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The effects of thermal fluctuations on the evolution of the scalar field in a preinflationary period
are explored numerically to complement a previous analytical investigation. The analysis is applic-
able to a weakly coupled scalar field in a double-well potential in new inflation. A critical value of
the strength of the coupling to the thermal bath is found, above which thermal fluctuations do not
allow the inflationary period to begin. The evolution of the scalar field is followed until the onset of

the inflationary period.

I. INTRODUCTION

The inflationary description of the evolution of the
Universe at its very early epoch!~* has proven to be a
most successful approach. The inflationary scenario suc-
ceeded in explaining at least ten different problems both
in particle physics and in cosmology. In particular the
inflationary-universe scenario explains the large-scale
homogeneity, isotropy, and flatness of the observed part
of the Universe; problems that plagued cosmologists for
many years. Thus, inflationary-universe models have be-
come very popular and been studied extensively by many
authors; for review articles see Ref. 4.

The model we investigate in this paper is the so-called
new inflationary scenario.? In this model an initial hor-
izon size domain nucleates and grows quasiexponentially
(i.e., inflates) for a time sufficiently long such that it be-
comes many orders of magnitude larger than the observ-
able part of the Universe.

A standard example of new inflation is to consider the
behavior of some scalar field ¢(z,x) (sometimes called the
inflaton) that is very weakly self-coupled® and is charac-
terized by a double-well potential V' (¢4) (Fig. 1). The po-
tential V' (¢) has a local maximum at ¢=0 and global

FIG. 1. The double-well potential ¥ (¢)=24¢*—0?)? used in
this paper.
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minima at ¢=+*o, where o is the symmetry-breaking
scale; o0 < Mp where My, is the Planck mass. The scalar
field ¢ obeys the classical Klein-Gordon equation of
motion:

¢+3Hd—a V= —V'(¢), (1)

where a (t) is the scale factor of the Universe that varies
as a~t'? for a radiation-dominated universe,
H(t)=a(t)/a(t) is the Hubble parameter and
V'(¢)=0V(4)/d¢. Further, we assume that the space-
time metric is a flat Friedmann-Robertson-Walker
(FRW) one:

ds’=dt’>—a*(t)(dx>+dy*+dz?) . )

It is appreciated that since the scalar field ¢ is very
weakly self-coupled, the equation of state for ¢,

p(d) =142+ LV +V(4),

: (3)
P($)=14— LV —V(¢),

where p is the energy density and P is the pressure, will
be dominated at early times by the spatial gradient and
kinetic terms® and so inflation will not occur.

A mechanism to solve this problem was proposed by
Albrecht and Brandenberger.” It was shown both analyt-
ically’ and by numerical studies® that the dynamics of the
scalar field is governed by the expansion of the Universe
and by the nonlinear forces due to the potential terms in
the equation of motion (1). The Hubble expansion rate
acts as a damping force on the amplitude of the scalar
field. Thus if the effects of the potential force are small,
the scalar field ¢ will relax to its spatial average (¢) =0
due to the symmetry of the potential. Then an
inflationary period, which is sufficiently long to solve the
cosmological problems, will commence.” That happens
in such a way that at some critical temperature 7T, the
scalar field ¢(x) is confined to ¢ ~O0, the potential energy
V(0) starts to dominate the energy-momentum tensor
and hence both the kinetic and the spatial gradient terms
will become negligible relative to ¥ (0). When that
occurs we see from Eq. (3) that P(¢)= —p(¢) and the
usual initial conditions for new inflation are reproduced.

In a recent paper’ we studied the evolution of ¢(z,x)
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when the scalar field ¢ is coupled to a radiation bath.
Theoretical limits on the strength of the interaction be-
tween ¢ and the radiation bath were derived. A critical
value was found for the coupling constant in the La-
grangian that describes the interaction, below which the
effects of the thermal fluctuations are small and thus do
not change significantly the evolution of the scalar field ¢.
¢ relaxes to its spatial average, that is, to a region where
¢=0 and so inflation is possible. The work in Ref. 9 was
predominantly analytical, this paper aims to complement
it, confirm its validity, and present more exact limits on
the problem.

When we couple the scalar field to the radiation bath,
in effect we add to the equation of motion (1) a random-
force term Fy. The Klein-Gordon equation thus be-
comes

é+3Hd—a2t)Vp=—V'(¢)+Fg . (4)

Quantum fluctuations of the scalar field ¢ were con-
sidered and studied in many papers'®~!7 as the source for
the random-force term Fy in the equation of motion (4).
In the above publications a local patch was investigated,
it was assumed that the domain in question is homogene-
ous such that both the kinetic and the spatial gradient
terms could be neglected, thus the equation of motion
was reduced to a first-order differential equation. This
approach is called the slow-rolling approximation. In a
previous paper’ and in this one we do not take this ap-
proach and investigate the full equation of motion (4)
which is second order in time and second order in space.

