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Infrared fixed points in asymptotically free field theories: What do they tell ns?
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The meaning of infrared fixed points in asymptotically free field theories is discussed in connec-
tion with a recent paper of Kubo, Sakakibara, and Stevenson. It is argued that our understanding

of the infrared behavior of perturbation theory depends crucially on our ability to cope with the
divergences of perturbation expansions for physical quantities. As at any finite order the presence
or absence of the infrared fixed point of an associated P function is a matter of choice of the ap-

propriate renormalization scheme (RS), the resulting infrared behavior of truncated perturbation
expansions of physical quantities is RS dependent. It is shown that under certain circumstances the

principle of minimal sensitivity fails already at finite values of external momenta and cannot there-
fore in this case be used in investigation of the infrared behavior of physical quantities. It is further-
more explained why contrary to popular belief "critical" exponents associated with infrared fixed

points, present in some renormalization conventions, have no direct physical meaning.

In their article, ' Kubo, Sakakibara, and Stevenson
(KSS} discussed perturbation expansions, with special
emphasis on the associated renormalization-scheme (RS)
ambiguity, for the theories which are asymptotically free
in the ultraviolet region and which have an infrared fixed
point a =a'. (The notation used in Ref. 1 and followed
here is that of Ref. 2.) The reason for this interest is ob-
vious: if a ' is small, it is tempting to conclude that per-
turbation theory could apply even up to a*. Although
the situation considered in Ref. 1 is more general let me
concentrate on the physically most interesting case of
massless asymptotically free non-Abelian gauge theory,
such as QCD.

The physical question we are interested in is that of the
infrared (IR) behavior of various physical quantities. If,
for instance, R (Q) is a physical quantity depending on a
single external momentum variable Q (and so as the
external momenta of particles vanish so does Q), then de-
pending on whether or not the limit

lim R (Q)—=R
Q~O

exists, the theory is considered IR stable or not [for this
particular quantity R (Q)]. So far, only physical concepts
were involved in the formulation of the problem and IR
"fixed" points have not yet appeared. They do so once
we discuss R (Q) in the framework of perturbation
theory, where R (Q) is given as a series:

R (Q)=a (p, c;)[1+r,(Qip)a(p, , c; )

+r, (Qlp, c, )a'(y, , c, )+ . ] . (2)

renormalization scheme (RS) of the couplant:
Sz = Ils, c, j. Let me also recall the useful concept of the
renormalization convention (RC), which is defined by
specifying a11 the free c, 's, but leaving p undetermined:
C„=[c;j.

For the Green's function G, the definition of the RS in-
volves, in addition to the Sa = I@,c; j of the couplant,
also the specification of arbitrary coefticients y; appear-
ing in the expansion of the associated anomalous dimen-
sion y(a): S„=[p,c;,y; j. Similarly for the RC,

Let me for the moment consider physical quantities
only. The renormalization-group (RG) invariance stipu-
lates that al! the RS are in principle equally good for the
evaluation of R (Q} according to (2) and must give the
same result if (2) is summed to all orders. This unique-
ness is guaranteed, on a formal level, by specific depen-
dence of the coefficients rk on p, c;. The internal con-
sistency of perturbation theory does not, however, by it-
self help us in summing series such as (2), if, as is the case
in QCD, these expansions turn out to be divergent. This
divergence cannot be considered a mere nuisance and is,
in my view, quite essential, especially for the investiga-
tion of such a subtle question as is the IR behavior of the
theory. Let me state my position on this point before
moving to the content of Ref. 1.

As any Cz = Ic; j is in principle equally good for the
evaluation of (2), let me define three different examples of
them:

