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We use the methods of dispersion theory to extend to the case of two charged particles earlier
studies of two-photon-exchange forces between neutral particles and between a neutral and a
charged particle. The two-photon-exchange amplitude for two charged particles is infrared diver-

gent but when we subtract the amplitude obtained by iteration of the one-photon-exchange poten-
tial, which is necessary to avoid double counting, this divergence is canceled. The difference ampli-
tude, regarded as an analytic function of the invariant squared momentum transfer t has a discon-
tinuity which is less singular than t ' for small t. We are thereby led to a convergent expression for
the fourth-order potential V' ', given by the Laplace transform of this discontinuity. We give expli-
cit gauge-invariant results for the long-range two-photon-exchange potential in the case of two
spin-zero particles.

I. INTRODUCTION

The long-range potential between two systems that is
induced by the exchange of photons between them can be
effectively analyzed by the use of the methods of disper-
sion theory. These methods have been applied to the
study of the two-photon-exchange potential between two
neutral systems' and between a neutral and a charged sys-
tem. They have been used both to obtain a clearer in-
sight into old results and to obtain new ones.

The use of the dispersion-theory approach to long-
range forces has several advantages over other methods:
(i) it is independent of any assumptions about the struc-
ture of the interacting systems, such as a nonrelativistic
approximation for the internal wave functions; (ii) it
avoids the calculation of ultraviolet-divergent integrals,
which must then be carefully subtracted to obtain a finite
potential; (iii) it allows the potential to be directly ex-
pressed in terms of observable quantities, the amplitudes
for the scattering of photons by the two systems.

In this paper we continue the program of studying
two-photon-exchange potentials Vz by considering the
two-photon-exchange corrections to the one-photon-
exchange potential V, acting between two charges. For
simplicity we consider point charges in this paper but, by
combining the present results with our previous ones, it is
straightforward to describe the potential acting between
extended charges. We also confine our study to charges
with zero spin; results for charges with spin —, will be

given in a subsequent paper. Our formalism leads to re-
sults for the two-photon-exchange potential which are in-
dependent of the choice of gauge.

In the dispersion-theory approach the potential V2~ is
expressed as a Laplace transform of the discontinuity in t
of two-photon-exchange amplitude Mzz, here t is the neg-

ative of the square of the four-momentum transfer but
taken to be positive and hence in an unphysical region. It
is not diScult to calculate this discontinuity for the case
of two point charges, but once this is done two problems
arise which did not occur for the cases that have been
treated in earlier work.

(i) The t discontinuity of Mz behaves as t for small
t. This signals the fact that M2 is infrared (IR) diver-
gent and hence the same would be true for the potential,
if it were naively calculated directly from the discontinui-
ty of M2 . The IR divergence of M2 is well known from
perturbation theory. If a nonzero photon mass p is intro-
duced to control the divergence, the imaginary part of
the amplitude is found to behave as lnp for small p. This
divergence is unrelated to the emission of soft photons,
but is instead a manifestation of the infinite phase in the
scattering wave function that arises from the long-range
character of the Coulomb interaction.

(ii) Unlike the case where one or both of the particles
are neutral, the one-photon-exchange potential V, be-
tween two charged particles itself has a long-range part,
the Coulomb interaction, to which two-photon exchange
gives a correction. When the full two-photon-exchange
amplitude M2 is calculated by the dispersion theory
method, or any other method for that matter, it includes
an iteration piece M~ which corresponds to the contribu-
tion of V, in second-order time-independent perturba-
tion theory. Furthermore, M~ also has an imaginary part
which varies as 1np. It would be incorrect to calculate a
potential from M2& and then add this to V, ~ to obtain an
improved potential to be used in a Schrodinger-type
equation. Such a procedure would involve double count-
ing of the effect of V, in all orders of perturbation
theory beyond the first.

We see that for the purpose of obtaining a potential
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which may be used in a Schrodinger equation, for the
study of bound states or other nonperturbative proper-
ties, it is necessary to subtract the second-order effect MI
of V, from M2 and so to define an "irreducible" two-
photon-exchange amplitude, M z'z =M2~

—MI, from
which a potential can be computed by the method out-
lined above. It turns out, providentially, that Mz'~ is in-
frared finite and so allows for the definition of a finite,
meaningful potential Vzz. That is, when we include a
photon mass p in order to define all amplitudes unambi-
guously and define M2" by a subtraction with nonzero
photon mass then both Mz'z and V2& remain finite even
when p is allowed to approach zero.

It is now possible to use V = V,z+ V2~ as the potential
in a relativistic Schrodinger equation. The scattering
solutions to this equation will have several noteworthy
features: (i) when computed to order e, they exactly
reproduce the amplitude Mzr, (ii) in each order beyond
e, the amplitudes obtained from these solutions display
the familiar IR divergence of any problem involving the
scattering of two charged particles. This means that
when the scattering amplitude is calculated to all orders
in e, it will contain a phase factor e' with a phase 0 pro-
portional to in@, if a cutoff p is introduced. This factor
multiplies a finite-scattering amplitude which will include
the effects of both one-photon and "irreducible" two-
photon exchanges.

We now give an outline of the remainder of this paper.
In Sec. II we deal with the precise definition of the poten-
tial we wish to calculate, by relating the field-theory
amplitudes to those obtained from a relativistic
Schrodinger-type equation, and define the lowest-order
potential, both for a model field theory involving the Yu-
kawa coupling of two-complex spin-0 fields to a neutral
spin-0 field of mass p and for scalar quantum electro-
dynamics (QED). We also review the dispersion theory
approach to the calculation of potentials. In Sec. III we
carry out the program sketched above for the scalar Yu-
kawa theory. In Sec. IV we extend the calculations to
scalar QED. The final Sec. V contains a summary and
further discussion as well as comparison of our work with
that of others. A number of related topics are treated in
Appendixes.

relativistic systems in the context of quantum field
theory, where the quantity that is easiest to calculate is
the scattering amplitude, which can be obtained in some
approximation by Feynman-graph techniques. However,
several problems arise in the use of potentials for such
systems. One must decide on the equation in which such
a potential is to be used. For many purposes an ordinary
three-dimensional equation, analogous to the nonrela-
tivistic Schrodinger equation, is the preferred way to
treat such particles, and that is the approach we shall
adopt. A second problem is how to express the potential
for such an equation in terms of the scattering amplitude
obtained from Feynman diagrams. Part of the problem is
that, as indicated above, when the potential is expressed
as a power series in the coupling constant it is necessary
to remove the effect of iterating lower-order potentials
when extracting higher-order potentials from higher-
order scattering amplitudes. Another problematic aspect
of extracting potentials from scattering amplitudes is that
the matrix elements of the former are needed for all
values of the momenta, while the latter are most con-
veniently obtained on the mass shell, especially in gauge
theories such as QED.

In this section we discuss these problems of defining a
relativistic potential in general terms. Much of the ma-
terial described in this section is not new, but it is
presented here in a form that is convenient for our pur-
pose. Our treatment relies heavily on the use of disper-
sion relations, both as a calculational tool for the extrac-
tion of potentials from scattering amplitudes, and as a
means of resolving some of the ambiguities mentioned
above. Therefore, we review that approach, with special
emphasis on long-range forces. After dealing with some
kinematical preliminaries, we discuss the general concept
of a two-body potential within the context of quantum
field theory. Then we show how the dispersion approach
can be used to construct potentials in each order of per-
turbation theory, given the scattering amplitude in that
order and in lower orders. We conclude this section by
calculating the second-order potentials for scalar Yukawa
theory and for scalar electrodynamics.

A. Kinematical preliminaries

II. POTENTIALS IN FIELD THEORY

In ordinary, nonrelativistic quantum mechanics there
are several contexts in which it is useful to extract a po-
tential from a scattering amplitude. For example, if the
amplitude has been measured and fitted with a potential,
this potential can be used in a Schrodinger equation to
study possible bound states of the scattering particles.
For composite systems such as atoms or molecules, where
the interactions between the constituents may be regard-
ed as known, an effective potential may be obtained, for
example, from an approximately calculated scattering
amplitude; the potential can then be used in a two-body
Schrodinger equation to study aspects of the scattering
that go beyond those manifest in the approximate ampli-
tude from which the potential was obtained.