We study the evolution of the scalar field obeying the
equation of motion (4) in the preinflationary period. Our
initial time is ¢, =tp, where tpy=Mp' is the Planck time.
We follow the evolution of ¢ up to # =¢, which is the
time at which the preinflationary stage ends and the
inflationary period begins.

Both in Ref. 9 and this paper the random force Fy is
taken to be due to classical fluctuations of the scalar field
¢ that are caused by the interaction with the radiation
bath. Other authors have done a quantum-mechanical
analysis of the evolution of the scalar field ¢ in the slow-
rolling phase transition in new inflation. '#=%°

In Sec. IT we will discuss some of the ideas that this pa-
per is based upon and summarize the results of the
analytical approach.’ The numerical approach will be
presented in Sec. III and conditions for the solution of
the equation of motion will be discussed. In Sec. IV the
initial conditions are discussed. The numerical results
are presented in Sec. V and are shown to agree quite well
with the analytical predictions. The conclusions are
given in Sec. VI.

The space-time metric used in this paper is that of a
flat FRW (2) universe. The units used throughout are the
natural units in which i=kg=c =G =Mp =1.

II. PRELIMINARY DISCUSSION

In recent publications”? detailed studies of the dynami-
cal relaxation of the scalar field in the preinflationary
period were made. As can be seen from Eq. (1), there are
two conflicting forces that influence the dynamical evolu-

tion of the inflaton. One is the effect due to the Hubble
damping force that tends to red-shift the wavelength of
the scalar field ¢ and dampen its magnitude. The other is
due to the nonlinear effects of the potential that tend to
cause inhomogeneities in the field. It was shown that if
the parameters in the potential were chosen appropriate-
ly, the Hubble damping force dominates and the scalar
field becomes homogeneous enough and localized near
the local maximum of the potential for the inflationary
state to begin. To enter the inflationary period and to as-
sure that inflation is long enough we need to have the
conditions that the potential energy V (¢) dominates the
energy-momentum tensor and both the kinetic terms and
the spatial gradient terms associated with the scalar field
¢ are negligible. This is the so-called slow-rolling phase
described in the Introduction. When these conditions are
satisfied we get from Eq. (3) that P(¢)=—p(¢) and
inflation begins.

In a recent publication® and in this one we add another
force to the equation of motion [Eq. (4)]. We study the
effect of this force in a similar way to the analysis
presented in Ref. 7, that is, we compare this additional
force to the Hubble force and see if the effect of this force
prevents dynamical relaxation of the scalar field ¢ and
thus prevents inflation. The random force is being gen-
erated by coupling the scalar field ¢ to the thermal bath.
Since the temperature of the thermal radiation is very
high during the preinflationary period we assume that the
scalar field ¢ is influenced by it thereby producing
thermal fluctuations of the field.

To describe the effects of thermal fluctuations on the
evolution of the scalar field we couple ¢ to the thermal
bath that is manifested by N scalar fields ¥. The La-
grangian £, that describes the interaction between the
inflaton ¢ and the thermal field ¢ is

"LI =%}»N¢2¢2 ’ (5)

where A is the coupling constant that describes the
strength of the interaction between ¢ and the thermal
bath. We find limits on A such that the effects of the
thermal fluctuation are small enough and the dynamical
evolution of the scalar field ¢ produces conditions compa-
tible with inflation.

To find limits on the coupling constant that describes
the interaction strength between the inflaton field ¢ and
the thermal bath we need to get an estimate of the magni-
tude of the fluctuations of ¢ due to the radiation bath. In
Ref. 9 we derived an upper limit on the value of interac-
tion strength, that is, we found the largest A for which
the coupling of the scalar field ¢ to the thermal bath
would not prevent inflation. To do that we transformed
to a free conformally coupled scalar field in conformal
time. The equation of motion in momentum space was
derived and allowed us to find a critical coupling strength
A, using the perturbative Green’s-function analysis:"°

A.~0 . (6)

The inflationary period is entered only for values of A
smaller than A,. For A > A_ there is no inflation.



III. NUMERICAL APPROACH

The main investigative tool of this paper is the numeri-
cal integration of the equation of motion (4) for the scalar
field ¢(z,x) in a given flat FRW metric (2) background.
The potential chosen here is the double-well potential

V(g(t,x))=Ay$*—0?)?, )

where A, is the self-coupling constant that, because of
cosmological considerations, must be very small® and o is
the symmetry-breaking scale: o < Myp,.

