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The goal of this paper is to analyze and to evaluate the different configurations currently con-

sidered for the interferometric detectors of gravitational waves. We first study the properties of ele-

mentary gravito-optic transducers (i.e., delay lines or Fabry-Perot resonators) using an original for-

malism which allows one to understand and to compare easily the properties of complex interferom-

eters involving these elements, such as recycling or synchronous recycling interferometers. We also

describe the new idea of using detuned Fabry-Perot resonators, and we show that, in some cases, it

may represent the best compromise between bandwidth and peak sensitivity.

I. INTRODUCTION

Long-baseline interferometers for the detection of
gravitational radiation are presently being studied in a
few countries (France, Italy, Gertnany, U.K., and
U.S.A. ).' All these projects are based on the construction
of a large, Michelson-type interferometer with an arm
length of 1 —3 km, containing some kind of gravito-optic
transducer in each arm. In order to decrease the shot-
noise level, all these interferometers will use high-power
lasers, in conjunction with light recycling techniques.
The basic idea of recycling was proposed by Drever: it
consists in building a resonant optical cavity which con-
tains the interferometer, so that, if the losses are low and
if the cavity is kept on resonance with the incoming
monochromatic light, there is a power build-up which re-
sults in a reduction of the shot noise. This can be real-
ized in different ways, depending on the geometry of the
gravito-optic transducer [delay line or Fabry-Perot (FP)
resonator]. While the validity of this idea has recently
been demonstrated experimentally, its theory remained
to be published.

The aim of the present study is to establish several sim-
ple models and associated formulas giving the ultimate
photon-noise-limited sensitivities of both the current in-
terferometric configurations and their planned exten-
sions. In order to carry out this program some special
tools are useful. A common formalism will be developed
which allows a straightforward derivation of the proper-
ties of arbitrary optical configurations. Comparison of
different detector configurations is facilitated by the use
of a set of standard parameters.

The cases of nonrecycling delay-line and Fabry-Perot
Michelson interferometers will first be treated in order to
develop the formalism. Then we will apply these results

to various recycling configurations and discuss the rela-
tive merits of each configuration according to the fre-
quency range, to the bandwidth of the signal and to the
value and the localization of the optical losses which limit
the power build-up.

II. OPTICS IN A WEAKLY MODULATING MEDIUM

A. General principles

Consider a plane, transverse, traceless, monochromatic
gravitational wave of frequency v, which propagates
perpendicularly to the interferometer plane (z =0), and is
linearly polarized along the directions of the (orthogonal)
interferometer arms (x =0 and y =0, respectively):

[h,, (x,y, z, t)], o=h, , cos(Qt+@),

with

h,l =diag(h, —h, 0), Q =2m vs .

At every point of the optical path, the light frequency
spectrum will resolve in a carrier frequency

opt

and two sidebands

~opt —~g .+

The enormous ratio between optical and gravitational
frequencies allows us to neglect the polarization effects
and we shall use a scalar representation of the optical am-
plitudes. Only first-order effects in h will be considered.
The optical amplitudes at an arbitrary point of the inter-
ferometer are therefore of the form

38 433 1988 The American Physical Society



434 VINET, MEERS, MAN, AND BRILLET 38

+ ]hg er(nt+@)+&hg e
—t(nt+4)) —troE

0 2 1 2 2

N=2m~o, .

We will represent the action of gravitational transducers
upon already modulated light by linear operators S acting
upon generalized amplitudes

A=(AO, A „A2)

x or y

FIG. 1. Round trip in the vacuum (notation).

as

A'=S A .

According to the formalism developed in a previous pa-
per, these operators have the general form

S00 0 0

S10 S11

S20 0 S22

In this formalism, the diagonal elements S;; represent the
ordinary reflectance (or transmittance) of the transducer
for each frequency (carrier and sidebands) whereas S,o

and S20 characterize the power transfer from the carrier
to the sidebands, i.e. , the sensitivity to the gravitational
wave. Optical elements with dispersion and no gravita-
tional sensitivity will be represented by diagonal ma-

trices, elements without dispersion nor 6 sensitivity by
scalar matrices (mirrors, splitters, etc.). Owing to the
n. /2 phase lag between the reflected and the transmitted
waves at a mirror, we sha11 represent the action of a mir-
ror upon the complex amplitude of an optical wave by
i ~R for a reflection, and by &T for a transmission.

The whole interferometer is itself a gravitational trans-
ducer and has therefore an associated global operator S.
In the following we will encounter three diFerent cases:
when S,o and S20 are of equal moduli, the phase relation-

ships between both and S00 will denote either pure phase
modulation or pure amplitude modulation, and when S10
and S20 are not equal, one of them is much larger than

I

hp
Nopt

gP

where 5v is the bandwidth of the detector. In what fol-
lows we shall consider the quantity S, that we shall call
normalized signal to noise ratio (NSNR), as the quantity
to be optimized.

