and co-workers ' investigated general-
relativistic effects on a property of the polarization vector
of an x ray emitted from an accretion disk surrounding a
Kerr black hole; they first pointed out the fact that the
polarization vector rotates in the gravitational field of the
black hole. This change in the polarization direction of
each light ray can reduce the total degree of polarization.

We here consider a different situation such that both
the source of radiation and the observer are remote from
the gravitational lens. For this simple situation it is easy
to extract purely general-relativistic effects on the propa-
gation of the polarization vector.

Some decades ago Plebansky shed light on this prob-
lem by solving Maxwell's equations in a curved space-
time. The propagation of the polarization vector obeys
the parallel transport along a null geodesic. The polar-
ization vector changes its direction as a result of the
deflection of the light ray. In addition to this change, a
rotation of the polarization vector around the propaga-
tion vector may occur. We call it the rotation of the
plane of polarization. Such two changes are mixed in the
works by Connors, and co-workers. By solving the
equation for the parallel transport of the polarization
vector derived from the Maxwell's equations in a curved
spacetime, Plebansky concluded that the rotation of the
plane of po1arization occurs only when the ray penetrates
into rotating matter. The rotation of the plane of polar-

ization induced by the angular momentum of matter is
analogous to the well-known Faraday effect which ap-
pears in the magnetized plasma and so it may be called
the "gravitational Faraday rotation. "

The close analogy between electromagnetic and gravi-
tational effects is an interesting problem which has been
discussed from various points of view. For example, a
gravitational analogue of the Aharonov-Bohm effect pro-
duced by a cosmic-string solution was extensively stud-
ied. The gravitational Faraday rotation, different from
the deflection of light ray, is another important
phenomenon to understand how a non-Newtonian or
"magnetic" effect of the Weyl conformal curvature can
play the role of a magnetic field.

Does a rotating (Kerr) black hole as the gravitational
lens generate this magnetic effect? Any light ray received
by a distant observer must pass through a vacuum region
outside the event horizon. Then Plebansky's calculation
should fail to extract the gravitational Faraday rotation
on the propagation of the polarization vector. However,
this is due to his rough approximation in the weak-field
limit of the metric tensor. In this paper we also assume a
small deflection of the path of the ray, but we include the
higher-order terms in the weak-field approximation to
study this point in more detail.

Since the spacetime we consider here (the Kerr metric)
has a symmetry of Petrov type D, there exists a (complex)
conserved quantity along a null geodesics, which was
discovered by Walker and Penrose. As was done in Ref.
4, one can deal with the parallel transport of the polariza-
tion vector in terms of the Walker-Penrose constant.
Then the problem becomes quite simple because the
equation for the parallel transport reduces to an algebraic
equation which requires us to give only the propagation
vector of a light ray.

In Sec. II we apply the procedure based on the
Walker-Penrose constant to the parallel transport along a
null geodesic in a gravitational lens. We calculate the
difference between the initial and final polarization direc-
tion of a light ray emitted from the source and received
by the observer. Our main conclusion obtained in Sec.
III is that the gravitationa1 Faraday rotation is really in-
duced by the presence of black-hole spin. The amplitude
of the rotation angle is evaluated. Brief discussions are
contained in Sec. IV. Necessary integration of the equa-
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tion of motion for a light ray in the Kerr metric is given
in the Appendix.

II. PARALLEL TRANSPORT
OF POLARIZATION VECTOR

n,
,

We consider the Kerr geometry described by the
Boyer-Lindquist coordinates

ds~= dr +p d8 + [a dt (r—+a )dP]2 2 sin 8 BLRCK HULE

where

(d—t —a sin 8d((}}
p'

(2.1)
k,

and

p =r +a cos0 OBSERVER (r„e, , y, }

orbital plane

b, =r 2mr+a—

The parameters m and a (m & a ) mean the mass and the
angular momentum per unit mass of a Kerr black hole.
The polarization four-vector f' of a linearly polarized
light ray, which is orthogonal to the direction of propa-
gation, must be parallel transported along a null geodesic
with its tangent vector k'. We obtain the relation be-

tween the propagation vector at the source and at the ob-
server by the technique used in the works by Connors
and co-workers. "

Since the Kerr geometry is of Petrov type D, the com-
plex quantity

Kwp = ( A +iB )( r ia co—s8)