One would like to make similar uses of potentials for

In any relativistic quantum field theory the S-matrix
element SI; for a transition from an initial state ~i ) to a
final state

~f ) has the form

SI, =5(f,i ) (2m)i 6(Pi —P, ) T~. , , — (2.la)

where the P's denote total initial and final four-momenta.
The quantity TI, is the transition amplitude, related to
the invariant Feynman amplitude M&,. by

TI; =%~M~;N, , (2.lb)

where the N's are kinematical factors whose value de-
pends on the normalization of one-particle states. We
shall restrict our attention in this paper to the scattering
of spin-0 particles. We denote by ~p) a spin-0 one-
particle state of three-momentum p, normalized accord-
ing to
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( p'~ p ) = (2n )'5(p' —p) . (2.2) hP=EP, (2.6a)

A +B~A'+B',

the values of the N 's are then

N, =(4E„Es)
'

Nf =(4E„'Es )

(2.3)

(2.4a)

There is then a factor (2E) '/ in Tf; for a particle of en-

ergy E present in either the initial or final state. For the
case of the elastic scattering of particles A and B with
initial three-rnomenta p „and pB and final three-
momenta p'„and pB, respectively, symbolized by

with

h=h, +V, (2.6b)

is solved for scattering states, the resulting potential-
theory transition amplitude TJ,"' will coincide with the
field-theory transition amplitude Tf;. Two-body equa-
tions of this and similar types have been used over the
years by many previous authors in various contexts.

We will restrict our attention to the c.m. system of the
reaction (2.3) and make the natural choice

Here the E's are one-particle energies,

E =(p2 +m )' E =(p +m )'

h =E~~+E'~,0 3 B

(2 4b) where

(2.7a)

s =(P~+Pa), t =Q, u =(P„Ps)', — (2.4c)

with

~ =ps pw
= pa+pa (2.4d)

and recall that

s+t+u =2m&+2mB .

In the c.m. system we write

p. =(E. p» ps=(Es p»—
and

(2.4e)

(2.5a)

p~=«~ p'» ps=(Es p'»—
where [p'~ =

~p~ for elastic scattering and now

E =E' =(p +m }' E =E' =(p +m )'

(2.5b)

(2.5c)

etc., with the m's denoting the particle masses. We
denote the initial and final four-momenta by p„,pB, and
p„',pB, respectively. We also define, partly for later use,

the usual invariants s, t, and u by

Ego(p2+m2)1/2EDP —(p2+m2)1/2 (2.7b)

and p,„denotes the operator whose eigenvalues give the
momentum of A in the c.m. system. We make this
choice in order to follow as closely as possible the
description of two-particle systems which is standard in
nonrelativistic quantum mechanics, without, however,
making any nonrelativistic approximations; at the same
time we do not wish to allow the appearance of negative
energies at the zeroth-order level, i.e., in the absence of
interaction between the particles. As a result of this
choice, pair effects will show up only in the calculation of
V rather than explicitly in the solution of (2.6a). For A

and 8 both spin-0 particles, the wave function P in (2.6a)
is just a function of the relative coordinate r in r space or
of the relative momentum p in p space.

We shall refer to the operator V as the "potential, "
with the understanding that in general it may be nonlocal
and energy dependent. Also, if the energy is high enough
to create new particles, V may be non-Hermitian. In the
c.m. system, the amplitude TJ';" for a transition from an
initial product plane-wave state P, , with three-
momentum p and —

p for A and 8, respectively, to a final
state Pf, with momenta p' and —p', generated by this po-
tential is given by

In this system TJ,"=(p'~ V+ V(W —h+ie) 'V~p), (2.8)

s =8'
where W =E„+Es,and Q takes the form

Q =(O, Q),
with Q the three-momentum transfer

(2.5d}

(2.5e)
lV =Eg (p)+EB(p) =Eg (p')+Es(p') . (2.9)

where ~p) and ~p') denote the initial and final states, re-
spectively, and %denotes the total energy in the c.rn. sys-
tern:

Q=p —p'

so that

Our requirement on V then becomes
(2.5f)

(2.10a)

2 (2.5g)
where Tf,. is also to be evaluated in the c.m. system. In
view of (2.1b), (2.4a), and (2.5c}we have, in that system,

B. Concept of t~o-body potential

Tf, = [4E„(p }Es( p ) ] 'Mf; . (2.10b)

We now seek to define a potential operator V with the
following property. When V is added to an operator h0
describing the free propagation of A and B, and a
Schrodinger-type equation of the form

In this paper we deal only with Feynman graphs in-
volving the exchange of one or more quanta between A

and B; i.e., we do not consider radiative corrections of the
vertex or self-energy type. Thus the graphs we include
are proportional to an even power of a mean coupling
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strength g, defined by

g =gggg ~ (2.11)

where g„and g~ denote the coupling strength for the
emission of a single quantum by A and 8, respectively [a
minus sign is to be understood on the right-hand side of
(2.11) if g„and g~ have opposite sign]. It follows that

Mf; has the form

parameter and to allow the potential to depend both on
the relative coordinate and this energy parameter. How-
ever, we will require that V should be essentially local, so
that apart from certain kinematic factors which will be
explicitly displayed, V will not depend on the momentum
operator. To specify more precisely our procedure for
defining the potential we use a method that has often
been used in the past and which we next review, the
method of dispersion relations.

m, =m(,2)+m", )+fi fi f (2.12)

where the first term is of order g, the second of order g,
and so on. We will assume that V and TJ;" can also be
expanded in a power series in g,

C. The dispersion-theory approach to potentials

V V(2)+ V(4)+. . .

and

Tarot Tpot(2)+ Tarot(4)+. . .
JI

It follows from (2.8) and (2.13) that

TP""=(p'I v "Ip)

TJ'" '=(p'IV' '(IV —ho+i') 'V' 'Ip)

+&p I

V' Ip&,

(2.13)

(2.14)

(2.15a)

(2.15b)

Before proceeding, we note that the energy factors E~
and Ez in equations such as (2.16a) and (2.16b) are of
purely kinematical origin. It is convenient to obtain
equations in which such factors are replaced by masses,
especially for the transition to the nonrelativistic limit.
This may be done in a variety of ways. The method most
convenient for theories involving the nonderivative cou-
pling of spin-0 particles, such as a scalar Yukawa-type
theory, is to introduce a potential operator U related to V
via

(2.17a)
and so on. The requirement (2.10) then reduces to a se-
quence of equations: where

(2.16a)&p'IV"Ilp&=(4E E ) Mf,",
&p'IV"'Ip&=(4E E ) Mf',"

—(p'IV' '(IV —h +i@) 'V' 'Ip),

and

~.,=~(p., )

X(p) = [m ~ m~ ~E~ (p)E~(p)] .

(2.17b)

(2.17c)

With an expansion for U analogous to that for V, i.e.,
(2.16b)

U U(2)+ U(4)+ (2.18)
and so on.

These equations serve to define V'"', but only schemati-
cally. One calculates the quantity Tf;

' from field theory
and uses this to calculate V' '. This V' ' is used to com-
pute the "iteration term" on the right-hand side (RHS) of
Eq. (2.15b) and this term is then subtracted from the
field-theory amplitude Tf; ', the result is used to compute
V' '. The process may be continued indefinitely.

However, several problems arise in determining V'"' by
this process. Consider Eq. (2.16a), which essentially
equates the Fourier transform of V' ' to a scattering am-
plitude obtained from field-theory graphs. In order to ex-
tract the operator V' ' from this, it is necessary to invert
the Fourier transform. However, this requires knowing
Tf;

' for all values of the three-momenta, whereas the
scattering amplitude is given only on the energy shell, for
p =p' . It is not convenient to use the scattering ampli-
tude off the energy shell directly, as that quantity can be
considerably more diScult to calculate and in the case of
a gauge theory will in general be gauge dependent.