Cz = jc, =0, i )2j, i.e. , 't Hooft scheme (Ref. 3),

In the following I take, as do KSS, d =1. The couplant
a (p, c; ) appearing in (2) obeys the familiar equation

da (p, c) =P(a)= ba (1+ca+c—2a2+ . ),
d in@

where b, c are fixed (in QCD by specifying the number of
quark colors and flavors), but all the higher c, , i ) 1 are

completely arbitrary. They define, together with p, the

C~ = Ic, =0, i )3, c~ &Oj,

C„=[c;according to the usual modified

minimal subtraction (MS) prescription],

There is no IR fixed point in C~ and moreover the corre-
sponding couplant is negative for p(A, , while for C~
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any c, & 0 leads to a zero in the lz! function, called IR fixed
point a'(cz). To specify the RS, let me, quite conven-
tionally, set p=Q in order to avoid large logarithms of
Q/p. Then the coefficients rl, are no longer functions of
either Q or p but are pure numbers, all the Q dependence
being shifted into the couplant a (Q, c;). For Czi the for-
mal expansion (2) cannot be used in IR region (a &0
there) but in Czi there seems to be no problem with
the IR behavior of R (Q). As the limit a '(cz )

=lim& oa '(Q, cz ) does exist and is finite, we find

R = lim R(Q)
Q~o

= a*(c )z[1+r&(1) a*(c }z+r (zl, c }za" (cz)+ ],
(7)

where rz(l, cz ) =ri, (Q =@,cz). So in this Cz, the theory
seems to be IR stable, the value of R being given by the
sum of (7).

This conclusion would be justified and consequently
the IR behavior rather simple, were the series (7}conver-
gent. For series divergent in any fixed RS, as those en-
countered in QCD, the situation is definitely subtler. To
make reliable statements about the IR behavior of R (Q)
we should have some understanding of the full sum (7), or
even better attempt to define (2) for finite Q & 0 and then
take the limit Q —+0. Let me stress that our Czi is as val-
id a choice of the Czi as, say, Czi precisely because (2) is
expected to diverge in both schemes. While in principle
any RC can be used in (2) it might be that in some RC,
say Czi, the expansion (2) is simpler than in another RC
by being convergent. If that were the case for all physical
quantities, not just one particular R (Q), then clearly this
Czz (in fact the whole class of such RC's) would play
somewhat of an exceptional role, if only from the point of
view of summing (2). In QCD, however, this does not
happen. There, the behavior of the coefficients rI, is of
the form rI, —Af"k k!, where the factors A,f,5 are pro-
cess and kinematic region-dependent parameters depend-
ing also on the chosen RS. For a given quantity R (Q) we
can absorb part or all of the divergence of rl, into the
coefficients c;, making thus the expansion (2) convergent
[as in Ref. 4 where R (Q) =a(Q) by definition] but we
cannot do this for all physical quantities simultaneously
By going from Cz to our Cz we induce some additional
divergence in the coefficients rA but this induced diver-
gence is not worse than that of rj, and so does not make
C~ less suitable than C&

Formally we can always talk about the IR fixed points
as being present in the theory, but as long as we do not
understand the sum (7) they concern the properties of the
unphysical quantity a ( Q, cz ) in a particular RC and have
no direct relation to the IR behavior of R (Q) itself.
Moreover, there is obviously an infinite number of fixed
points, even in our restricted class of C„,each one corre-
sponding to different c2 (0. Let me stress that the arbi-
trariness in the presence of IR fixed points in P(a) has
nothing to do with the truncation of (2). We can simply
choose our RC to be C~ or Cz defined above, giving it
the property we want. In this sense P functions corre-

sponding to Cz and Cz are all orders results.
In other words, there are no "real" or "spurious" fixed

points in the theory, there merely are, or are not, fixed
points of P(a) corresponding to a particular choice of the
RC we made. To investigate the IR limit of R(Q) it
might appear most convenient, although by no means
necessary, to work in some RC with IR fixed points, like
our Czi, as there, the expansion (2) can be used down to

Q =0 where it yields just (7).
Let me now recall the essence of Ref. 1. To each order

the procedure for optimization (directly at Q =0) sug-
gested therein amounts to choosing Sz = I@,c;] by set-
ting @=0 and finding the free c s by means of the origi-
nal principle of minimal sensitivity (PMS) criterion. The
basic result (restricted for concreteness to QCD) is the es-
tablishment of a criterion for the presence or absence of
IR fixed points at third (and higher) orders and so for the
IR stability of physical quantities at that order. Accord-
ing to this criterion QCD (for nf 8, so that c &0) is IR
stable if the RS invariant

pz rz+——cz —(r &+c/2) (8)