FIG. 1. A schematic diagram of the paths of the light ray
from the source (r„g„g,) to the observer (r„8„$,). The solid

curve (path 1) denotes a path deflected by the gravitational-lens
effect. The dashed line (path 2) is far from the Kerr black hole.
The orbital plane is drawn as a plane including the source, the
black hole and the observer. The three-dimensional vector n is

normal to this orbital plane, and h=nXk/
~

k
~

where k is the

propagation vector of path 1.

f" is eliminated by the use of the orthogonal condition
k'f; =0, the real and imaginary parts of Eq. (2.2) become

& =rf ' Pf ', &2 =—(Pf '+ rf—')k'/
l

k"
I

where

is conserved along a null geodesic, where

3 =(k'f" k "f'}+asin28(—k "f~ kt'f"), — and

y =k cscO —a sin0 (2.8)

Since f ' is determined up to a multiple of the null vector
k', we can always set f '=0 without loss of generality.

We denote the positions of the source and of the ob-
server in the three-dimensional space by (r„8„$,) and

(r„8„$,), respectively (see Fig. 1). We consider a situa-
tion that the source and the observer are remote enough
from the black hole, i.e.,

r;„/r, «1, r;„/r, «1, (2.4)

(2.3)

& = ( r +a )sin 8( k ~f k f~
) asin—8( k 'f s——k 8f '

} .

P,'+y,'=P'. +y.'=g+(~ a)'— (2.9)

is a constant of motion, we obtain the matrix 8 trans-
forming the 8 and P components of the polarization vec-
tor at the source into the ones at the observer as follows:

Je 8

=R (2.10)

f "=f", f =rf, —f~=r sin8f~ .

Equations (2.7) hold both at the source and at the ob-
server. Paying attention to the fact that

where r;„ is the distance of closest approach of the path
of ray. From the equation of motion for a light ray the
asymptotic behavior of k' near the position of the source
or of the observer is given by

where

1
R=(1+x ) —x —1

(2.11)

k' 1, k" k "/
~

k'~

k ~P/r, k~~A, /(r sin 8),
where

The parameter x is de6ned by
(2.5)

P,r.+),P.
r, )'. 13,13. —

P=(q —A, cot 8+a cos 8)'~ k /
~

k (2.6)

and the parameters A. and g are constants of motion. If

Hereafter, we always understand that the value with the
subscript s or o is evaluated at the position of the source
or of the observer.
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On the assumption of Eq. (2.4), we can ignore the radi-
al component of the linear polarization vector at both the
source and at the observer. Then the matrix R describes
the full change in the polarization vector. The parameter
x contains the constants of motion A. , g, the position an-
gles (8„$,),(8„$,), and the spin parameter a. If we ob-
tain a null geodesic joining the source and the observer
(see the Appendix), we can evaluate the amplitude of x
which describes the change in the polarization vector.

III. ROTATION OF THE PLANK
OF POLARIZATION

f=fin+ f~~h . (3.1)

The component f~ perpendicular to and f
~~

projected
onto the orbital plane are given by

I'
(3.2)

where N is a matrix of the form

Let us call a plane which includes the source, the Kerr
black hole, and the observer orbital plane (see Fig. 1).
From the assumption Eq. (2.4), the orbit should be placed
on the plane in the regions near the source and near the
observer. We introduce three-dimensional unit vectors n
which is normal to the orbital plane and h defined by
h=nXk/I k I. Here k is a three-dimensional propaga-
tion vector whose components are (k',rk, r sin8k~). In
the asymptotic region the components k", k, k~ behave
as Eq. (2.5). The symbol X means the usual vector prod-
uct in three dimensions. Since the positions of the source
and of the observer are far from the black hole, the

Boyer-Lindquist coordinate system given by Eq. (2.1)

reduces there to the usual spherical coordinate system in

the flat spacetime. Hereafter, the carets are dropped.
Thus, at the distant places from the black hole any linear
polarization vector f can be expressed as

is determined by the matrix N, RN, '. At the positions of
the source and of the observer, the vector h becomes

g—n 0
n'

Hence, from Eqs. (2.11) and (3.3) we obtain the rotation
matrix of the form

Qo
S 0

(1+x')' '
—Q, 1

(3.5)

where u, =n,~/n, and u, =n,~/n, Sin. ce the unit vector n

has no radial component, n becomes

8 +(1++2)—I/2 &s +(1+&2)—1/2 (3.6)

cosg —sing
0 s sing

N RN (3.7)

where X is the rotation angle given by the equation

sinX=(1+X )
' (1+x } ' (X—x), (3.8)

and the parameter X is defined by

QS+QoX=— (3.9)
1 —u, u,

If the difference 5x =x —X is small, we can see the rota-
tion angle 7 turns out to be