Another problem, which sometimes arises from V' '

but which always arises for V' ', is that the field-theory
scattering amplitudes, as well as the iteration terms, are
energy dependent. There are several possible ways of
dealing with this energy dependence. The most straight-
forward, which we adopt here, is to take the energy as a

we then have as the counterpart of (2.16a) and (2.16b),

(p' O' Ip) =(4m„mz) 'M' ' (2.19a)

and

(p'I U' 'Ip) =(4m„m ) '(MfI; ' M), —

where MI is an iteration amplitude defined by

M =(4m m )(p' U' '(EgE'~)

X(IV —ho+i@) 'U' 'Ip) .

(2.19b)

(2.20)

In order to use equations similar to (2.19a) and (2.19b)
in any order n to determine U'"', we introduce an s-
dependent but local operator U'"'(r;s) such that

(p'I U'"'Ip) = fdr exp(iQ r)U'"'(r;s), (2.21)

with Q=p —p'. To determine U'"'(r;s) from (2.21), it is
necessary that the left-hand side of this equation be
defined for all values of Q. However, constraints such as
(2.19a) and (2.19b) only define the left-hand side of (2.21)
in the physical region 0 &Q &4p . We now use the fact
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M =M'R'+M'L'
S S (2.22)

where the first and second terms represent the contribu-
tion from the right-hand and left-hand cuts, respectively,

Ms '= m
' t' t' —t 'ps s t', 223a

0

Ms(~)=m ' dt'(t' t) 'ps—(s, t') . (2.23b)

Here ps(s, t) is the spectral function, defined by

that the amplitudes M'"'(s, t) and Mt"'(s, t) are analytic
functions of t, so that their domain of definition may be
extended outside the physical region by analytic con-
tinuation and hence to all values of Q = t—; we then re-

quire that the constraints be satisfied also in this extended
range. The potentials U'"'(r;s) are then uniquely deter-
mined by inverse Fourier transformation. The use of
dispersion relations for the M 's allows the U 's to be ex-
pressed as linear combinations of Laplace transforms of
their associated discontinuities. '

Let S denote a set of Feynman diagrams for two-
particle elastic scattering and let Ms denote the corre-
sponding contribution to the invariant amplitude M.
Suppose that, for fixed s, Ms=Ms(s, t) is an analytic
function of t, whose only singularities are branch points
on the real t axis and which vanishes for large I tI. Let tz
and to denote the position of the nearest right-hand and
left-hand singularities, respectively. We may then write,
by virtue of Cauchy's theorem,

physical region —4p &t &0. Now Ms ' is uniquely
defined by (2.23a) for all t & tz and, a fortiori, for all nega-
tive t. Hence, if we require the equality (2.26a) to hold
also outside the physical region this transform may be in-
verted to give

Us '(r;s)=(4m„mt'} '(2m) fdQe 'o'Ms(s, —Q2) .

(2.28a)

Thus, on use of the spectral representation (2.23a) we get

Us' ()r; s}=(16m m„mar) ' f dt ps(s, t)e
0

(2.28b)

Equation (2.28b), together with the usual dispersion
theory rules for calculating ps(s, t} from Feynman graphs
and the recurrence formulas (2.19a) and (2.19b), along
with their higher-order analogs, constitutes our rule for
defining a potential from field theory. For to=0, Us'

contains all the long-range part coming from S.
So far our discussion has been quite general. For later

use it will be convenient to have available the form taken
by Us in the special case where t0=0 and where, fur-(R)

thermore, the function t'~ ps(s, t) can be expanded in a
power series in t in a neighborhood of t=O. On writ-
ing

ps(s, t)=a2(s)t ' +a3(s)+a4(s)t' +
ps(s, t }= [Ms ]i l2i, (2.24a)

(2.29a)
and [Ms], is the discontinuity of Ms across the branch
cuts, substituting this form of ps(s, t) into (2.28b), and using

the relation

[Ms], =M(s, t +iO) M(s, t ——iO) . (2.24b)

Corresponding to the decomposition (2.22) of Ms, we

also write Us as a sum of two terms,

dt t "e ' "=2(2n +1)!r
0

we get a corresponding series for Us '.

(2.29b)

U U(R)+ U(L)
S S S (2.25} Us"'=cz(s)r +c&(s)r +c4(s)r +, (2.29c)

and require that

(p'IU' 'Ip) =(4m„m ) 'M'"',

&p'IU,("Ip& =(4m, m, ) 'M"'.

We discuss these two equations separately.

(2.26a)

(2.26b)

where

c„(s)=(n —2)!a„(s)/8n m„mz

(n =2, 3, . . . ) .

2. Us ', the potential from the left-hand cat

(2.29d)

U(R) —U(R)( r .s) (2.27)

The left-hand side of (2.26) then becomes a Fourier trans-
forrn

formally defined for all values of the real vector Q and
hence for all negative values of t = —Q, not just in the

Us"', the potential from the right hand cut-
We consider a form for Us ' which is local and spheri-

cally symmetric but may depend parametrically on s; i.e.,
we write

The potential arising from the left-hand cut will turn
out to be short range and therefore is not of importance
for this paper.

The first remark to be made about Us ' is that even if it
is required to be local and rotationally invariant, exten-
sion of the physical region equality (2.26b) to all t &0
does not determine Us ' uniquely. This is because Ms '

itself is not uniquely defined for all negative t, only for
t ) t0, the nearest left-hand branch point. For t &t0 we
have, of course, the two obvious choices Ms. +
=Ms(s, t+i 0) to which we may associate potentials
Us. +. A more symmetrical choice is to define a potential
Us~' as the average of these two; this leads to
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Us (r;s)=(16m m„mar) ' f dt ps(s, t)cos[( t—)' r] .

(2.30)

The second remark is that for the purposes of this paper
we need not be greatly concerned with the question of the
"best" choice, because for the theories under considera-
tion, even for zero mass of the quanta, all of these poten-
tials correspond to short-range interactions.

To see this we note, for example, that the amplitude
ML associated with the two-rung ladder graph, shown in
Fig. 3(a), has for fixed s, an ordinary threshold singularity
at t =t0=4p and no left-hand t singularity. But it also
has, for fixed t, an ordinary threshold singularity at
s =so=(m„+ms) . Now the amplitude Mx associated
with the crossed-ladder graph [Fig. 3(b)], is obtained by
making the replacement u ~s in ML .

L2=[ &&g(yg~pyg A" H. c. )+&gygyg A/A
"]

+[A ~B], (2.35)

1. Scalar Yukawa theory

The lowest-order Feynman graph, shown in Fig. 1, cor-
responds to an amplitude M' ' given by

M'2'= G2/(t —p2)

where G is shorthand for the product of the G's:

(2.36)

where now P „and Ps denote scalar fields associated with
spin-0 particles of charge e~ and e~, respectively, and
A "(x) denotes the electromagnetic field. We will study
the lowest-order amplitude M' ' for the elastic scattering
process (2.3) for each of these theories.

M~(s, t)=ML(u, t) . (2.31)
G =G„G~ . (2.37)

Thus Mz not only has the t =to singularity of ML but
also a t singularity at t =t(s), where t(s) is the value of t
such that u =so, i.e., Gz =2m„g~, Gz =2mzgz, (2.38a)

We also introduce dirnensionless coupling constants g„
and gg via

ro($)=2P?g +262' s so

It follows that for s )so,

ro(s) (—4m A ms .

and their geometric mean g via

g =gggg

(2 32b) so that

(2.38b)

The contribution to M' ' of the discontinuity across the
left-hand cut is of the form, with p' ' the fourth-order
spectral function

(2.33)

G =4m„m~g

Then Eq. (2.19a) takes the form

(p'~U' ~p) = —g /(Q +p ) .

(2.38c)

(2.39)

For values of
~ t~ which are small compared to rn „ms, the

right-hand side of (2.33) varies very slowly with t and its
Fourier transform may be approximated by a distribution
proportional to 5(r), which is obviously short range. We
will disregard such left-hand cut contributions in what
follows.

A choice for U' ' which is both local in r space and
Hermitian is

U' '(r)= —g e ""/4m.r, (2.40a)

which is the familiar static Yukawa potential. With the
convention (2.17a) we then have

V(2) U(2)
OP OP

(2.40b)

D. Some second-order potentials

We now consider the second-order potentials which
arise from two different field theories. The first is a
Yukawa-type theory with an interaction Lagrangian den-
sity of the form

The factors y, thus take into account corrections re-
quired by relativistic invariance.