While cz(Q) is rather stable with respect to changes of
Q~O and has a finite limit cz(0)=[m. /(m. —4)]pz, a(Q)
increases with decreasing p, until it diverges atPnite p, '",
thereby causing also the divergence of R' '(Q) at that
p, '". Similarly, as for p2 &0, the saddle becomes progres-
sively narrower and steeper as p, decreases to p&

'" but
contrary to the latter case rises to infinity already at that
finite pP'". For p, &pP'", R "(Q,a, cz) is a monotonous
function of the couplant (inside the physically accessible
region 1+ca +cza &0) for any cz. In fact, this
phenomenon happens already at the second order, where
the general form of R ' '(Q),

R' '(Q) =a t2+c in[ca/(1+ca)] —
p&a ), (9)

is negative, while for pz & 0 R (Q) is IR unstable. The
first part of this statement is definitely correct, but for
p2&0 the situation is more complicated. To understand
the difference between the cases p2) 0 and p2 & 0 it is use-
ful to find first the optimized RPMs(Q) at finite Q &0 and
then see how the optimal a(Q), c(Q}, and RpMs(Q)
behave as functions of Q when the latter vanishes.

If we do this for pz &0 we find a saddle point at a(Q),
c z(Q) for any Q & 0. As Q~0 this saddle point touches
the line 1+ca+c2a =0, defining for negative c2 the
physically accessible region of a, c2, at finite values of
cz =cz(0), a'(cz) =a(O, cz) given in Eqs. (28) and (29) of
Ref. 1. This saddle point has a finite IR limit in spite of
the fact that it lies in a valley (running along the men-
tioned borderline) which grows ever narrower and steeper
as Q vanishes.

For p2 & 0 there also is a saddle point at some
a(Q), cz(Q) but its behavior as Q~O is completely
different. This behavior can be analyzed very easily for
c =0 when we find that the saddle point does exist only
for

p, =b ln(Q/A) & p, '"=)r/(n4)p /4=. —1.21+p
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has a stationary point only for p, (Q) &0, the optimized
result diverging as 1/p, as p, ~0. As r, (MS) = 1.411 (for
five flavors), Eq. (9) blows up at Q =1.45AMs, where, on
the other hand, R M~s(Q) is still finite.

Now, how to interpret the fact that R pMs ~ Do already
at finite p, ? As there is no obvious reason to expect R (Q)
to diverge at that or any other, finite pi) —00 (Q =0
corresponds to p, = —~ },we should be cautious to inter-
pret this divergence as an indication of IR instability of
R (Q). In my view it is rather a warning that the PMS
criterion itself is (at the third order) inappropriate near
the IR limit for quantities characterized by p2&0. Let
me recall that the only third-order calculation of a physi-
cal quantity available so far, namely, that of the ratio

We immediately find that

da2(p, c,"')
d 1np

da, (p, c,"') dF(a, )

d in@ da,

dF(a, )
=p, (ai )

Gfa )

and if Z2 (a2) =F (ai )Z (a, ) then also

d lnF (t2i)y"'(u, ) =y"'(~, )+p, (~, )
da&

connected by perturbation expansion of the type

a2=F(a&)=a&(1+d&a& +d2a& + . ) . (13)

(14)

(15)

R =o(e+e ~hadron)/o(e+e ~p+p )

(Ref. 5}, yields positive and large p2-62 (for nf =5). So
the situation when the PMS criterion is of little use in
studying the IR limit is not only of academic interest.

At the third order, in contrast to the second order, on
the other hand, exist fixed renormalization conventions
such as Ca of (5), in which (2) truncated to finite order
makes sense directly at Q =0for any p2. I stressed above
that I do not think this means we do understand the IR
behavior of R (Q), but only that in these RC we can write
down mathematically well-defined expressions for
R' '(Q} even at Q =0.