B. Standard gravito-optic transducers

Gravito-optic transducers are optical devices in which
the gravitational wave (GW) is supposed to have a detect-
able perturbing effect. Current examples are the delay
lines and the Fabry-Perot cavities. Both have associated
operators D and Fwhich can be related to the elementary
propagation operator X corresponding to a round trip in
the perturbed vacuum (see Fig. I). We have A'=X A
with

the other. Therefore, if the limiting noise reduces to the
shot noise, we have, for the signal-to-noise ratio (SNR),

1/2
gP v.;SNR=h S S= /Sqo [+ /S2O
AN pt

where r, and g are, respectively, the integration time and
quantum efficiency of the photodetector, and P the power
of the source. In other words, the minimum, photon-
noise-limited, detectable h is

' 1/2

2i cuL /c

NI
1E'

C

'(2 —n )L/c &2'( —n)L/
QL /c

sin(QL/c);(2 +n)g/,e'
QL /c

2i(co+ O))L /c

1

2

R, T, pl 1 1

A'

FIG. 2. n-fold delay line (notation). FIG. 3. Reflecting Fabry-Perot cavity (notation).
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The value of e is + 1 for a round trip along the x axis,

and —1 along the y axis. Consider now an n-fold delay

line with two mirrors of intensity reflection coefficients R
(see Fig. 2}. It consists in n iterations of the X operator
and 2n —1 iterations of the operator i &R . Its associated
operator is thus i D where

R &, T, , with losses p„and with a rear mirror of intensity
reflection coefficient R2. The associated operator iF
looks like the ordinary reflectance of a Fabry-Perot cavi-
ty but with the ordinary phase factor replaced by X:

F= [QR, +(1—p, }QR~X](1++R,R~X)

( —1)» v R ~ X"

Consider a Fabry-Perot cavity (see Fig. 3) with a front
mirror of intensity reflection and transmission coefficients

1. Response of delay line -type -detectors

In more detail, the delay-line operator involves the
three following elements:

4m' v,L/c

D,o=( —I)"&R " 'ie " sin
Vg

D,o
——( —I )"&R " 'ie sin

Vg

2nmvg L

2nmv L

2im(2v
&

—v )nL/c

2im(2vp I+V )nL/c
e

The action of this operator on an unmodulated wave is
therefore a pure phase modulation. It is convenient to in-
troduce some parameters which have their counterparts
in the case of cavities.

By introducing the storage time

2nL

the time constant

S(f)= e ' sin
2

(3)

For a given gravitational frequency corresponding to fo,
there exists an optimal normalized storage time:

If the detection system involves two delay lines, it has a
NSNR

R =1—R,
GR

and the nortnalized storage time t =~, /~" which has the
minimum value t =R *,we get

—(t —
ttrt /2)=e

In what follows we shall consider kilometric interferome-
ters (L =3 km) so that the minimum value of r„ i.e.,
2L/c is about 2X10 s, and high reflectivity coatings
(R '=10 ) so that r" is about 0.2 s. This set of param-
eters will be referred to as the reference antenna. As will
be shown later, the best ~, for a given gravitational fre-
quency vg

' is of order 1/2vg '. So far as we consider
gravitational frequencies sma11er than a few kilohertz we
can assume t ~~t . Two more parameters are useful-
the normalized gravitational frequency f=2nvsr" and
the maximum quality factor Q =2m.v, ,r". (In the refer-
ence antenna, when visible light is used, the quality factor
Qis about 7.5X10' and f=1.26vs/Hz. )

The approximate form of the operator D simplifies now
to

2 0
t0 = arctan

fo 2

2 . fo
S(f ) = sin arctanf fo

(4)

X exp
2 fo

arctan
0

We have, at f=fo,

S(f)=
V'f.'+4

2 0
exp — arctan

fo 2

Note that fo~0 yields 'Ts ~7", and thus r" may be in-

terpreted as the maximum value of the optimal storage
time.

The optimized NSNR is then

/Dqo )
= /Dqo

/

=—e ' sinf 2

(2)

Therefore we can give the limiting value of S when

fo

S(0)=Q/e .



436 VINET„MEERS, MAN, AND BRILLET 38

For fo » 1, a good approximation of the optimal storage
time is given by to = n. /fo: i.e.,

(0)
+S 2v(0)

i.e.,

S(vs)=
2Vopt

sin
'fTVg

2v(0)
g

and the NSNR becomes simply

S(f}= sin2Q . ~ f
0

2. Response ofFabry Pe-rot typ-e detectors

For the Fabry-Perot cavity operator, the relevant ele-
ments are

(1—p )QR e" '+QR
F

1+~R R e2i~L/c

r vopt . AL
F10——teT1 ~ R2 sgn

Vg C

e i(2' —Q)L /c

(1++R R e2&ruL/c)(1+QR R e2((cu n)L—, /c)

opt
F20 l E'T1~ R2

Vg

~'

QL e I(2co+O)L/c

c ( 1+QR R e2i~t. /c)( 1+QR R e 2i(ru+n)L/c)

The eigenfrequencies of the cavity are determined by the
condition exp( 2i cooL I—c ) = —1 and consequently, when

the optical source is resonant, the preceding operator
denotes pure phase modulation. We need now some di-
mensionless parameters analogous to the delay line' s. %'e

may define the time constant of the cavity by

2L

c(1—QR(Rq)

Owing to the constraint 0& R1 & 1 —p1, we have

2L , „ 2L
g 7S ('T

c[1—Q(1 —p, )R2]

The ratio of the time constant to its maximum value will
be named normalized time constant t; it obeys

t &t &1 with t:—1 —Q(l —p()R2 .