We begin the analysis in a hot radiation-dominated
phase at the Planck time tp;=Mp' =1 in our units. At
these high temperatures the energy-momentum tensor is
dominated by the energy density of the radiation, thus it
is sensible to use the flat FRW metric. For a radiation-
dominated expanding universe the scale factor a(t) is
proportional to t!/2. We let the scalar field ¢ evolve up
to the time ¢ for which

V(g(1,x)) > L[3e(1,x)]*,

(8)
V(6(1,x) > 1[3;4(1, %)),

or, equivalently, as can be seen from Eq. (3),
P($(t,x))~ —p(p(2,x)) . 9)

The above equation is called the de Sitter equation.
In our analysis the scalar field ¢ starts as a plane wave
in the x direction:

#(1,x)= A sinkx, ¢(1,x)=0, (10
where A is the amplitude of the wave and k is the wave
number. The choice of a plane wave as the initial condi-
tion for ¢(¢,x) allows us to treat the problem in one space
and one time dimension. Thus the equation of motion (4)
reduces to a two-coordinate second-order differential
equation.

To solve the second-order differential equation of
motion (4) we define

X(t,x)=¢(1,x) ; (11)

thus we get two coupled first-order differential equations:

o(t,x)=X(t,x) ,

2
X(t,x)=X(t,x)—3H ()X(1,x)+a “2(t)igﬂt§§—)
X
—V'(¢(2,x))+Fr($(1,x)) . (12)

For the potential term we use Eq. (7) and for the
random-force term we use
Fr=€(t,x) ANY*(1)$(1,x)
172
T?

2
o(t,x) , (13)

L

=e(t,x)AN 30

T;

where T is the temperature, T; is the initial temperature,
and €(¢,x) is a random number
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et,x)e[—1,1] (14)

which is different for every space-time point.

IV. INITIAL CONDITIONS

The choice of initial values for the problem is made us-
ing the “quasithermal” conditions discussed in the first
paper of Ref. 8. We demand that both the potential ener-
gy V(4(t;,x)) and the spatial gradient d%¢(t;,x)/dx? are
initially of the order of the Planck density M3 (=1 in
our units). Using the potential in Eq. (7) and the initial
conditions on the scalar field ¢(¢;,x) given in Eq. (10) the
amplitude 4 is found to be

A~z (15)
and the wave number k is
k ~}\;,/‘ . (16)

To find the final time for the preinflationary period we
demand that the potential energy for ¢=0 in comoving
coordinates will be larger than both the spatial gradient
and the kinetic terms [Eq. (8)]. That is,

Azkza_“(tf)g V(0), (17)
which for a (1) ~t'/? yields
ty~A5' %072, (18)
We choose the self-coupling A, and o to be
Ay=5x107%, o=2x10"", (19)

in order to minimize the computer time since, as can be
seen from Eq. (18), ¢/ is strongly dependent on 0.

The time steps are constant in conformal time and are
chosen to be one-hundredth of the initial time. We re-
stricted our analysis to one-wavelength excitations and
thus we take our spatial interval to be x €[0,2mk ~'].
We use 100 spatial mesh points for our analysis.

The random number €(¢,x) used for the force term Fyg
[Eq. (14)] was generated using the Ridge computer li-
brary Random Number Generators RAND and
SRAND.

V. NUMERICAL ANALYSIS

The equations for the numerical analysis are the two
first-order-in-time differential equations given in Eq. (12)
which we integrate numerically. We are using the
double-well potential V(¢) [Eq. (7)] and the random-
force term Fy given in Eq. (13). The force Fy is generat-
ed using a random-number generator. We employ the in-
itial conditions [Eq. (10)] and periodic boundary condi-
tions. One hundred mesh points were chosen for the spa-
tial grid, various other spatial resolutions were used to
check the validity of this choice. The spatial grid points
are constant in comoving coordinates and the time steps
are constant in conformal time.

The parameters used in this problem are the self-
coupling constant A,4, the symmetry-breaking scale o that
determines the shape of the potential V' (¢) [Eq. (7)], the
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FIG. 2. The initial configuration where the scalar field
&(¢;,x) initially has an amplitude 4 =A"!74,

amplitude A4, and the wave number k of the scalar field ¢
[Eq. (10)], the number of particle species N that interact
with ¢ and the coupling constant A, which is the charac-
teristic strength of the interaction between the scalar field
¢ with the thermal bath.