So far, I have discussed the main aim of Ref. 1 and in-
dicated (i) why the summation of perturbation expansions
such as (2} is in my view essential especially for the inves-
tigation of the IR behavior of physical quantities and (ii)
when and why the PMS approach fails already at finite Q.
Let me now comment on two specific claims made in Ref.
1. First, one should be very careful when discussing the
RS dependence of the so-called "critical exponent" y'.
While the anomalous dimension

d lnZ (a) =ri&+r2
d in@

(10}

associated with certain renormalized, amputated Green's
function,

G(Q/p, ,a(p))=Z (p/A, a(p)}G~„,(Q/p, ,p/A, a(p)),

obviously depends on the S„=t p, c;,y, , i ~ 2], it is often
claimed that its value at the fixed point of p(a) corre-
sponding to C„jc,),

y*=y(a'}, P(a')=0, (12)

is independent of this choice and represents therefore a
physical quantity. There is indeed some invariance of y
but only under a very limited subset of RG transforma-
tions. The arguments underlying the above claim go
back to the original paper of Gross and were repeated in
many reviews on the renormalization group. Neverthe-
less, as I want to show their questionable validity, I will
be rather detailed here.

Consider therefore two couplants a „az corresponding
to two different renormalization conventions C&, Cz and

The second term in (15) is indeed proportional to p, (a, )

and so at first sight vanishes at zero of p, (a, ), i.e., at the
IR fixed point a *, , yielding

y' '(az )=y'"(a,") at az =F(a*, ) . (16)

CG~ =(as in C„~ except for c2 '+c2 '+cz" )

(17)

(18)

where y=y', "=y2 ' is unique. In this situation (16) is
obviously violated due simply to the fact that a 2 &a i
and contrary to Refs. 6 and 7.

The reasoning leading to (16) is valid provided the
derivative d lnF (a, )/da, is not singular at a," and does
not behave there as 1/p, (a

~
). This provision is, of

course, explicitly mentioned in both Refs. 6 and 7, but
obviously considered as a quite natural condition to be
imposed on the acceptable RG transformations. But, is it
really so? I think it was only after the 't Hooft observa-
tion that the dependence of both p and y functions ap-
pearing in (14) and (15) on the renormalization conven-
tions implies that we may work in what is today called
the 't Hooft RC, (4) (and by extension in any RC where
all but a finite number of coefficients c, or y; are set to
zero) that the implications of the RG freedom were fully
realized. This freedom gives us the right to also use the
RC, (17) and (18), defined above which by definition pos-
sess an IR fixed point at a a*=1/Q —c2. In these RC
we easily find (for reasons of technical simplicitly let me
assume c =0 in the following considerations) that the
derivative of the p functions at the IR fixed point is a
function of cz..

d (a) ,=2ba *(c2 ) (19)

violating another of the statements contained in Refs. 6
and 7 and, namely, that (19) is independent of the chosen

On the other hand, we know that the coefficients y",
j « 2 are for both i =1,2 completely arbitrary and in-
dependent of c"which specify C„',Cz. We can therefore
work in the following two C&.

CG = jc~ ~=0, i +3, c"' &0, y'"=0, j+2)
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dP)(a, )+
a& a

1

(20)

is not singular at a &. Indeed straightforward evaluation
of F(a, ) near the fixed point a', shows that it behaves
there as

2 (a2
1 1

K)2=
2

(21)

Depending on whether a2 &a) or vice versa, (21) is de-
scribed by two different curves depicted in Fig. 1.
Evaluating the logarithmic derivative in (20) near a 1,

d ln[dF (a, ) /da, ]H{a, )—=
da)

a —a*
1 2

a 1 (a i
—a) )

(22)

we see that indeed it is singular as required to cancel the
zero of P, (a) ) at a', . Let me, however, stress that while
(22) is singular there, the function F(a) } itself is not In.
fact for any values of a ),a 2, F(a) ) is given by a conver-
gent expansion (13}in the whole interval (O, a; ). There
is no good reason to reject this RG transformation and in
fact we cannot even think of rejecting it if we do not want
to run into serious difficulties elsewhere. In general, we
can break all the transformation functions F(a) ) into two
subsets, one obeying the condition ~H(a) )~ & ae, the oth-

C)t =
I c, I. This conclusion again holds only provided the

logarithmic derivative appearing in

dP2(a2) d ln[dF(a, )/dai]
P((a) )

da2 '2 da)