In the general case, the source is eventually detuned from
!i~ekv pt from a resonance v0 which leads us to introduce the
normalized detuning defined by hf =2rrbv, ,r". With
these notations, the ordinary reflectance of the cavity has
the exact expression

(1 2t+tt —) +(1 t ) (1—t —/t)5f t sine (bft l2)
IFoo I'=00 R 1+bf t (1 t /t)sine (hf—t l2}

where the notation sine(x) denotes the function sin(x)/x.
Fortunately a simple approximate form can be given

when 6f is much smaller than the free spectral range and

when t g&1 which is satisfied when gravitational fre-

quencies are restricted to a range of values less than a few

kilohertz:
1/2

4t (1 t)—
1+6f't'

The minimum value of
I Foo I

is reached at resonance
where

Within the same approximation, we have

We have further

In particular when the source is resonant (iI(f =0), we
have the special case

I Foo I

=
I

1 —2t
I

Qt (1—t)
I F(o I

=
I F2o I

=
+l+f2t2

We have consequently, for the NSNR,

ArgE00 ——~+arctan
2hft(1 t)—

1 2t b f't'— —S(f)
2Qt ( 1 t)—
+1 +f2t2
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When the normalized gravitational frequency

fo ——2nv' 'r" tends to zero, the optimal value of rs has
the limiting value r" /2 and the limiting value of the SNR
turns out to be Q/2. When fo &~ 1, the function S(t) be-

gins to saturate as soon as

2 . t (p) l
tp =, 1.C. ,

fo harv,
"'

This value will be taken as a reasonable choice, for the
true optimal value is much higher but irrelevant, giving
only a slightly better value of S. In this case, we have, for
the NSNR,

.OS

0'.

S( )= 4

(f2 +4f2)1/2

in particular, (6)

FIG. 4. Transfer function of a Michelson interferometer with
multipass arms (optimized at 100 Hz): (1) delay lines; (2) reso-
nant FP cavities; (3) detuned FP cavities.

S(fQ) =1.78

and

Qt (1 t)—
( 1+f2t2)l/2[ 1+ (f f )2t2]1/2

When f0 ~~ 1, a reasonable choice of rs is again

In dimensional expression, this is

S(vg )=(4v,z, /vg )[1+(2vg/v~ ') ]

and

S(vI ') = l. 78v,p, /vg
' .

Let us point out an important feature —with Fabry-Perot
cavities, it is possible to use a detuned source with respect
to the cavity eigenfrequency of an amount b,f=fo so
that the sideband generated by the gravitational wave is
resonant

(p)
Volt =Vp+ Vg

leading to

4t(1 t)—
+ pt

The detuned Fabry-Perot is less sensitive than the other
configurations, but the fact that it brings a higher
reflectance makes it interesting when recycling is applied,
as we will see in the next part.

III. STANDARD RECYCLING

A. Principles of standard recycling

A classical Michelson interferometer tuned at a dark
fringe behaves just like a mirror —most of the power in-
coming from the source is reflected back. We can use it
as the second mirror of a cavity, the front mirror of it is
called the recycling mirror. It will be shown that this
configuration increases the SNR by allowing more
efficient use of the available power. Figure 5 shows the
principle of operation. Let R„T„,p„be the parameters
(reflectivity and transmittivity coefficients, losses) of the
recycling mirror and Rz, T~,pz those of the splitter. It is
easy to show that at a dark fringe we have an operator S
for the whole system:

A'=S A,

where the relevant coefficients of S are

[p)

and with only one resonant sideband, the optimized
NSNR becomes G

or

S(f)=0.89
1

fo [1+4(1—fIf, )']'"

S(vs)=(0. 89v, , /v' ')

X [1+4(1—v /v"')']

(7)

R T
r r

R T
S S

Figure 4 gives a comparison of the sensitivities versus v
for a delay line, for a Fabry-Perot both at resonance and
with detuning, in the conditions we have described above.

A'

FIG. 5. Sketch of the standard recycling setup.
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I Sio I

=
I Gio I 2 2I —(I —p. )(i —ps) I Goo I

2 1/2
(1 —p. )(1—ps )

I S201 =
I G201 2 2I —(1—p. }(1—ps) I Goo

I

By assuming low extra cavity losses p =p„+2pz we may
write simply

Sio I

I S2o I
=

I Gio I

+1—(1—p} I Goo I

'

I G2o I

+I —(I —p} I Goo I

'
(8)

In the reference antenna we shall take p„=10 and

p~ =10 '. The problem to be discussed below is the op-
timization of either the storage time for delay lines, or the
decay time for cavities, when recycling is applied. In the
general situation, the optimal value of that time constant
will depend on the gravitational frequency fo at which
one wants to optimize, and on the recycling losses denot-
ed by p. Two frequency ranges will appear: the low-
frequency range and the high-frequency range. In the
low-frequency range, long storage times are required, the
recycling losses are therefore dominated by the
reflectivity losses in the arms, and the optimal storage
time is almost independent of p. In the high-frequency
range, the required storage times are relatively short, so
that the losses in the arms may happen to be comparable
with the recycling losses p, and the optimal storage time
will depend on both p and fo. The effective value of p
will be determined not only by the losses of the recycling
mirror and of the beam splitter, but also by the fact that
the interference on the beam splitter may be affected by
small misalignments or by a slight asymmetry between
the two arms of the Michelson interferometer.