The dispersion-theory approach described in the previ-
ous subsections leads (uniquely) to the same result. To

L, = —G„P„(x)P„(x)P(x)+(A ~B), (2.34)

where P„and Ps denote complex scalar fields and P is a
real scalar field, associated with spin-0 particles of mass
m~, mz, and p, respectively. We present this model in
order to bring out the most important points clearly, with
a rninimurn of complications; we will be mainly interested
in the limit of zero value for p. This will serve as a
warm-up for the second theory, scalar QED, which has
the complications associated with the vector character of
the transmitted quantum. The Lagrangian density for
scalar QED is

FIG. 1. Lowest-order Feynman graph describing one-meson
exchange in scalar Yukawa theory. The solid lines represent
spin-0 particles A and B, and the dashed line represents a spin-0
meson of mass p.
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[M"'] =G
t+ie —p t —ie —p

2—mi5(t —p, )G

so that the spectral function is

p' '= mG—5(t —p ) .

(2.41a)

(2.41b}

According to Eq. (2.28b) the associated potential is given
by

see this, note that the "discontinuity across the pole" of
M' ' at t =p is given by

We note at once that the problem of defining a poten-
tial associated with M' ' is more delicate than that en-
countered in the scalar Yukawa theory, for two reasons.
The first is that although M' ' is again mermorphic in the
complex t plane, the residue at the pole, now at t =0, now
is no longer a constant, independent of s. The second,
more significant di6'erence is that M' ' no longer vanishes
as ItI~00, so that a spectral representation such as
(2.23a) is not valid without modifications. Let us first
consider the problem from a more familiar point of view,
involving Fourier transforms.

We write V' 'as a sum:

U '=(16m m„mar) '( —nG e "") V(2) —V(2) + V(2)
b (2.45)

(g /4rrr—)e (2.41c)

in agreement with (2.40).
This takes care of the second-order constraint (2.19a}.

We will study the problem of finding U ' from the
fourth-order constraint (2.19b) for the Yukawa-type
theory in Sec. III.

and

& p'I v,"'Ip &
= —e„e z'(p)/r

&p'I Vt'"Ip& = e4ea/4—E4Ea

(2.46a)

(2.46b)

where

with the first term in (2.45) designed to give the 1/t term.
The condition (2.19a) then requires that

2. Scalar QED
z ( p) = (a /2E„Ea )

' ' . (2.47)
The lowest-order Feynman graph, shown in Fig. 2, cor-

responds to a contribution In this case we may define energy-independent local po-
tentials U,' ' and Ub 'by writing

M' '= —eqeBPq PB/t,

where

PA I A+I A~ PB JB+JB

(2.42)

(2.43a)
and

(2) (2)V Zop Ug Zop

(2) (2)
Vb P p Ub P p

(2.48a)

(2.48b)
Since

P .P =s —u =2a +t, (2.43b)
where y,~

is given by (2. 17b) and z,~ by

z =z(p 9) . (2.48c)
where the energy-dependent quantity a is defined by

The conditions (2.46a) and (2.46b) then become

a =a(s)—=s —m„—ma=2(p +E„Ea),

Eq. (2.42) has the form

M' '= —e4ea[(2a/t)+1] .

(2.43c)

(2.44)

and

(p'I U.'"Ip &
= e'/r—

(p'IU,'"Ip&= —e„ea/4m„ma .

(2.49a)

(2.49b)

As local and Hermitian solutions of the constraints
(2.37a) and (2.37b) we may take

and

Uc(r) =e„ea/4~r

UI, '(r)= —e4ea5(r)/4m4ma,

U, '(r) = Uc(r),

where Uc(r) is the Coulomb potential,

(2.50a)

(2.50b)

(2.50c)

FIG. 2. Lowest-order Feynman graph describing one-photon
exchange in scalar QED. The solid lines represent charged
spin-0 particles and the wavy line a photon. z(p) =[1+(p'/E4Ea))'" (2.51a)

which is a contact term, with no classical analog.
It should be noted that the presence of the two factors

of z,„connecting V,' ' and U,' ' does have a simple physi-
cal interpretation. To see this, note that from the
definition (2.43c) and (2.47) it follows that
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which may also be written in the form

z(p)=(1 —v„.vs)'

where vz and vz, defined by

(2.51b)

vw =p/E&, va = —p/Ea (2.51c)

are the velocities of A and 8 in the c.m. system. Since

z (p)=1 —v„vs (2.51d)

we see that in the classical limit the Coulomb potential is
just modified by the retardation factor familiar from clas-
sical electrodynamics.

The dispersion theory approach leads to similar results;
these depend slightly on the way in which the energy
dependence of the Born term is handled. One approach
is to define U' ' as in the Yukawa case, via (2.17a). Then
the formulas of the preceding section apply. The spectral
function associated with M' ' is now

Although these results are almost as simple as those
obtained in the scalar Yukawa theory, their extension to
fourth order is complicated by the fact that, on the one
hand, the iteration of V' ' leads to both an infrared diver-
gence (froin V,' ') and ultraviolet divergence (from Vb ')
and, on the other, that the fourth-order Feynman dia-
grams have such divergences also. We may imagine that
this is dealt with provisionally by the introduction of an
infrared cutoff (small photon mass p) and ultraviolet
cutoff in the photon propagator. If this is done, the
fourth-order constraint takes a form not very different
from that for the scalar Yukawa theory. We will deal
with these matters further in Sec. IV, where we study
two-photon exchange in scalar QED. Finally, we note
that it is also possible to choose the second-order poten-
tial so that no ultraviolet divergences occur in the com-
putation of M„[Eq. (2.20)], provided that we allow
derivative operators to appear in U' '. This alternative
possibility is discussed in Appendix F.

p' '(s;t)=2nae„es5(t) (2.52a)

and Eq. (2.23a) yields, for the long-range part ULaI(r;s)
of U' ', the result

T

III. TWO-QUANTUM EXCHANGE:
SCALAR YUKAWA THEORY

UIa(r;s)= a(s)
2m' mB

Uc(r) (2.52b) A. Fourth-order amplitude

However, because M' ' does not vanish at t = ~, the
spectral representation for M' ' has an additive constant

M = —e„es+—,p (s, t') .(~) 1 ~ dt' (2)
—~ t —t

(2.53)

To reproduce this constant one must add a short-range
term UsR such that

&p'I UsRlp&=(2m~ms) '( —e~es) (2.54)

which coincides with the condition (2.49) and leads to the
(highly) local and s-independent result (2.50c).

Another approach, the one we adopt in this paper,
gives a ULR which is not only local but also s indepen-
dent, as in the case of the scalar Yukawa theory. We
write

1. Preliminaries

M(4)=M +M, ,L (3.1)

where Mt and M» represent the contributions of the
two-rung ladder graph (3a) and of the two-rung crossed-
ladder graph (3b), respectively. These are given by

Mt =iG I [d kl(2n)][D„DttD(. k)D(k')]

and

(3.2a)

The fourth-order diagrams involving two-quantum ex-
change are shown in Figs. 3(a) and 3(b). The correspond-
ing contribution M' ' to the fourth-order invariant ampli-
tude is

V=z Uz
p

Then the constraint (2.19a) becomes

(2.55) M»=iG J [d kl(2~) ][D„DtID(k)D(k')] (3.2b)

( p ~

U(2)~p )

This yields

2m~ ms —1 (2)(4m„ms) M
a(s

2 1M('= —e,e, —+ (2.56)
2a (s) " t 2a (s)

pI jl 1l t

A

lP' + I~

k
~e

(0)

'& k'

k

(b)

and

ULR Uc(r)

2a s

(2.57a)

(2.57b)

FIG. 3. Fourth-order Feynman graphs describing two-meson
exchange in scalar Yukawa theory. (a) The two-rung ladder or
box graph. (b) The two-rung crossed-ladder or crossed-box
graph.
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where where Q has the form Q = ( t ', 0). We may then write

and

D„=(p„k—) m—„+i@,
Da =(pa+k) —ma+is;
D„' =(p„—k'} —m„+i@,

Da =(pa+ k') —ma+i e,

(3.3a)