(3.10)
1+X

(see Fig. 2), and when x =X no rotation of the plane of

(n, n, &0 when the spin vector of Kerr black hole is not
just in the orbital plane and we consider this case), and
then the rotation matrix reduces to

(3.3) n~ .no

II

=N, RN,
s

(3.4)

This implies that the rotation of the plane of polarization

The deflection of the light ray must change the direc-
tion of h in the orbital plane [i.e., h, —h, =nX(k,
—k, )/

I

k
I
). From Eq. (3.1) this leads to a trivial change

(a typical effect of the "electric" portion of the Weyl cur-
vature) in the polarization vector. Our main concern is
the change in the components fz and fl since it corre-
sponds to the rotation of the plane of polarization, i.e.,
the gravitational Faraday rotation which is a magnetic
effect due to the presence of the angular momentum of
the black hole. In this section we will estimate the rota-
tion angle.

fl9 fg
=No Iy = NoR kq ~ kD

FIG. 2. The rotation of the polarization plane which is a
gravitational analogue of the Faraday rotation. The change in

the polarization vector f is shown by matching the direction of
the propagation vectors k, and k, at the source and the ob-

server. The rotation angle 7 is equal to 4 mm a cos8, /r;„.
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m/r;„, a/r;„«1 . (3.1 1)

polarization occurs.
Now we want to calculate the value of X and verify the

existence of the gravitational Faraday rotation induced
by a Kerr black hole. For simplicity we assume that a
light ray propagates in the weak gravitational field, i.e.,

angle 7 in terms of the position angles and the Kerr pa-
rameters m and a. Since the vector n is orthogonal to the
orbital plane, u, and u, have the forms

u, =sinO, [—cotO, cos(P, —P, )+cot0, ]/sin(P, —P, ),
(3.14)

u, =sinO, [cotO, cos(P, —P, ) c—otO, ]/sin(P, —P, ) .

This means that the bending angles defined by

b,O:—0.+8, ir—, b,P=P. (3.12)

Using Eq. (3.12) and substituting Eq. (3.14) into Eq. (3.9),
we get the expansion of X up to the third-order terms in
b, O and b,P.

are small, where we chose P, y P, . The further assump-
tion we adopt here is as follows:

X=hP cosO, + —,'b.Ob, g sinO,

r;„Ir„r;„Ir,«m /r;„, a Ir;„. (3.13) + —,', (1+3cos 8, )cos0, 5$ (3.15)

We take the small quantities m/r;„and a /r;„ into ac-
count but ignore r;„Ir, and rm;„/r, . In this case there
exists another null geodesic joining the source and the ob-
server with a negligibly small deflection (path 2 in Fig. 1).
This path of the ray will feel no effective gravitational
force, i.e., no gravitational Faraday rotation. We consid-
er only the path of the ray deflected fully by the black
hole.

Using these approximations, we express the rotation
I

We note that X depends on only the bending angles
b, O, b,P and the position angle 0, .

Our tedious task is to obtain x in Eq. (2.12) for a light
ray in the gravitational field of the Kerr black hole. We
assume that along the light ray there exists only one
minimum (or maximum) value of 8 [see Eq. (A3)]. Substi-
tuting Eqs. (2.6) and (2.8} into Eq. (2.12) and using Eq.
(3.12},we obtain the following expansion up to the third-
order terms in m Ir;„and a lr;„:

x =+[@ '(A, /r' „)cotO,b, O+ —,'p (A, /r', ~„)[1+cos8, —(A, /r' „)csc 80]68

+p 'sinO, cosO, (a/r' „)bO+ ,'(A/r~„—)(2p '+3@ +3@ cos O, sin 8, )cotO, bO

+ —,'[p 'sin 8, +p (Alr' „)cos 8, ](a/rm, '„)68 ,'p —(A—lr „}si On, csoO, (a/r' „)bO], (3.16)

where p is defined by Eq. (A14) and rm „is related to r;„
by Eq. (A7). The upper sign corresponds to the ray
which passes through 8;„and the lower corresponds to
8,„. We can regard, from Eqs. (A15) and (A17), the con-
stants of motion A, and i) as the functions of bO and hP.
Thus, eliminating A, and i) from Eq. (3.16) we rewrite x as
a function of O„g„and 58, b P as follows:

x = b, P cosO, + ,' 606,g sinO, + —,', (1+—3cos 8, )cos8, AP

'774m Q cos00 f min (3.17)