Fo(a, ) =
a&

we find using (21) that near the fixed point

Fa( ) (
a }l (a& —a) )l(2ba) )

a, —a, a& (24)

which leads, as expected, to singular logarithmic deriva-
tive

er not. Analogously we can split the set of all P functions
with IR fixed point at some finite a; into distinct subsets
S„each of them being characterized by a different
tangent t at that fixed point a &. Transformations con-
necting two couplants whose P functions belong to the
same subset S, will be described by the functions F(a, }
coming from the first subset, those connecting couplants
from two different subsets S„S,, from the second one. In
the latter case, the shape of the corresponding function
F(a i ) will look near a i similarly as in Fig. l.

We cannot simply reject the second subset of functions
F(a) in (13), for which ~H(a}~ = ae, because in doing so
we would lose the bridge between different subsets S, of
the RC. This would make sense only if we would be able
to decide tohich of them is the "correct" one [for our re-
stricted class of RC in (5) this would require us to choose
one and only one of all the possible cz]. In my view there
is no reason for preferring one such subset S, to another
and no one has ever come forward with any suggestion in
this regard. The derivative H(a) of the P function at the
fixed point is therefore as unphysical quantity as
dP(a }/da at general a.

Coming now to our two RC's (17) and (18) for the
Green's function (11),

F(a, ) 1 —c' '[F(a )]2
(]) 2

(23)
1 —c2 a,

d lnF (a, )

da,
y az —

a&

2ba; a, —a',
(25)

FKJ. 1. The shape of the function F(a, ) of Eq. (19) for two
possible orderings of a*, ,a2.

Depending on whether the product y(az —a t } is posi-
tive or negative F (a i ) vanishes or diverges at a ) . It is
clear that to violate the equality y' '(a

2 )=y"'(a
) ) for

our two C„(17) and (18) it suffices when F(a)ja, the
couplants a„a2 being even from the same subset S, . To
reject RG transformations described by such Fo(a)
would imply that the change of the Cz =Ic; I of the
couplant is correlated with that of the Green's function
[i.e., y; in (10)]. Moreover, as in the case of F(a) we
would again have to specify which Cz = tc; I is to be as-
sociated with a given set I y, , i 2I. I do not think there
are any reasons to expect such a correlation or ideas on
how to do it.

Let me stress that in both cases discussed above the
transformations violating the statements in Refs. 1, 6,
and 7 do not form in any sense a "small" class, but are on
the contrary absolutely indispensable for the group struc-
ture of the set of renormalization transformations. The
complete arbitrariness in the possible values of p, c;, and

y, is in fact also at the heart of the PMS approach.
The same kind of reservations must also be borne in

mind when discussing the relation of the anomalous di-
mension (7) to the truly RS invariant, physical quantity,
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d InG(Q, p, c;,y, )
R (Q)—= (26}

d lnG(Q/p, c;,y;)
(Q)=

d 1np

Again, the fact that

(27)

R (Q) = (a)—P(a) (28)

does not imply the relation lim& oR (Q)=y(a') at the
fixed point a'. As shown above y(a ) does depend on
the choice of the Ca = Ic;,y; I chosen to renormalize G,
while R (Q) manifestly does not. The second term in
(24) again compensates the RC dependence of y(a'} to
yield the RS-independent quantity R (Q}, even for any

which in virtue of the fact that Q enters always in the ra-
tio Q/p is equal to

finite Q.
In summary the PMS criterion for fixing the RS is a

quite reasonable procedure provided, of course, that it
works. The IR limit of R' '(Q) is, for positive p2, just
one case where it does not. The PMS runs into problems
also at arbitrarily large Q in the physically most interest-
ing cases such as QCD where perturbation expansions are
(in fixed RS) factorially divergent but of asymptotically
constant sign. Should one conclude that because of the
failure of PMS in such a circumstances theories such as
@CD cannot be sensibly defined at high orders at all?
The PMS, at least in its original form, is of no help here,
but we can still use the renormalization conventions, such
as C„of (5), in which the fixed point appears by
definition. In such a RC the question of the IR behavior
of physical quantities reduces to the same basic problem
as that for finite Q: finding a way of handling divergent
series such as (7).
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