(3.3b}

k =(~o, k), k'=(co, —k), (3.9a)

with

to=t '"/2, ~ki =(t —t, )'" (3.9b)

The phase-space volume element d 4 in the expression for
the discontinuity, defined by

D(k)=k —p

with k' related to k via

k+k'=Q,

(3.3c)
d4=d k d'k'5' '(Q —k —k')

X5(k' —}Lt')5(k'—p')&(k )8(k' ),
then reduces, on elimination of the delta functions, to

where Q is the four-momentum transfer defined by
(2.20b). The sum (3.1) may be conveniently written in a
compact form which is symmetric between k and k':

M'4'=t (G4/2) fd4k d4k

(ll I/8w)d 0,
where d 0 is an element of solid angle about the direction
k of k. We then get

[M'"],= i (6—'/16~)[(t to)/t]'"—( A+ B+ ), (3.10)

where

X 5(Q k k') —A+B—+/(2m ) D (k)D (k'),

(3.4)

where the angular brackets denote an angular average,
i.e., integration with a factor dQ/4m. , of the quantity in-
side the brackets. Following the procedure of Ref. 1 we
next write

A~=D~ '+D~ ', 8~=D~ '+DB (3.5}

The amplitude M'"' has analyticity properties with
respect to t of the type assumed for the amplitude M&
considered in Sec. II C. From the discussion there it fol-
lows that, as experience has shown, an efficient way to
obtain the long-range potential associated with M' ' is to
compute the discontinuity of M' ' with respect to t across
the right-hand cut.

P~=(~ P» P ,= P~=-(~ ——P»
Pa=(to P } Pa= Pa=( P }

where

P=Cam&P P =CamaP

with

g„=[1 (t/4m „)]'—, ga = [1 (t/4ma )]'—

(3.11a)

(3.11b)

(3.11c)

(3.11d)

2. Discontinuity calculation

The amplitude M' ' is an analytic function of t with a
nearest singularity at t =to, where to is the threshold for
the reaction

A + A —+P+P', and

Dw =[(t —to} (3.12a)

Here p, and p' are complex unit vectors, so that the
external four-momenta continue to be on the mass shell.
With these choices one finds

with P and P' representing on-shell mesons with four-
momenta k and k', respectively. Thus

Da —[(t —to)' maga]( ra+)xa ), —

with

(3.12b)

to =4P (3.6) r„=(t—2p )/2(t t )' g„m—„, x„=k.p, (3.12c)

D '(k)~ (2mi)5(k —p)8(k )— (3.7)

We shall imagine that s is initially fixed at a negative
value and later make an analytic continuation to s &so.
The discontinuity [M '], of M' ' across a cut extending
from to to plus infinity along the real t axis is given by
generalized unitarity, i.e., by making the replacement

ra=(t —2p )/2(t to)' gama, xa—=k p' . (3.12d}

The corresponding primed quantities are obtained by re-
placing x~ and x& by their negatives

and a similar replacement for D (k') in (3.4). We now
work in the c.m. system of the crossed reaction

D~ =D~(x„~—x„), Da =Da(xa ~—xa) .

It follows that

(3.12e)

(3.8) (3.13a)
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and

8+ [(i ro) mB/8] ( 2TB )/(TB+xB )

so that (3.10) reduces to

[M'"],= —i (G'/16')[(t r,—)t]
X (4TA TB /m A mB gA (8 )Io

where I0 is defined by

Io = (1/d AdB )

(3.13b)

On substitution of the expression (3.15h) for y(s, i) into
(3.17a) one finds, after some algebra and use of the rela-
tion

p = I[s —(m„+mB) ][s (m—
A

—mB) ]/4sI' (3.18)

(3.14)

N+ (s, t) =N (s) /g A $8,

(3 1 5a) where

(3.19a)

for the magnitude of the c.m. momentum in the physical
region of the direct channel, that

with

A A A~ 8 TB 8 (3 15b) and

N (s)= ip—s ' ~ /m „mB (3.19b)

Io = (2T A TB ) '(F+ +mN+ ' ), .

where

F+(s, t) =+N arctan(N /D+ )

(3.15c)

The integral Io has been evaluated previously, with the
result that

N (s, t) = ib —'(p2s +byt)' ~ (3.19c)

Note that while the functions N+ and N are imaginary
upon analytic continuation to the region s) 0, the func-
tions F+ and F are real. We now substitute (3.15c) into
(3.14), both with p, =O, and separate the contribution of
the n/N+ term from the arctangent terms to get (drop-
ping the superscript 4 on M now, to ease the notation}

with

and

—N+'arctan(N+ /D ),

N~(s, t}=(TA+TB+1 y'+2T„T—By)' ',
D+(s, t) =y+T„TB,

(3.15d)

(3.15e)

(3.15f)

[M],= [M]', '+ [M],"',
where

[M]I')=(G'/8 '")t

[M]',"= i (G4/8Trb—)F+(s, r)r

(3.20)

(3.21)

(3.22)

x =p'p (3.15g)

= (2s + t —2m „—2mB )/4b,

where b is defined by

b ™A(A BOB

(3.15h)

(3.15i)

The square root in (3.15e) is defined so that if the quantity
inside the parentheses becomes negative the root with a
negative imaginary part is to be taken. The quantity y
may be expressed in terms of the invariants s and t:

y =y(s, t)=(s —u)/4b

Substitution of [M]', ' into a spectral representation such
as (2.23a) for M would lead to an integral which is loga-
rithmically divergent for small t, whereas [M]'," gives a
finite contribution. One expects such a divergence, since
the Feynman integrals for ML and Mz are infrared diver-
gent if p=O and this divergence remains in their sum.
However, as we shall see below, this divergence cancels
when we consider the difference of the discontinuity of M
and that of MI, defined by (2.20).

Before turning to this, let us consider the nature of the
residual term (3.22). Inspection shows that the function
F+(s, t} is analytic in the neighborhood of t=O More-.
over, since N+ =N and D+ =D at t=O, i.e.,

3. @=0limit

Since we are studying this model primarily as prepara-
tion for the case of QED, we focus on the value of the
discontinuity in the limit of zero mass for the exchanged
mesons. In this limit t0=0 and

and

N+(s, O) =N(s)

with

D+(s, O) =D (s),

(3.23a)

(3.23b)

TA =t ' /2mAJA, TB =t' /2mB/8 (3.16) D (s)=y (s, o) = (s —m ~
—mz ) /2m z mz, (3.24)

so that the function F+ (s, t) vanishes at r =0. It follows that

and

N+(s, t)=[(t/4)[(mA/A) +(mB/8) ]

+ 1 y+(yt /2b) I
'— (3.17a)

[M]',"= i(G /8@m—„mB}F'++O(tlm ), (3.25)

where m =m(s) is a quantity with the dimensions of a
mass, which is not zero at p=O, and

D+ (s, t) =y+(t /4b) . (3.17b)
F'+ =F'+(s,O)= lim (F+(s, t)/t)

0
(3.26)
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is just the derivative of F+ with respect to t at t=0.
Since F'+ is finite, substitution of [M]', i' into (2.23a) leads
to an integral which converges at small t. Computation
gives

F'+ =[2m„mttD'(s)]

X If [arctanf f (—1+f ) ']—(1+f )

(3.27a)

where

f =N(s)/D(s)= 2—ips'~ /(s —m„mz—) . (3.27b)
where I =

~
I

~
and

X doJ (3.35)

J=(p —I ) +2p (p +I )+p

fixed and positive or equivalently with s fixed and larger
than sp, we first combine the denominator factors
(q +p ) and (q' +p ) with a Feynman parameter a.
The angular integration in (3.31) is then readily per-
formed, with the result that

Mt =(G /Sir )f dl I [E„(I)Es(1)Xl]

For later use we note that from (3.15d) and (3.23a) and
(3.23b) it follows that

—4a(1 a)l t—. (3.36)

F (s, 0)= —2N '(s)arctan[N(s)/D (s)] . (3.28)

Fp:F+ (sp 0)= —1 /6m „mtt

whereas for F (s, O) we have

(3.29a)

For p ~0, f~0 also and D (s)~1; in this limit one finds

that F'+ has a finite value F0 given by

From (3.35} and {3.36) we see that, with p fixed and t ini-
tially in the physical region, MI can be extended to an an-
alytic function in a cut t plane, with singularities only on
the positive t axis. Since J does not vanish at the end
points of either the a or the I integrations, the condition
for a singularity is that J=O and BJ/Ba=0, BJ/81=0.
For t&0, the last two conditions require that a= —,',
I =p +(t/2) pan—d f, or these values

F (sp, 0)= —2 . (3.29b}

On recalling that 6 =4m„mug, we see that for small p
and small t

where

[M]',"=i{g /3m)+O(t/m )+O(p /m ) . (3.30)
tp

—4JM (3.37)

We now turn to the study of MI.
Thus, the only t singularity of MI is a branch point at
t = tp ~ This is of course just what one expects, by analogy
with the corresponding Feynman box diagram.