I Gio I

I Sio I
=(1 ps)"i/ T.

1 —(I —ps }«,I G~
I

I Gzo I

I S20 I

=(1 ps )&T,
1 —(I —ps)«, I Gm

I

6 is the operator associated with a gravito-optic trans-
ducer, either a delay line or a Fabry-Perot cavity, direct-
ed along the y axis, and G' the operator associated with
the same transducer, directed along the x axis; both have
the same coefficients G;; but opposite coefficients Go, and

602 ~ One sees already that the recycling rate can be opti-
mized for given losses and G, we And

(«)opi=(1 p. )(1 ps) I Goo I

So that it is possible to give optimized values of the corn-
ponents of the NSNR:

I Goo l
=e '

ft
I Gio I

=
I G2o I

= f 2
—te

So that, assuming low losses, the phase relations denote
pure amplitude modulation, and the NSNR of the global
system is given (for extracavity losses p =p„+2ps ) by

sin
2

S(f) 2Q

f +I —(1—p)e
(9)

For a given gravitational frequency denoted by fo, the
corresponding optimal normalized storage time is given
by the implicit equation

p 0 xx+ = tan
2 2

The solution xo takes values in the range [2.33,n] for
values of pfo/2 in the range [0, ao]. A good interpola-
tion formula valid except for low frequencies is

0.8lpfo Xp
xo ——2.33+ then 1s ——

4.25+p o 2&Vg

The optimized frequency response of the recycling setup
is now

Q 2foS(f)=-f xo

xof
2fo

(10)

In particular, if the frequency fo is within the especially
interesting band 1 « fo «1/p say 50 Hz to 500 Hz in
the reference antenna, we can write

=2 fo —210
to —— arctan [1—(1—p)e ')

fii 2

which is easily solved by iterations. For values of fo
small compared to 1/p (say vsi '& 50 Hz in the reference
interferometer), to is seen to be almost independent of p
and takes a value near 0.8 for zero frequency. The corre-
sponding limit for the NSNR is 0.4Q. A convement in-
terpolation formula valid within this range is

to ——( l.56+0. 18fii }

Now, in the case when the normalized gravitational fre-
quency is large enough (say n ' '

& 50 Hz in the reference
interferometer), we can put t =x /fo « 1 and write

1/2

(f } Q
2

I
sin(x /2 )

fo Qx+pfo/2

The optimal value of x is solution of

B. Standard recycling with delay lines
S(f) =0.92—Qfo sin~

~ 1.17f
fo

In the case when G represents a delay line, as shown
earlier, we have

in particular S(fo)=0.85(Q/Qfo) or, in ordinary nota-
tion,
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S(v )=0.92 (2mv' 'r")'
I
sin(1. 17v /v' ')

I

Such an optimized transfer function (for 100 Hz) is plot-
ted in Fig. 6.

C. Case of resonant Fabry-Perot cavities

The relevant operator G is now F:

Fppi= fl —2ti,
I F(0 I

=
I F20 I

=Q«l t)/"—(/I+f't
The phases are such that the NSNR with the optimal re-
cycling rate takes the form

S(f)
2gt ( 1 t)—

'(/I +f't '"(/I —(1—p)(1 —2t )'

In the low-frequency domain, when the extra cavity
losses are small compared to the reflectivity losses of the
cavities, i.e., p « t, which corresponds typically to the
frequency range 0~50 Hz for the reference antenna,
S (f ) becomes independent of p:

1/2

(f) g
t ( 1 t)—
1+f2t2

The optimal value of t at f=f0 is then

1
tp =

1+(1+f2 )1/2

The corresponding optimized transfer function is

The value of x which makes S optimal is solution of

0 =0

The exact solution is somewhat cumbersome but the fol-
lowing interpolation formula is quite sufficient for our
purposes:

—1/3
P 0

tp —— 1+
0

~g(p)s
2 (pj

The optimized frequency response of the recycling setup
is now

1/2

S )=(f =Q

in particular (12)

S(fp)=
2fp

In ordinary notation we have
' 1/22m'"

S(vg ) v p( (p)
vg

1

I' I + ( /v( 0)) )
1 2/

In fact, iff0 is not too high (within the band 50~500 Hz
in the reference antenna), the solution differs little from

xp = 1, so that we can take tp =1/f p' i.e.,

S(f)= v'2 f2 f2
I+V 1+f('1 +

2 1+f(1

1/2
An optimized transfer function (for 100 Hz) is represent-
ed on Fig. 6 so as to be compared with the case of delay
lines.

If now f is large enough ( p 50 Hz in the reference anten-
na), we can set t =x /f 0 ~& 1 so that the NSNR becomes

S(fp)= ' 1/2&fp, pf 01+x x+
4

.2
S/0

D. Case of detuned Fabry-Perot cavities

As already noted, Fabry-Perot cavities can be driven
out of resonance, leading to a different response to gravi-
tational frequencies, to a slightly worse signal amplitude,
but a higher reflectivity. This mode of operation is ex-
pected to give interesting results in a recycling
configuration. Let us discuss this idea.