The difference between x and X turns out to emerge only
in the third-order term. Then from Eq. (3.10) we arrive
at the final result:

X=n.—,'m a cosO, /r;„=ir ,'mJ cosO, /r— (3.18)

IV. DISCUSSIONS

As we have seen in Sec. III, the angular momentum of
a Kerr black hole affects not only the deflection of the
null geodesic but also the rotation of the plane of polar-
ization. It gives rise to only the higher correction for

We can see that the rotation angle of the plane of polar-
ization around the propagation vector is proportional to
the line-of-sight component of the angular momentum of
the black hole.

deflection angle, but it appears in the leading term of the
rotation angle of the plane of polarization. The rotation
angle is proportional to its line-of-sight component of the
angular momentum. Our calculation for the null geo-
desic is relevant only when along the path 8 has only one
minimum (or maximum) value. Thus, the case 8, -0 or
n is excluded. However, since Eq. (3.18) has no singular
behavior for all values of O„we can expect the extension
of the result obtained here to 0, =0 or ~ in which the
maximum rotation angle of the plane of polarization is
attained.

By observing the rotation of the plane of polarization
we can determine the line-of-sight component of the an-
gular momentum of the Kerr black hole. This fact is
very similar to the usual Faraday effect, if the angular
momentum is replaced by the magnetic field. This sirni-

larity makes us justify the fact that the rotation of the
plane of polarization due to the angular momentum of
the Kerr black hole is just the "gravitational Faraday ro-
tation. "

Plebansky has claimed that the rotation of the plane of
polarization does not occur when the light ray passes
through the vacuum region outside the rotating rnatter.
However, we could point out that it emerges in the
weak-field approximation including up to the third order
m a/r;„which was ignored in Ref. 5.

The symmetry of the Kerr metric (type-D space) allows
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us the simple treatment, i.e., the method based on the use
of the Walker-Penrose constant to study the propagation
of the polarization vector. In more general curved space-
time we must solve directly the equation of parallel trans-
port. In our result, however, any property of the black
hole such as the existence of an event horizon plays no
essential role at all. The rotation of the plane of polariza-
tion will occur, in general, when the light ray passes
through the gravitational field of any rotating massive ob-
ject, but the amplitude of the rotation angle will be quan-
titatively modified from the value of Eq. (3.18).

Our calculation done in Sec. II is based on the assump-
tion that r;„/r, and r;„/r, are negligibly small. If it is
not the case, the gravitational Faraday rotation would
appear in the second-order terms in a/rm;„and m/r;„
multiplied by the factors r;„/r, and/or r;„/r, In a.

probable black-hole model of the gravitational lens the
assumption (3.13) will not be always valid. The contribu-
tion of these terms should be investigated in more detail.

There is a serious difference between the magnetic and
gravitational Faraday rotations. In the latter effect, the
rotation angle has no frequency dependence. Thus, we
can observe the effect only by comparison between the
planes of polarization of two images produced by gravita-
tional lens. For the situation that we considered in the
previous section, we observe a path of the ray with no
gravitational influence (path 2) and during the propaga-
tion along this path the plane of polarization of a light
ray emitted from the source will be preserved. Thus, if
we assume the polarization angles (the ratios f~/f~~) are
the same for two light rays at the source, the difference
between the planes of polarization of two images becomes
identical with the rotation angle predicted by Eq. (3.18).

However, two light rays which reach the observer are
emitted in the slightly different directions at the source,
and it is plausible that the polarization properties at the
source will depend on the direction of emission. Further-
more, the intrinsic polarization will change during the
time delay between two light rays. The rotation angle of
the plane of polarization by the gravitational Faraday ro-
tation is at most of the order (deflection
angle) -(m/r;„), then the gravitational Faraday rota-
tion is contaminated by such effects and the detection of
it is very difficult from the observational viewpoint.

From a viewpoint of general relativity, however, it is
interesting to study how large the rotation angle of the
plane of polarization is allowed when the light ray experi-
ences a strong gravitational field near the event horizon.
An approach without the weak-field approximation is
necessary for solving the problem. This point is now un-
der consideration.