B. Iteration of second-order potential

1. Preliminaries

The relativistic amplitude MI arising from the iteration
of the second-order potential V' ' defined by (2.40a) and
(2.40b), is given, on use of (2.20) and insertion of a com-
plete set of plane-wave intermediate states

~
I ), by

Mt=6 (2ir) f dl[4E„(l)Ett(l)$(q +p )

2. Discontinuity calculation

For later purposes it is convenient to consider sepa-
rately the dispersive part DI and absorptive part Al of
MI in the energy variable, associated with the principal-
value part and delta-function part of the factor I/2) in
(3.35), respectively. Thus with

where

X(q' +p )] (3 31) I/2)=P[W(p) —W(l)] ' iir5[W—(p) —W(l)) (3.38)

2)= W(p}—W(1)+i e (3.32) Mr DI +'.~ r (3.39)

where

DI=(G /Svr~)P f dl liC(p, l)f da J
0 0

(3.33a}
with

with W(p), defined by (2.9), the total incident energy in
the c.m. system, and

(3.40)

The total three-momentum transfer in the c.m. system is C(p, l)= I E„( )IEs( )I[ W(p) —W(I)]] (3.41)

Q=q+q'=p —p' . (3.33b) and

In terms of the invariants s and t, defined by (2.4c) and
(2.4d), the physical region is given by Al = —(G /Sir) f dl I [E„(I)Es(1)]

s )sp=(my+ms), —4p &t &0 . (3.34) X5{W(p) —W(l) }f da J
0

To study the behavior of MI as a function of t, with p {3.42)
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Note that since both Dt and At are manifestly real in the
physical region, in that region this separation also corre-
sponds to a separation into real and imaginary parts.
Since the absorptive part, which arises from real inter-
mediate states, is simpler than the dispersive part we
study it first.

(a) Absorptive part. On carrying out the integration
over !in (3.42) we get

The roots of —L considered as a function ofy = l are at

y+ =(a'+b')/2,

where

a'=t+2p —2p, b'=[(t 4—p )(t+4p )]'

(3.50)

Az= —(G /8m. )[p/W(p)] f da Jo ',
where J0 is the value of J at l =p,

Jo=4p p +iu —4a(1 a)—p t .

(3 43 )
Thus

L =(y+ —y)(y —y-)
and I. is positive only for t & t0 and for

(3.43b)

From (3.43) it is clear that At it itself an analytic func-
tion in a cut t plane with a branch-point singularity at a
value t, determined by the conditions J0 =0 and
8JO/Ba =0. These yield a =

—,', as before, and

On introduction of a new integration variable x via

1 =y =(b'x+a')/2, (3.51)

ti =4@ +(p /p ) . (3.44)

b =2ni5(JO) . (3.45)

On carrying out the now trivial integration over a we
find

[At], = i(G—/8p)[st(t t, )]-
In the limit of vanishing mass iu, (3.46) becomes

(3.46)

The discontinuity [Az], of At across a cut extending
from t, to plus infinity may be obtained by replacing the
factor J0 ' by the difference 5 between its values at t +i e
and t —i e in the limit where a~0; this is given by

C =C)+C2 . (3.53)

The residue of C at p =! is given by 2/W(p) so that we
define

Ci =[2/W(p)](p —1 ) (3.54a)

L assumes the form L =b' (1—x )/4 and, with 1dl
=dy/2=b'dx/4, the integral for K reduces to

K =(I/4t'i )P f dx(1 —x') 'i2C(p, l(x)) . (3.52)

To proceed further we separate C into a part C& which,
like C, is singular at p =1 and a nonsingular remainder
C2,

[At], = iG /8—ps'~ t (p=0), (3 47a) The remainder Cz is then found, after considerable alge-
bra, to be

and, correspondingly, we get a contribution [Mz]I ' to
[Mz], given by

C2=(E&Ett W) '[(p +I +mz+m&~)(E&E&+EzEz)

[Mt ]I
' =G /8ps ' t . (3.47b) + W'/( W+ W')], (3.54b)

This is precisely the leading term found for [M], in Sec.
IIIA so that the logarithmic divergence cancels in the
difference amplitude, as promised.

(b} Dispersive part. Since Mt and At are analytic in
the cut t plane, with branch points at t = t0 and t =t], re-
spectively, it follows that DI is analytic in the cut t plane
with nearest singularity at t = t0. The discontinuity of Dl
across a cut starting at t0 and extending to plus infinity
may again be found by use of (3.45). This yields

K =K)+K2, (3.55}

where

K, =(1/4t'~ )Pf dx(1 —x )
'~ C;(p, l(x)}

where E„' =E„(l),Ett =Es(l},and W'= W(1).
Corresponding to the decomposition (3.53) of C we

have

[Dq], =(G /8n )2miK,

where

(3.48)
(i =1,2) . (3.56)

K =Pf d112C(p, 1)f da S(J} (3.49)
0 0

with J given by (3.36) and C by (3.41). A short calcula-
tion gives

f da5(J)=(21t' ) '8(L)L
0

K, =(ts) 'i (b') 'R(xo),

where

(3.57)

The symbol P is needed only for E, since C2 is nonsingu-
lar. We consider the two parts of K in turn.

(i) Study ofK, . From (3.51), (3.54a), and (3.56) we get

where —L is the value of J at a= —,',
—L = (p 2 —12 )2+ 2@2(p2+ 12 ) +p

4 —12t

1

R (xo) =P dx (1—x )
' (xo —x)—1

and

(3.58a)
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x0=(2p —a')Ib'

= (2p' —t) I[(t t,—)(t +4p') ]'" . (3.58b)

R(x0)=m(x0 —1) ' 8(x0 —1)e(x0) .

With t ) ta, the condition that x 0 ) 1 requires that

(3.59)

The function R (xa) may be evaluated exactly with the
result

I'=~ =p'.
It follows that, for p =0,

(3.63)

interested in the region where ~t~ is much less than either
m „or m~, we may get a good approximation to Kz by
replacing C2(p, /) in (3.62) by its value for t=O .It is
straightforward to find the leading term, K2 ', in an ex-
pansion of Kz in powers of t Im „and t lms N. ote that
from (3.50) and (3.51) we can infer that, for p=O and
t=o,

Thus we get

K, = (~/2—)p '[ts (t, —t)]

C2(p, /) =C2(p)+0 (t),
where

(3.64a)

(t, & t & t, ) (3.60) C2(p) = C2(p, p) (E„—+E„Es+Ett )/2E„Ett W,

[Dt , ],= i.(G /—8n )p '[ts(t, —t)] (3.61)

and K& =0 otherwise. The corresponding contribution to
the discontinuity of Dl for this range of t is then

and on using this in (3.62) we get

K, =K',"+O(t'"Im ),

(3.64b)

(3.65a)
Note that this part of [Dt], is obtainable from [At], by
simply replacing (t t, )' —by (t& t)' in —(3.46).

We are primarily interested in the limit p~0. In this
limit K, makes no contribution to DI, as we now show.
First note that if it were permissible to simply set p=0
inside the integral sign in (3.58a) we could replace x0 by
x0, its value for p =0, viz. ,

x& = [t l(t +4p—')]'" .

