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Chiral anomaly at finite temperature
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Based on a simpli6ed derivation of the Abelian chiral anomaly, we prove the temperature in-

dependence of the anomaly in 3+ 1 dimensions.

INTRODUCTION Z =exp( —S,e)= fDQDge (4)

The chiral anomaly has been studied extensively by
many authors. ' In particular, the nonperturbative ap-
proach, with a regularization scheme for manipulating
the divergence in the phase factor, arrives at a neat ex-
pression for the chiral anomaly in 2n dimensions. How-
ever, it seems that such a method is not suitable for deal-
ing with the finite-temperature case. Recently, the
method of the derivative expansion has been used to pro-
vide the proof of the temperature independence of the
anomaly in the Schwinger model.

In this Brief Report, we try to propose a new method
for studying the temperature dependence of the chiral
anomaly in four dimensions. Every step carried out
below is well defined; no ambiguous divergence occurs.
The whole calculation seems quite elegant, but we have to
confine ourselves to the Abelian case.

FOUR-DIMENSIONAL MODEL, T=0

I y„y.I =2~„. «y„y.y.y p=4&„,p . (2)

To consider the chiral anomaly of model (1), we add an
axial vector which can be understood as a parameter aris-
ing from the chiral transformation of g, i.e.,

Sf =f d x g(P eV i A—y)g5.— (3)

Then the fermion part of the generating functional reads

In four-dimensional Euclidean space, the fermion part
of the action is defined as

Sf ——f d x P(I) —e V)P

with V„being the Hermitian external Abelian vector
field. The Dirac matrices y„and y5 are all Hermitian
such that

Thus we have

5Seff 1 5Z
5A„g =p Z 5A„g o

H =(P eV i A—ys) =—Ho+H,

with

(8a)

Ho ——p, H, =B i(gA ——Ag)ys,

B =V'+A' —(PV+ YP), 8=/ —eV.

By using the formula

detH =exp(Tr lnH)

and noting that

lnA iB = —f dt t '(e "'—e ')
0

(8b)

(9)

we will evaluate the renormalized lnH by the expression

(lnH)«„———f dt t 'e
0

The reasonableness of this prescription lies in the fact
that the divergence arising from the integral in (11) will
be absorbed into the renormalized coupling constant e
(see below).

Now let us expand Tr exp( Ht) as follow—s:

Js„=sty„y54

Substituting (3) into (4) and performing the functional in-

tegration, one obtains

Z =det(P elr i A—ys)=—det' H,
where

—(1 —u)Hpt MHpt
H1e H,

—u (1—U)Hpt MUHpt

1 1
'He ~ 0 ~

Trexp[ —(Ho+H&)t]=Tr e +( —t)e H~+ —,'( —t) f du e

+ —,'( t) f duuf—dve
" 'H, e

0 0
(12)
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For dealing with the chiral anomaly, the terms in the perturbative expansion (12) without the totally antisymmetric
tensor e„„&called "normal-parity naive anomalies" will be irrelevant. It is because these terms could be canceled that
we add some counterterms which may be chosen appropriately while preserving the vector Ward identity. On the other
hand, one cannot eliminate those terms including e„&by whatever choice in counterterms while preserving the vector
Ward identity.

Furthermore, as we shall set A„ to zero at the final stage, only the terms linear in A„will survive in calculation.
Thus one can drop all the uninteresting terms and write

1 —(1—u)Hot —uHotTr exp( H—t)=Tr —,'( t) —du e 'H, e 'H,

2=Tr — du e Be ' —i —
y5

—i — yse 'B

i ——du d pd qe " "'t'' " '4e1 2 2

(2~)4 pvaP

X [[ep„V„(p q)—+e V„(p —q)q„]

X [q A~(q —p) —A (q —p)ptt+e( A Vtt)(q p)—e(—V A&)(q —p)]
+ [p„A „(p —q) —A „(p —q)q„+ e( A „V„)(p—q)

—e( V„A,, )(p q))[eq —
Vtt(q p)+e—V (q —p)ptl]I

d
)4 pvQp

Xq„V„(q)[(A Vp)( —q) —
( V, A p)( —q)], (13)

with, e.g. , V„(q) being the vector potential V„ in momentum q representation, while ( A~V&)(q) =f A (p) Vtt(q
—p)dp.

In the last step of (13) a change in variables q~q —p, (p —qu)~p has been made. Substituting (13) into (4), (7), (9),
and (11),and performing the integration with respect to t one finds

2

S,tt=i ze„&fd qq„V„(q)[(A V&)( —q) —(V, Atl)( —q)]
2(2~)

2

e„„ttf d x B„v„(x)[A (x)vtl(x) —V (x)Att(x)] .
2(2n )

(14)

Here, in accompanying the limiting procedure (11), we
bring the bare coupling constant e to its renormalized
value

elt = lim 1(s)e
s~0

Thus we get

it does work, so we proceed to discuss the chiral anomaly
at a finite temperature.

FOUR-DIMENSIONAL MODEL T+0

The standard (imaginary-time) method for manipulat-
ing the temperature field theory ascribes to the following
substitutions:

5S lr(ap,„)= a„
P

A =0
d'p 1

" d'p
(16)

e„e„ tlF„„(x)F tt(x)4(2')

with F „(x) =a„V„(x) —a, V„(x ).
This is the well-known result of the Abelian chiral

anomaly. Though the above method seems rather simple,

I

where P= 1 /kT, and the fermion energy

E„=(2n +1)~/P .

Therefore, one obtains the effective action at finite tem-
perature T as

00

S,', = ",e„,,f "dt t f'du fd'q —' y fd'pexp-
(2n) " o o

2

2
(2n +1) t p t —u (1 u)q—t—

Xq„v„(q)[(A Vtt)( —q) —( V A&)( —q)] . (18)
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For evaluating the summation over n, we resort to the
Plana summation formula:

g f(n)+ —,
' f (0)= f f (x)dx

n=1

This equality can be understood by inspecting the area
under the continuous function f (z) and that under the
zigzag curve f (n). Then integrating with respect to p
next before accomplishing the integration with respect to
t, we reach the simple result

+ 1
f (t't) —f ( t't)—

dt
0 e2nf (19) gT g(T =0)

eff eff (21)

under the condition off (z) being an analytic function on
the complex plane Rez ~ 0.

Now our function

f(z)=exp — (2z+1) t

does satisfy the above condition and the contributions of
positive and negative n to the second term in (19) just
cancel each other, so we have

00 2

exp — z(2n + 1) t

In summary, in the case of the four-dimensional Abelian
gauge field case for the model (1), we have proved that
the chiral anomaly is temperature independent. This
conclusion is in conformity with that in Ref. 8 where it is
argued that the dynamical symmetry breaking will not be
influenced by the temperature change.

Unfortunately, we failed to generalize the method to
the non-Abelian case of chiral anomaly, so further inves-
tigation is needed.
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