Assume the optical frequency to be detuned with
respect to an eigenfrequency of the cavity by an amount
equal to the gravitational frequency to be detected:

(0)
vopt =vp+ vg

The detuned cavity operator, as shown earlier, contains
the following elements:

O. 100

FIG. 6. Transfer function of a Michelson interferometer with
multipass arms and standard recycling (optimized at 100 Hz):
(1) delay lines; (2) resonant FP cavities; (3) detuned FP cavities.

4t (1 t)—
Qf 2t

iF. i= +1+hf 2t2+I+(hf f)'t'—
With an optimal recycling rate for v =v' ' and with
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[QR( 1 p)+R2i taa /cGi oj(1+R Re 2i taa /co G) —1

where 2a is the total length of the transfer paths. A direct computation of the coefficients of S gives

—T„QRte ' ' 'Gn;(G, ,
—Gnn)

S0; ——

(1 QR R e2iaaicG2 )(1 QR R e2i~a/cG2)
(i =1,2) .

B. Synchronous recycling with delay lines

In the case of delay lines, the preceding setup may be regarded as a very long ring cavity of length of 4nL+2a. It fol-
lows that the free spectral range between two eigenfrequencies is c/4nL (a being very small compared to L) and that a
gravitational wave of frequency c/4nL will be able to transfer light power from a carrier at resonance to two resonant
sidebands. Let us develop this idea.

By replacing G by the delay line operator in the recycling formula, we obtain, assuming n &&1,
r '2

V
ized

2n 4incoL/c —2inOL/c Pe sin
Vg C

S10=
(1 /R R eizR 2ne4lntaL/c)(1 /R R eizR 2ne4intaL/ce 4innL—/c)

r t r t

where z =2~tea/c, S2n has a similar expression with Q re-
placed by —Q. It is always possible to choose z in such a
way that the carrier frequency is a resonance of the glo-
bal ring cavity:

iz 4iconL/c

we have

4T„QRte

Then,

4T QR e 2tgsjn2 —f
r t

S(fp)=
(1—QR,Rte ')

The optimal value of the recycling rate is therefore

S(f)=
(1—QR R e ')

~

1 —gR R e 'e
QR„=(1—p„)QRte

yielding an optimal peak value (R, = 1):
(15)

2~/fo
We intend to optimize the maximum of this function of 0
which is reached for fnt=m. , i.e., v' '=I/2r, . This
means that for that particular gravitational frequency,
the optical carrier and its two sidebands are resonant in
the ring cavity:

(0) (0)
+opt +g ~ +opt~ opt+ +g

are successive eigenfrequencies. At

with

S(fn)=
1 —(1—p)e

p = 1 —(1—p, )Rt

A plot of S(vs ) is given in Fig. 14. The limiting value for
very low frequencies is therefore S(0)=0; for fn not too
low we have

S(fn) =
~+pfn/4

Laser
I

I

a/2
R

A

R a/2
A'

l.

x 1+
2(m /f n )(1—p)e

4 /f f fo
1 —(1—p)e

When extra cavity losses p are weak (in the reference an-
tenna, p has been given the same value as in the case of
standard recycling, namely, p=2. 1X10 ), we have a
flat maximum of the function S(fn): within the region
1«fn«4/p, S(fn)=Q/m. In the general case, the
transfer function can be expressed as

S(f)=S(fn)
' 2 —1/2

FIG. 9. Sketch of the whole synchronous recycling setup. (17)
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This is a resonant type response characterized by a band-
width [full width at half maximum (FWHM)] of

where z is the propagation phase over the length 2a, i.e.,
the tuning of the short cavity (see Fig. 11). We have,
furthermore,

t/3[1 —(1—p)e ']
4m I—foto(1 —p)e 1 —RiC

vz —vz —— arctan
2m.L 2+R

&
sin(z/2)

(19)

for the central band 1 « fo «4'/p, we have the very
simple result: For z near 0 or 2m, that is, for a high transmission

coefficient of the coupling cavity, we have

S(f)=— 5f 4t/3
7p [1+1(f f )2]l/2 C

I &~ —vs I
=

4L

C. Synchronous recycling ~ith Fabry-Perot cavities

1. Classical properties of coupled cauities

When the gravito-optic transducers are Fabry-Perot
cavities, the recycling setup may be viewed as a system of
three cavities: two long cavities of length L coupled by

means of a third short one of length a (see Fig. 10). If we

ignore losses and external coupling, we can see that such

an optical device has a system of eigenfrequencies ob-

tained by duplication from the spectrum of a single iso-

lated cavity —each eigenfrequency vo of the isolated FP
cavity is split into two new eigenfrequencies: v„,vz cor-

responding to symmetric and antisymmetric eigenmodes.

The values of v„,vz depend on the tuning of the coupling

short cavity. When the coupling cavity is at a maximum

of transmission, the coupling is strong and the di6'erence

which is the free spectral range of a ring cavity of length
4L. Because of the strong coupling, the front mirrors are
ignored.

For z=m. , at the maximum of reflectivity of the cou-
pling cavity, we have

cR)
lvs —vq

I

= =, , R f =1—R, «1,
4mL

where ~z is the common time constant of both long cavi-
ties. For high values of rs, values of

~

v„—vs
~

compa-
rable with gravitational frequencies can be attained, and
power can be transferred from the carrier to one sideband
provided that their frequencies coincide with v~ and vz,
respectively. We are going to discuss this idea below.