This is manifestly less than unity in magnitude for t&0
and p positive, so that according to (3.57) and (3.59) we
have K& =0. However, in view of the additional limiting
process implicit in the principal-value prescription it
behooves us to be less cavalier. We shall therefore verify
directly that K, makes no contribution to Di in the p=0
limit. From (3.57) we infer that, apart from factors
which are independent of /t, and finite for p&0, the con-
tribution DI. , associated with K, is proportional to

t)I=f 'dt'[(t' t)t'"(t, t')—'"] '. —
10

On setting t'=4p U we have
V)0 = f dv[(4/t'u t)u'"(v, —u)'"—]

where U& =1+p /4p . For p(&p the integration interval
shrinks to zero and, on replacing U by unity in the first
two factors inside the square brackets we see that for p
small enough H is proportional to

vi
dU Ui v =p p

Thus, there is no contribution to Dl from K& in the limit

p —+0.
(ii) Study ofK2. From (3.56) we have

with

K,'" =~C, (p) /4t '", (3.65b)

the factor of ~ arising from the integral over x. The cor-
responding contribution to the discontinuity defined by
(3.48) is thus

[D ],=[D . ]', '+O(t' Im) . (3.66b)

Although (3.66b) is only a good approximation for small
t, the associated spectral integral converges if extended to
infinity. The leading term in an expansion of DI in

powers of t is therefore also proportional to t ' . We
now consider the potential arising from two-quantum ex-
change in more detail.

C. Fourth-order potential

The constraint on the fourth-order potential V' ', writ-
ten in the form (2.17a), viz. ,

~[4) U(4)
OP op (3.67)

is given by (2.19b). Following the discussion of Sec. II C
we may write the long-range part ULR of U' ' in the form

LR(rI )

t 1/2=(16' m„mar) ' dt p'd;gs, t)e ' ", (3.68a)
0

where pd;~ is the dift'erence spectra function:

[Dt 2]t '=(2ni. )(G /8n )[mC2(p)14t'~ ]

(@=0) (3.66a)

and the total discontinuity of the dispersive part DI of
Ml has the form

K2=(1/4t'") f dx(1 —x') '"C2(p, /),—1

(3.62) p'd;It=([M' '], —[Mt], )/2i . (3.68b)

where C2 is defined by (3.54b). In this case we may pass
to the limit p=0 right away, since the dependence of C2
on p, via its dependence on I, is very mild. Since we are

From Eqs. (3.20), (3.21), and (3.22) for the discontinuity
of M' ' and Eqs. (3.47) and (3.48) for that of Mt we get,
on recalling that K& contributes zero, the relation
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p'q~= —(G /16mb)(F+ It) —(G /8m)K2, (3.69)

F+(s, t)lt =F'+(S,O)+O(t/rn ), (3.70)

where F+ is defined by (3.15d) and I( z by (3.62). Note

that this spectral function is purely real, at least for small

p; the discontinuities of the absorptive parts of M' ' and

Mt cancel for all t) 0. In (3.69) no expansion in t has
been made.

From (3.68a) and (3.69} it is straightforward to obtain
an expansion of ULR in inverse powers of r, from an ex-
pansion of pd;ff in powers of t ' . We give below the ex-
plicit forms of the first two terms in such an expansion.
From (3.26) we have

study the limit m(( ~~, with p, t, and g =G l4m „m~
fixed. From Eq. (2.28b) it follows that the computation
of these potentials will require the evaluation of the limit
of the ratio pdlff/mz

Note first that, since ~z ~0 for mz ~ 00, the functions
N+ and D+, defined by (3.17a) and (3.17b) coincide with

and D, respectively, in this limit. It then follows
from (3.15d) that

lim F+(s, t)=0 . (3.75)

On dividing (3.21) and (3.22) by mz we see that the limit
of [M' '], /mt( as mz ~~ is proportional to the limit of
F+ (s, t) as mz —+ ao, so that using (3.75) we get

where F'+ is given by (3.27). On writing, as in Eq.
(2.29a),

lim [M'"']I"/mt( =0 .
mg —+ 00

(3.76)

p(dz=a2(s)t ' +a3(s)+O(t' Im )

we have, from (3.65), (3.66), (3.70), and (3.69),

a2(s) = —G C2(p)/32,

a3(s)= GF'
+(
—SO)/16am& mz .

On using (2.29c) and (2.29d) we then find that

U~„'(r;s}=c,(s)r +c,(s)r '+O(r 4m '),

(3 71} It follows that

(3.72)

(3.73a)

2g m

pt
lim [M' '](/m~= lim [M]', '/mt(=

(3.77)

Turning now to [Mz](=[Dt](+[iAt]„since, according
to (3.47), [iAt](=[M]', ' for any value of ms, we also
have

where

cz{s)=as(s)/8m. mamB c3(s)=a3(s)/8m mamB

[iAt ], 2g'm „'
lim

m~ 00 m& pt
(3.78)

(3.73b)

At low energies we may approximate the functions C2(p)
and F'+(s, O) by their threshold values, given by setting
p=O in (3.63) and by (3.29a), respectively; this yields

ULR(r;so)=c2(so)r +c3(so)r +O(r m ),(3.74a)

with

c2(so ) = (g /4n )—(m „+m „mz

1
lim m~C2(p, l) =

mg —+ 00 E~«~+E~ }
(3.79)

It then follows, from (3.48), (3.62), and the vanishing of
E, , that

which therefore cancels against the mz~co limit of
[M]', '/mz, as before.

To find the discontinuity of the dispersive part in this
limit, we use the form (3.54b) of Cz(p, 1) to find that

and

+mt()/2m„m~(m„+mq) (3.74b) [Dt](
lim

m~ ~00 mg

ig'f „(p',t)

2&t
(3.80a)

c3 (so )= (g /4(r ) /3(rm —„mz

Note that if we let either mass tend to infinity, the r
term in (3.74a) vanishes but the r term survives. In
particular, we have, for, e.g., mz ~ ao,

where

( ', t)= 2m'
y& dx(1 —x )

-' E~«~+E~ }
(3.80b)

U( )( )
(g /4 )

LR r ~Sp 22m& r
(3.74d)

We study the infinite-mass limit in more detail in the next
and final subsection of this long section.

Here E„' =E„(1)is expressed in terms of x through Eqs.
(3.50) and (3.51), which involve t parametrically. On
combining the results (3.77), (3.78), and (3.80) we see that
the difference spectral function pd;(t(s, t), defined by
(3.68b), satisfies

D. Infinite-mass limit

It is instructive and will serve as a partial check on our
calculation to consider the amplitudes and associated po-
tentials studied above in the limit where one of the
masses m„or mz becomes infinite. To be precise we

pdiff S, t) —glim = —f„(p,t) .
(((q m mt( 4V t

(3.81)

On using the definition (3.68) for UL„'(r;s) we get, with
p2 fixed,
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U~ '(r;p ) = lim ULa(r;s)

2 4 2
U(4)( . 2) (g /4~) f (

2 (})
2@igr

where

f„(p',0)=m „' /'E'„(p'

It follows that

(3.83)

(3.84)

(),
2m' T

2
(3.85)

On comparison with (3.74d) we see that this coincides
with the ms —+ oo limit of UPR(r;so). In Appendix A we

provide a further check on our method by comparing
(3.85) with the result expected from use of the Klein-
Gordon equation, extended to include interaction with an
external scalar field.

We now turn to scalar QED, a case of greater physical
interest. As we will see, there is then no term of orderr, in the limit where either one of the particle masses
goes to infinity.

4

f —e ' "fz(p, t) . (3 82)
16m m„r & 4&t

Thus in the mz ~ ao limit the long-range potential in or-
der g arises solely from the iteration terms. This is still
a complicated function of r and p, but an expansion of
U„' ' in inverse powers of r is readily obtained. The lead-

ing term in U„' '(r;p }at large r is given by setting t=0 in

the function f„,so that

where P„and Ps are defined by (2.43a) and the denomi-
nators D„,Dz, . . . by (3.3a) and (3.3b). The colon in

(4.1) denotes a contraction of tensor indices. This con-
traction produces the integrands of the amplitudes associ-
ated with Figs. 4(a) —4(d) twice; the factor —,

' in (4.1)

corrects for double counting. The integrand of the
double-seagull graph is produced only once; the factor —,

'

here is the correct symmetry factor associated with such
a diagram.