We follow the evolution of the scalar field ¢ and plot
its amplitude as a function of the spatial coordinate x and
the time ¢. We follow the time evolution of the energy
density p(¢) and the pressure P(¢) [Eq. (3)] for a given
spatial point and observe the validity of the de Sitter
equation (9) around the final time ¢, (the onset of
inflation). We vary the strength of the coupling constant
A of the interaction between the scalar field ¢ and the
thermal bath through its critical value A, and see the
effect it has on the evolution of the field ¢ and on the
equation of state (3).
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FIG. 3. A three-dimensional plot of the absolute value of the
scalar field | ¢(¢,x,,;1)| as a function of the time ¢ and the cou-
pling constant A, at a spatial point x,, that is the maximum of
the initial wave. The parameters used are A,=5x10"* and

0=2%x10"". The coupling constant was varied in the interval
A€E[0,50].
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FIG. 4. The equation of state for the energy density of the
scalar field p(¢(t,x,,)), the pressure P(é(t,x,,)), and the pres-
sure P, (4(1,x,,)) in the direction of the standing wave as a func-
tion of time at a spatial point that is the maximum of the initial
wave. The parameters used are A,=5x107% and 0 =2x10"".
(a) shows the equation of state for a small coupling to the
thermal bath, in (b) we see the equation of state for a critical
coupling, and (c) shows the equation of state for a large cou-
pling.

The initial conditions are presented in Fig. 2. The sca-
lar field ¢, the potential V(¢4), the spatial gradient
V3¢ /a?, and the energy density of the scalar field p(¢)
are shown as functions of the space coordinate x at the
initial time t; =tp; the Planck time.



Figure 3 shows a three-dimensional plot of the evolu-
tion of the absolute value of the scalar field | #(2,x,,;1) |
as a function of ¢ at a particular spatial point x,, as we
vary the coupling constant A through its critical value.
We chose N =1, A;=5X10"3, and 0 =2Xx10"". The in-
itial amplitude is 4 =Ay 74 and the wave number is
k =A}*. We started at k 0, i.e., no interaction with the
thermal bath, and followed the evolution up to A=>50.
We can see that for A <A, =0c the amplitude-at the end of
the run is more than an order of magnitude smaller than
the initial amplitude, that means that the scalar field is lo-
calized to a large degree about ¢=0. For A>A, it is
clear that such localization does not occur.

The equation of state for the energy density p(¢), the
pressure P(¢), and the pressure P, (¢) in the direction of
the standing wave, for three characteristic values of A, is
shown as a function of time at a particular spatial point
x,, in Figs. 4(a)-4(c). Figure 4(a) is a plot of the time
evolution of the absolute value of the pressure and the en-
ergy density for A<<A,, Fig. 4(b) shows |p(¢)| and
| P(¢)| for A=A, and Fig. 4(c) shows the evolution for
A>>A.. Again we see that for small A we get the de Sit-
ter condition (9) that states that P(¢)~ —p(¢), whereas
for large A this condition is not satisfied.
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Three-dimensional plots of the evolution of the scalar
field ¢(z,x) as a function of space x and time ? are
presented in Figs. 5(a)-5(d) for A=0, A <<A,, A=A, and
A>>A., respectively. We clearly see that for large A
there is no relaxation of the field and thus we get no
inflation.

VI. CONCLUSIONS

The evolution of the scalar field that drives inflation
was studied in the preinflationary period in the presence
of classical thermal fluctuations appearing as a random-
force term in the equation of motion. The analysis was
done in one-space one-time coordinate using the Klein-
Gordon equation of motion. We integrated the equations
numerically in the new inflationary scenario and found
upper limits on the strength of the coupling constant that
determines the magnitude of the thermal fluctuations.

We used the double-well potential in our analysis and
found that the symmetry-breaking scale o in the poten-
tial gives an upper limit on the coupling of the scalar field
to the thermal bath:

A~0 . (20)
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FIG. 5. Three-dimensional representations of evolution of the scalar field ¢(¢,x) as a function of time and space for four charac-
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For larger values of A dynamical relaxation does not
occur, the equation of state does not obey the de Sitter
equation P(¢)~ —p(4), and inflation does not begin.
For smaller values of A we do get dynamical relaxation
and the de Sitter equation describes accurately the equa-
tion of state.

The constraint on A, given in (20) is weaker than

Ag~0?, 1)

which is the constraint on the coupling constant in the
potential that is required by dynamical relaxation.® It is
much weaker than the one that comes from the magni-
tude of the energy-density fluctuations. Thus these re-
sults do not impose any unreasonable new limits on the
parameters in the new inflationary scenario.

This paper complements and verifies the analytical in-

vestigation given in Ref. 9. We found that the critical
value of the coupling constant A, is very close to the
theoretical predictions. Thus we conclude that thermal
fluctuations do not affect the evolution of the scalar field
in a major way and new inflation can be realized in our
model with a mild constraint on the strength of the fluc-
tuations.
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