2. Synchronous recycling with FP cavities

2m. ( v„vo)L /c =arcta—n
1 — Ri

cot(z/4)

is of the same order of magnitude as the free spectral
range. On the contrary, if the coupling cavity is at a
maximum of reflection, the coupling is weak, and the fre-
quency gap becomes small. Assuming extremely high
reflectivities of the rear mirrors and finite reflectivities of
the front mirrors, it can be shown that

Figure 12 summarizes the notation involved. The opti-
cal paths were separated for more clarity. We have as-
sumed a separation between the two counterpropagating
waves so that we can apply the preceding formula for
synchronous recycling which is valid for a ring cavity.
This can be practically done by suitable elements which
are not taken into account here, for their losses can be in-
cluded in the transfer losses. By using the matrix algebra
presented in Secs. II A and II B, it can be shown that the
operator associated with the whole system is such that

2m. (v, vo)L /c = —a—rctan
1 — Ri

tan(z /4)
1++R,

L L

arm 1

coupling
cavity

arm 2

FIG. 10. Coupled cavities. FIG. 11. Eigenfrequencies of a system of coupled cavities.
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IS)of =

2

2T,QR, T&R2
" sin

[
1+Re ' ']

)
1+Re ' ' '[

(
Q—R„R e "F [[I Q—R„R e "F

We have used the following notation:

(1—p )QR e '" '+QR (1—p )QR e ' ' '+QR
R =QR, Rz, F= F

C l +R 2lcoL/c ) +R 2i (CO —Q)L /C

Only one sideband can be made resonant at time. We shall confine our attention on S&0 ~ The discussion for S20 is quite
analogous. The NSNR is therefore S(f) =

~
S&o

~

.
Let Af be the normalized detuning of the source with respect to an eigenfrequency of an isolated cavity:

hf—:2n(v, ~,
—vo)r", and let f be the normalized gravitational frequency: f =2m.v r". With this notation we obtain

S(f)=
2T,QR, T,R2 sin

[
1 —QR qRze

/ f
1 —QR, R2e

J
AB

(20)

with

3 =
~

1 —QR„R,e "F ~, 8=
~

1 QR„R,—e"F

We assume the frequency of the source (carrier) to coin-
cide with the antisymmetric eigenfrequency of the sys-
tem:

+ArgF—=n' (mod2m) .z
2

ArgF =m +arctan
2b, t(1 t)—

1 2t hf—2t2—

ArgF =m+arctan 2(h — )t(1—t)
1 —2t —(hf —f )'t'

By solving in f the preceding equations we obtain the
gravitational resonant frequency as a function of the car-
rier detuning:

In order to find the peak value of S(f) we assume further
the lower sideband frequency to coincide with that of the
symmetric eigenmode:

1 2t+b f�2t-
2f Qf

(21)

—+ArgF —=0 (mod2n ) .
2

Let us see at which value of f the preceding coincidence
takes place. We must have

tan(ArgF)=tan(ArgF )= —tan(zl2) .

A general form of the phase of a detuned cavity was
given in Sec. II B2 yielding

The requirement that hf makes the carrier to coincide
with the antisymmetric eigenmode is now

T

2hft(1 t) —z= —tan
1 2t b,f't'— —

the solution of which relates the antisymmetric detuning
b,f„ to the tuning of the coupling cavity:

1/2

bf„t=(1 t) cot ——+ (1—t)'cot' —+1—2t
2 2

(22)

Afoot

=(1—t) cot
z
2

The same equation would give the symmetric detuning:
, 1/2

(1—t)' cot' —+1—2t
2

a/2 L
R

t
'III

a/2

R, T, p1'1

The resonant gravitational frequency can be related to z
by

fot =(~f~ —~fs)t
1/2

=2 (1—t)'cot' —+1.—2t
2

FIG. 12. Synchronous recycling with FP cavities: notation. The laser source can be properly tuned to coincide with
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the antisymmetric eigenfrequency, by locking it on the
minimum of reflection of the ring cavity corresponding to
the antisymmetric resonance. We intend now to optimize
S(f0 ) when f0 has its minimum value, namely, whenz:—m', then

Af„t=v'1 2t-
h fst = —v'1 2t-,
fot =2&1 2t—

In this same special case, the reflectivities of the cavities
are the same for the carrier and the sideband and we have

IF'
I

= IF'I =l —2t

neglecting second-order terms in t or a, only the phase
term in the quantity named B will change and with

i(2ArgF +z) 4~ ( g4)e =e

we obtain

sin (z/2)
[1+2sin (z/4)][1+2 cos (z/4)]

1

2i ~ cot(z/4)1+
2t [ 1+2 sin (z /4)

which yields, owing to the relation fat =2/sin(z/2),
If fo »1, we have t =2/f0 and consequently
rs = 1/@vs

' as found in Sec. IV C 1.
Taking into account that bf„,b fs,fc are small com-

pared with the free spectral interval of the cavities, we
find an approximate form for the peak value of the
NSNR:

r

S(f)= . , 1+Q I
sin(z/2)

I

4(f fo) cos (z/4)

3+ sin (z/2) [1+2sin (z/4)]

The gravitational bandwidth is, therefore,

(26)

[1—QR„R,(1—2t)]