While our calculation will be done using the Feynman
gauge propagators, the results for M' ', M' ', and their
discontinuities are gauge invariant, as must be the case
for physical scattering amplitudes. Thus the potential de-
rived from the M's through Eqs. (2.19b), (2.23a), and

(2.28b) will also be gauge invariant.
Strictly speaking, to make the integral in (4.1) well

defined, the photon propagator factors 1/k and 1/k' in

(4.1) should be cut off both at low and high momenta,
e.g. , by replacing 1/k by (k —p )

' —(k —A ) '; this
will control the infrared (IR) and ultraviolet (UV} diver

gences associated with each of the graphs of Fig. 4 (Ref.
6). These divergences are similar in nature to those
which occur in the iteration of the one-quantum ex-

change potential, mentioned in Sec. II C 2. However, the
discontinuity [M' '], is the only part of M' ' needed for
our purpose and this part is both IR and UV finite, i.e.,
finite in the limit p~0 and A~ac; this feature is a
significant advantage of the dispersion-theoretic ap-
proach to the problem at hand. We can therefore omit
these cutoffs and proceed directly with the calculation of
the discontinuity.

2. Discontinuity calculation

IV. TWO-QUANTUM-EXCHANGE:
SCALAR QED

A. Fourth-order amplitude

1. Preliminaries

Following the procedures of Sec. III we have, in analo-

gy with (3.10},but with p already set equal to zero,

[M' '], = i (e /16m )
—(L„:Ls), (4.3)

where now the contraction is carried out on the photon

There are five Feynman diagrams which describe the
scattering in order e„es, shown in Fig. 4. Figures 4(a)
and 4(b) show the box and crossed-box graphs, analogs of
those encountered in the scalar Yukawa theory, Figs. 4(c)
and 4(d) show single-seagull graphs, and Fig. 4(e) shows
the double-seagull graph. The sum M' ' of the contribu-
tions M,' ', Mb ', . . . , associated with these diagrams can
be written in a compact form, analogous to (3.4},

I
PA'

(o) (b)

, PB

's

M' ~ =i (e /2) f [d k /(2m ) ]Lz.L& /k k' (4.1)
I

PA (1
I

PA il i P'

where e =e„es, the tensor L"„"=L"„"(P„;k,k') describes
the emission of two virtual photons by A, and
Lg'=Lg"(Ps; —k, —k') describes the absorption of two
photons by 8. Thus

L"„"=[(P„' —k ')(P"„+k '"
) /D„] (c)

Pa

(e)

+ [(Pg k'")(Ps +k ') /D~ ] —2g"", —(4.2b)

+ [(P„" k'")(P„' +k") /D„' —]—2g"", (4.2a)

Lg'= [(Pe k')(Pg+ k'") /Ds ]—
FIG. 4. Fourth-order graphs describing two-photon ex-

change between charged particles in scalar QED (a) and (b):
box and crossed-box graphs; (c) and (d) single-seagull graphs; (e)
double-seagull graph.
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L" =(P P„"—k"k'")A+

+ (P„'k'" P"„—k') A —2g"', (4.4a)

mass shell, k =k' =0, and the angular brackets denote
an angular average over the direction k of k, in the c.m.
system of the crossed channel, as before. To carry out
the computations involved it is convenient to write the
tensors L „and L~ in the form

Lg"= (Ps'Pg k—'k'")8+
—(P~ k'" P—gk')8 —2g"", (4.4b)

where A+ and 8+ are the sums and differences of parti-
cle propagators defined by (3.5). Further, we separate the
quantity L„:Ls into a part (L„:Ltt), coming from the
terms in (4.4a) and (4.4b) not involving g„„'s, which arise
from the ladder and crossed-ladder graphs, and a part
(L „:Lz)2 involving one or two g„,, 's, which arises from
the seagull graphs. We then find

(L„:Ltt), =[(P„Ptt ) P„—kP„k' Ptt k—Ptt k'] A+8++ [[(P„Ptt )(P„k P„k—') A+8 ]—[A ~8]J

+(P„kPtt k'+P„k'Ptt k)A 8 (4.5)

and

(Lq Ltt)2=. —2[(Pq —k k')A++(P„k' Pq k)—A +(Ptt —k k')8+ —(Ptt k' Ptt k)8— —8] .

On using the coordinate system defined by (3.9) and (3.11), with @=0,we have

k =(t ' /2)( l, k), k'=(t ' /2)(1, —k),
P„=(0,2p), Ps =(0,2p'),

so that, using (3.11c)and (3.11d) and the definitions (3.12c) and (3.12d) for x „and xz, we get

P„k = P„k'= —it'~ m—„g„x„, Ps k = Ps k'= —it' ms(a—xtt,

and

(4.6)

(4.7a)

(4.7b)

(4.7c)

D„= (t/2—)+it' g„m„x„, D„' = (t/2) —it' —g„m„x„, (4.7d)

Dtt = (t/2) it ' —gzm„—xtt, Dt't = (t!2)+—it ' gzm~xz .

It follows that

A+ = t/D„D„', A —= 2it' g—„m„x„/D„D„', 8+ = t/DttDt't, —8 =2it' gttmzxtt/DsDt't

and hence that

A+8+ =t /Y, A 8 =4tbx„xs/Y, A+8 = 2it gsmsxtt/Y—, A 8+ =2it g„m„x„/Y,
with Ydefined by

Y =D~D~DaDa .

On using the relations (4.7a) —(4.7g) we get, with b =m

„ms'�„gz,

as in (3.15i),

(L„:Ltt), = [(P„Ps)' —(8P„Psb)x„xs (tg'„m „' )x„' (tg~—mtt )xs+(8—b')x„'xs ](t'/Y) .

Similarly we find that (4.6) reduces to

(L„:Ls)2= —2( [ t [P„—(t/2)]+—4tg„m„x„ I /D„D„'+ [ t [Ps (t/2)]+4—tgzm—sxtt I /DzDz )+16 .

(4.7e)

(4.7f)

(4.7g)

(4.g)

(4.9)

Since

D~D~ =t /4+tgqmqxq,

DsD~=t /4+tgsmsxs,

Eq. (4.9) may be written in the more compact form

(L„:Ls)~=2tj(P„+(t/2)]/D„D„'

+ [Ps + (t /2) ]D~Ds ),

(4.10)

(4.1 1)

Y=t b d„d~, (4.12)

where d„=r„+ xdz=r„+xz, as in (3.15), but now
with the ~'s already evaluated at p=O, i.e., given by
(3.16). The evaluation of the angular average
(, (L„:Ls), ) is therefore immediate, in terms of integrals

the contribution "16"of the double-seagu11 graph having
canceled with part of that from the single-seagull graphs.
The denominator Yin (4.5) has the form
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I
defined

b ((L„:LB)2)= [(4/(„m„t' )[P„+(t/2)]

and

I =(1/dd ), I, =( „ /dd ),

I2 =(x„'/d~d

I,=
& x~ /d„d~ ),

I, =(,x„'xs'/d„ds ),

{4.13a)

(4.13b)

Xarctan(2(„m„ /t ' )] +( A ~g) .

Note that since

(4.17)

Ii =( —,')[F (s, t)+(n/N+ )], (4.14a)

with F (s, t) defined by (3.15d). The remaining I are
simple combinations of arctangent functions and Io,

evaluated in an earlier paper. The integral Io was al-

ready given in Eq. (3.15c) and I, can be expressed in a
similar way,

P' =4m' —t P' =4m' —t (4.18)

the right-hand side of (4.17) is independent of s, as is
necessary for seagull contributions, whereas the right-
hand side of (4.15) does depend on s, not only via the
quantity P„Ps, but also through the dependence of the

I, on the quantity y (s, t), given by (3.15h). We now turn
to the task of simplifying and analyzing these results.

I2 &B a«tan~a ~AIp

I3 rg 'arctanrg HgIp

I4 = 1 r„arc—tanr „' rs arctan—ws '+ H„rgI p

(4.14b)

3. Analysis of results

The total discontinuity of the fourth-order amplitude is
given by (4.3) as

On using (4.8), (4.12), and (4.13a) and (4.13b} we get,
finally,

[M "],= —'( /16 )[((L„:L ), )
((Lq Lq))) =b . [(Pq Ps) