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Symmetries of the massless Dirac equation in Minkowski space
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A11 symmetries of the massless Dirac equation in Minkowski space are obtained by explicitly
solving the conformal versions of the Killing, Penrose-Floyd, and Yano equations. In an arbitrary
curved four-space, it is also shown that the dual of a conforma1 Yano tensor is a conformal Killing
vector and that the set of conformal Penrose-Floyd tensors is stable under the dual map.

[R,b, ]=A,E (2)

for some arbitrary A, . It has been shown in Ref. 1 that the
most general. R can be written in the form

%=a(x )b, +F (x )2) +G(x ), (3)

The symmetries of the massless Dirac equation in an
arbitrary curved background have recently been investi-
gated by Kamran and McLenaghan. ' They found that
the first-order differential operators which transform
solutions into solutions can be expressed in terms of one
vector B and of two completely antisymmetric tensors, D
of rank 2 and E of rank 3, which, respectively, satisfy the
conforrnal versions of the Killing, Penrose-Floyd, and
Yano equations. The purpose of this paper is to supple-
ment their analysis with an explicit and complete solution
of these equations in Minkowski space.

Let M4 denote a four-dimensional pseudo-Riemannian
manifold endowed with a metric g. The Dirac operator
on M4 is given by

b, =iy"2)„,

where Xl„=t)„+I „stands for the Lorentz-covariant
derivative. The y matrices satisfy as usual [y„,y„)
=2g„. We shall also use y„„=—,'[y„,y„] and

5 &$0/1/2/3. By a syrnrnetry of the massless Dirac
equation we mean a first-order differential operator R
satisfying

tors B„and the completely antisymmetric tensors D„
and E„„must satisfy

B~„.„~
=

—,'g„„B'., (conformal Killing),

l ~a ~ l ~a
Dp(v;p) 3 p, agvp+ 3 (v; lalgp)I

(5a)

(conformal Penrose-Floyd), (5b)
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. ~g ~„(conformal Yano) . (5c)
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The symmetries of the massive Dirac equation are simi-
larly obtained by analyzing the condition [R,b, ]=A, (b +m ). It is easily shown that this is tantamount to
solving [A,h]=0, a special case of (2). The correspond-
ing conditions on B, D, and E are obtained by setting the
right-hand sides of Eqs. (5) equal to zero; they thus read

We have kept the conventions of Ref. 1 according to
which indices between curly brackets and outside double
bars are to be symmetrized. In the following, it will also
be understood that indices between square brackets are to
be antisymmetrized.

The corresponding expression for A, in [%',b, ]=A,b, is
given by

1

,'8"„+(r—I )y
—

~
—ia.„y—" D"—„„y5y'— .

where B(po v) Oy D~( v.p) Oy )Mv(p;o. )

F (x ) =8 (x )+iD &(x )y,y~+E
& (x )y» (4a)

G(x)=IPz+rP~+38 . ——'E ),+ ~ *D.3l

+ D„y5y"+—,'(E „.„B„„—)y"".— .(4b)

with P„L =(I+y5)/2, a(x ) an arbitrary function, and I
and r arbitrary constants. The dual tensors *D and *E
are defined as usual with the help of the
reparametrization-invariant completely antisymmetric e
symbol: 'D„„=—,'e„Q ~and *E„=,'e„&rE ~r. For R—
to be a symmetry of the massless Dirac equation, the vec-

In the following we shall provide a complete solution of
Eqs. (5) when g is the Lorentzian fiat metric. The solu-
tions of Eqs. (7) have been constructed in Ref. 3 for this
choice of metric: ten Killing vectors, ten Penrose-Floyd
tensors, and five Yano tensors were found. In solving
Eqs. (5) we shall, of course, recover these generators but
shall find, in addition, the conforrna1 symmetries that are
specific to the massless equation. All in all we sha11 have
the 15 well-known conforrnal Killing vectors, 20 confor-
mal Penrose-Floyd tensors, and 15 conformal Yano ten-
sors. If one includes the identity and y5 this gives a set of
52 symmetries (of first order in the derivatives) for the
massless Dirac equation in Minkowski space.

Let us first enunciate two simple lemmas that prove
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useful in solving Eqs. (5). Note that these lemmas are
valid in general curved sp-ace backgrounds.

Lemma 1. The tensor E„obeys the conformal Yano
equation (5c) if and only if its dual E„ is a conformal
Killing vector.