The optimal value of R„ is QR„=(1—p„)QR, (1—2t),
so that the optimal peak value is finally

5f ~31+2 lsn( z/4) (FWHM).
cos (z/4)

In the special case z =m we have simply

1 —(1—p„)R,(1—2t)

(see Fig. 14). The relation giving fat as a function of t
can be inverted giving

1S(f)=- 5f =4&3 .
4 [1+(f f )'/4]'"— (27)

t =
2

(1/ 1+f0 l4 —1)
4

f2 (25)

1
S( o)=—

4 1+pfo/8

so that, if fo»1, the approximation t=2/fo holds.
Then

The preceding form is quite similar to that found for de-
lay lines. The synchronous recycling system using
Perot-Fabry cavities is however continuously tunable in
gravitational frequency by adjusting the optical path in

the coupling cavity and the corresponding reflectance
phase of the cavities (see Fig. 13) by tuning the frequency
of the laser, instead of discretely (by changing n) in the
case of delay lines. Figure 14 summarizes the results ob-
tained for the sensitivities of the two types of synchro-
nous recycling systems.

where p has the same definition and value as in Sec. IV B.
If further fo is not too high (fo «8/p) we have an es-

timation of the optimal value of S(fo): S,„=Q/4. In
fact, S(fo) has a flat maximum of about that value in the

range 1 « fo «8/p (50 Hz to 500 Hz in the reference
antenna, and falls to zero when fo becomes either very
small or very large.

Let us return now to the general case, when z denotes
an arbitrary tuning of the coupling cavity, not near z =0
(mod 2n) however, and let us study the transfer function
S(f). It is possible to give a very simple approximate
form of S(f) when f is near fo and fo in the optimal
range defined above: 1 «fo « 8/p. Let us set

~2

I I I
S~O ~~2

100 200

f fp— FIG. 13. Transfer functions of a synchronous recycling inter-
ferometer with FP cavities at various reAectivity phase
(ArgI' =n. /2, n. /4, m/8, ~/16): tunability.
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I I I I IIII[.=S-pe ak&Q

2

t e trIIW Optimal time constant and optimized response:

tp=

S( )=
( 1 +4f 2 /f 2

)
1/2

S(fo)=p

I I I IIIII

FIG. 14. Synchronous recycling interferometers: peak value

of the NSNR: (1) case of delay line; (2) case of FP cavities; (3)
standard recycling with detuned FP and optimal time constant
(for comparison).

V. WIDKBAND AND NARROW-SAND ANTENNAS

The discussion of the different recycling schemes has
shown that the gravitational frequency response of the
corresponding interferometers can be deeply different
from that of the initial nonrecycled transducers. As a
first approximation we can distinguish between the cases
of wideband responses, and the cases of resonant, or
narrow-band responses. In all the following cases we wi11

give numerical estimations of the shot-noise limited sensi-
tivity based on the reference antenna and on an effective
laser power rlP of 10 W at a wavelength of 0.5 pm, which
yields

T ' 1/2
ot

gP
=2&(10 ' Hz

A. Wideband antennas

Apart from the ordinary nonrecycling interferometers
involving delay lines or FP cavities, the standard recy-
cling scheme provides us three new wideband systems
that are to be compared. Recall the essential features of
each.

to=, S(f)= sin
2 . m f

fo f 2 fp
S(fp)=

fo
'

at v' '=100 Hz, we have hp~=1. 7X10 Hz

2. Michelson with FP cavities and no recycling

Zero-frequency limit of the NSNR amplitude:
S(0)=Q/2.

I. Michelson interferometer with delay lines and no recycling

Zero-frequency limit of the NSNR amplitude:

S(0)=Q/e .

Optimal storage time for fp »1, corresponding optimal
response and minimum detectable, photon noise limited
h:

S(f)=0.92—Qfp sin~

~ 1.17f
fo

S(fo)=0.85
V'fo

for v' '=100 Hz, we have hpz ——3.5&10 Hz

4. Michelson with resonant FP cavities
and standard recycling

Zero-frequency limit of the NSNR: S(0)=Q/2.
Optimal time constant, optimized response in the band

fo »1 Pfo «1:
1to=

fo

S(f') =
( 1+f2/f 2 )1/2

S(fo)=
2fo

for v
' ——100 Hz, we have hp~ =4.2&(10 Hz

We can conclude that delay lines and Fabry-Perot sys-

tems are almost equivalent from this theoretical point of
view, either in conventional or recycling antennas.
Furthermore we note that standard recycling provides a
gain of 0.4+fp within the preceding range. When no re-

cycling is applied, the optimal NSNR is proportional (for

f p »1) to Q/fo, i.e., to v, , /v' ' and thus, is indepen-
dent of the interferometer arm length, provided that the
suitable time constant is achieved: Whether it has been
obtained by many reflections over a short distance or by
few reflections over a long distance does not rnatter. On
the other hand, when recycling is applied, we see that the
NSNR becomes proportional to Q/+ fG and that the in-

terferometer size is now important. A larger size allows
fewer reflections in achieving the optimal time constant
thus lowers the reflectivity losses of the arms, which per-
mits a higher power buildup in the system and finally a

for v' '= 100 Hz we obtain hpz ——1.9 && 10 Hz

3. Michelson with delay line and standard recycling

Zero-frequency limit of the NSNR amplitude:
S (0)=0.4Q.