ACKNOWLEDGMENTS

couragement of Scientist from the Ministry of Education,
Science, and Culture Grant No. 61790094).

APPENDIX: DEFLECTION OF THE LIGHT RAY
BY KERR BLACK HOLE

The spatial orbit of a null geodesic joining two posi-
tions (r„8„$,) and (r„8„$,) is determined by the equa-
tions

r +2mr(a —A, )
~6[R(r)]'~

(A2)

where integrations are performed along a path

s min o & ~s ~min/max o (A3)

and

R(r)=r[r(r +a )+2a m] —4amrA,

—(r —2mr)A, —b,rl,

e(8)=rl+a cos 8—A, cot 8 .

(A4)

(A5)

We evaluate these integrals up to and including the
third-order terms in m/r;„and a/r;„. As shown in
Sec. III, the third-order terms are essential to the pres-
ence of the gravitational Faraday rotation of the polariza-
tion vector. In Ref. 2 the geodesic integral was evaluated
up to the second-order inclusive, and now we improve it.

First let us integrate the left-hand side of Eq. (Al). If
we ignore the terms of order (r;„/r, ) and (r;„/r, ), it
reduces to

dl'~2
[R(r)] mm [R(r)]

Ps+Po

r, r,
(A6)

where r;„ is the largest root of R(r)=0. For small
deflection, the leading term in r;„ is r' „:(I, +g)'—
In order to integrate Eq. (A6) with sufficient accuracy, we
must obtain r;„up to and including the second-order
terms in m /r min and a / min-

r;„—r'o, '„(1—m ——,'m ——,'a + —,'a g+2amX) . (A7)
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For economy of notation in Eq. (A7) and hereafter, we
understand the quantity with a tilde to be the dimension-
Iess one normalized by r',.'„. With the aid of Eq. (A7), Eq.
(A6) becomes
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-r' „' (1+—,'a )[m(1 ——,'a 71+ —",m —15am X)+4m —SmaX
[g ( )]t/2 mm 2

+—',"m + 10ma —16ma f) ]—

Next, we integrate the right-hand side of Eq. (Al) to obtain the result

rs "0
(A8)

e
~
dg

~

min/max dg o

1 2

dO[e(8)]'", [e(8)]'" ' e.;...., [e(8)]'"
-rm „' (1+—,'if )(1——,'ct rl) [m + arctan[(1+ —,'a Fl)coto, ]+arctan[(1+ —,'a q)coto, ]I,

(A9)

where

cosg=Fl ' (1+—,'a ~X )coso

and 8;„/,„is determined by e(8)=0:

(A 10)

(A 1 1)

gg=+p csct9, 5——,'A, cosO, csc 0,5

+ —,'X pcsc'8, (1+3 cot 8, )5

+ cscg, [2(fl —cos 8, ) —3rlp ]a
4p

(A15)

In Eqs. (A9) and (All) and hereafter, the upper sign cor-
responds to the path which 8 undergoes through 8;„and
the lower sign to the path through 8,„. This expression
is valid only when 8 has only one minimum or maximum
value along the path.

Substituting Eqs. (A8) and (A9) into Eq. (Al) we obtain

cosg, ——cosg, cos5 W p sin5

J' a (2mr —ah. )

scot 8

[e 8)]1/2
(A16)

Finally let us evaluate the integral in Eq. (A2). Follow-
ing Ref. 2, Eq. (A2) can be rewritten with the help of Eq.
(Al) as

where

T —,
' sin5 —a gA. T+(rl —2p )sin5a,

p 4
(A12)

After a straightforward evaluation in a manner similar to
Eqs. (A8) and (A9) we obtain

bg=4ma —6ma X+7r5m a

5=4m ——8mif A+a( —", m —, 15am X)

+—'"m + 10m' —13ma

and

—(1——,'a )r&
—2 (0)

S 0

p—:(tl —cos 8, )'

By the use of Eq. (3.12), Eq. (A12) leads to

(A13)

(A14)

+/(5(1+5 cosg, csc g,p)csc 8,
—ma~Xcsc 8, (rl —2p )

+ —", m 3Xcsc 8,[(2p —Fl)sin 8, +4cos g,p ] .

(A17)

When the observer and the source are joined by the null
geodesic characterized by the constants of motion k and

g, the relation between the position angles 8„$, and
8„$, are given by Eqs. (A15) and (A17).
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