(A special case of this result was derived in Ref. 6.)
The proof goes as follows. Contract the left-hand side of
(5c) with e""P' to obtain

ePvP»E 4 eE» +fi» eEPpv(p;o);o a;p '

Perform the same operation on the right-hand side of (Sc)
to find —2*E". +2'E ". Equate the two results and

get
4ga

~(p;v) ggpv E;a
showing that *E is a conformal Killing vector. The con-
verse is proven by reversing all the steps. In the same
way, one can prove the following.

Lemma 2. D„v is a conformal Penrose-Floyd tensor if
and only if its dual *D„ is a conformal Penrose-Floyd
tensor.

This implies in particular that D„v will generally
satisfy (Sb) even if D„,verifies only D„(„. )

=0.
We now come to solving the generalized conformal

Killing equations (5). Before going to flat Minkowski
space, let us use lemma 1 to determine the E contribution
to R in any curved-space background. Set D=0 in R,
let g and g be two conformal Killing vectors, and write 8
and *E, conformal Killing vectors themselves, as
8=(i/2)(g+g) and 'E= —,)(g—g). We then obtain for
R the expression

%'(D ())=(8 —21*Epysy ")2) + ,'(8 . 2i 'E— . ys)—

that in Minkowski space D „satisfies the Killing equa-
tion

cp+ (12)

where the c„and the antisymmetric d„, are constant.
The numerical factors have been introduced for conveni-
ence. The general solution of (5b) is then found to be the
following 20-parameter tensor:

Dpv ~pv]+~pvpab X +C~&Xv]

+(xPd („x„)+—,'x d(„,) ) . (13)

In addition to the symmetries (a(„„l,b„) that are present
in the massive-case, it leads to ten new generators; those
associated with the parameters c„are easily seen (using

the equation of motion) to be equal to y, times the opera-
tors corresponding to the parameters b„, while

2R(d )=y5[yPxpx(pB„) Tx y( ()„)

+y(„x„)(XP() +1)]+—e„„yPx (14)

are the generators that the six dt„) give rise to. Of these,
three can be expressed as y5 times the remaining three.
The same is true with the six R(,

[}Mv]

Let us record for easy reference the general solutions of
Eqs. (5a) and (Sc):

D (p v) ~ 0 ~

The general expression for the divergence of the confor-
mal Penrose-Floyd tensor is thus

,'(8„„2i—*E——„„y5.)y"". (Sa)

which can be rewritten (using y "2) = i y"5+28) a—s

(D =0) )PLX g+ )pRX g+f(x )6

where f(x)= —2'E„ysy" and Xx is the Lie derivative
along X acting on spinors:

=X 2)+ —',X".„——,'X . y ~ .

(15)B„=a„+co(„,)x'+(2k„x'x„—x k„)+dx„,

E„„=e„„[e+f( )xs+(2g xsx —x g )+hx ] .

From the corresponding explicit form of A, [see (6)],

)(,= —(2k„x"+d )+(r —1)y& —) a „y"

(16)

Dp =a)
)
+6'p p~bPx (10)

and use the dual map (see lemma 2) to generate more
solutions to the conformal Penrose-Floyd equation (5b).
Some solutions will be specific to the massless case since
the divergence *D" „will be equal to some constant pa-
rameters, say c . More generally, we can show from (Sb)

We therefore see that the Yano and Killing terms (E and
8) yield two independent sets of conformal symmetries
acting, respectively, on the spaces of right-handed and
left-handed massless ferrnions.

Let us finally focus on the Penrose-Floyd contributions
to%. Note that these do not preserve chirality. Here we
shall restrict ourselves to Minkowski space. Let us point
out that one could start from the known solutions to
D„( )

=0 (Ref. 3), namely,

+ (d(&„)x" —
c)y y"s—

(4gPxu f (Pa])yPv (17)

it is straightforward to determine the symmetries that
remain in the presence of a mass term since A. must be
equal to zero in this case; the 26 symmetries (including
the identity) of the massive Dirac equation in Minkowski
space are simply obtained by setting d =(r —1)=0,
k„=c„=g„=O, ()(p and d(„)=f(„„)=0, Vp, v in our ex-
pressions. (Note that the function a is irrelevant. )

In concluding let us say that the results presented here
should be relevant to the classification of the separable
coordinate systems for the massless Dirac equation. Let
us also mention that symmetries of Dirac equations can
be used to identify constants of motion for nonrelativistic
supersymmetric quantum Hamiltonians.
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