Near-optimal time constant, optimized response in the
band 1«fo, pfp ((1,

23tp=
fo
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better SNR. If we now examine the very-low-frequency
limit, all systems are limited by their upper bound on the
possible storage times: this is why the zero-frequency lim-
its for all wideband systems is a fraction of Q. In that
very-low-frequency part of the gravitational spectrum,
the photon noise limited sensitivity will improve linearly
with the length of the detector.

B. Narrow-band antennas

Let us recall brieAy the essential features of the three
types of narrow-band receivers for 6% that we have en-
countered up to now.

I. The standard recycling setup with detuned FP cavities

Zero-frequency limit of the peak value of the SNR:
S(0)=Q/4

Optimal time constant, optimized response in the band
1«fo, pfp & I:

2

3+(1+2'2 )I j2

' 1/2

2(1++I+2pfo )
S(fp)=Q

(3++I+2pf,' )'

vs '=100Hz, we get hpN=10 Hz '~, 5v =5.5 Hz.
Delay lines or Fabry-Perot cavities in synchronous re-

cycling systems are thus almost equivalent. We can say
that the gain obtained at the peak value of the NSNR by
synchronous recycling is roughly a factor of 0. 15f„with
respect to no recycling, and a factor of 0.4+fo with

respect to standard recycling, when the optimal decay
time is achieved, we also note that standard recycling
with detuned Fabry-Perot cavities is characterized in the
realistic part of the gravitational frequency spectrum by
the same characteristics as the synchronous recycling.
For shorter values of the decay time, a smaller peak value
of the NSNR, but a larger bandwidth are obtained.
Moreover, the product (peak value) &((bandwidth) is
larger in the standard recycling system with detuned cav-
ities, which means that it should be especially interesting
in the case of not purely monochromatic sources.

The scaling factor Q shows the importance of the inter-
ferometer arm length. The synchronous recycling system
is very sensitive to intracavity losses: an increase of the
apparatus size results in fewer reflections to reach the
suitable time constant, therefore, in a higher finesse of the
ring cavity, which increases the SNR.

VI. CONCLUSION AND PERSPECTIVE

S( o)S(f)=
[ 1 +(f f )2t2 ]I

/2

Bandwidth: 5f =[3+(1+2pfo}' ]&3; for the reference
antenna at v' '= 100 Hz, we get h pN =2.3)& 10
Hz ', 5vs ——15.4 Hz.

The features of this kind of recycling become identical
to that of synchronous recycling when p tends to zero.

2. The synchronous recycling setup with delay lines

Zero-frequency limit of the peak value of the NSNR:
S(0)=0.

Optimal storage time, optimized response in the band
fo»1, pfo «1:

7T 1to=, S(f)=—
~ [1+-,'(f —fo}']'"

Bandwidth: 5f =4v'3; for the reference antenna we have
at v' '=100 Hz, we get hpN =8 ~ 3)(10 Hz
6v =5.5 Hz.

3. The synchronous recycling setup with FP cavities

Zero-frequency limit of the peak value of the NSNR:
S(0)=0.

Optimal time constant, optimized response in the
range fo»1, pfo «1 assuming an antiresonant cou-
pling cavity (z =n}—

2 1
to —— , S(f)=-

f0
' 4 [1+-,'(f —fo)']'"

Bandwidth: 6f =4&3; for the reference antenna: at

We have presented here a unified formalism for the
study of all the kinds of passive interferometers which
have been proposed so far for the detection of gravita-
tional waves. This allowed us to compare directly the rel-
ative shot-noise limited sensitivities of these interferome-
ters. The important results are the following.

(i) The sensitivity gain brought by the use of recycling
techniques varies with the gravitational frequency: for
the reference antenna, in the frequency range between 50
and 500 Hz, it is roughly equal to the square root of this
frequency (expressed in Hz) in the case of a wideband an-
tenna (standard recycling), and to the frequency in the
case of a narrow-band antenna (synchronous recycling).
It lies between these two values in the intermediate case
of detuned recycling.

(ii) The use of a recycling technique calls for very long
arm lengths: the sensitivity is proportional to the length
in the case of a narrow-band recycling system, and to the
square root of the length, in the case of standard recy-
cling.

(iii) Delay-line or Fabry-Perot gravito-optic transduc-
ers show essentially the same sensitivity in all cases, but
the Fabry-Perot systems are much more versatile: while
any modification of the transfer function of a delay-line
system requires a major change of the apparatus (moving
or changing mirrors), the response of a Fabry-Perot sys-
tern can be adapted rapidly with just a slight change of
the laser frequency or a micrometric movement of one
mirror.

(iv) The new technique of standard recycling with de-
tuned cavities gives the possibility of finding a comprom-
ise between bandwidth and peak sensitivity, which should
prove to be very useful, specially at the time of the detec-
tion of the first signals, when the sensitivity of wideband

systems will still be marginal.
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(v) The smallest detectable gravitational-wave ampli-
tude h „obtainable with a realistic laser (r)P =10 W) and
the use of recycling techniques should guarantee the ob-
servation of a few events per year, since the present
theoretical estimations for strong extragalactic sources in
the local cluster give amplitudes h around 3)(10
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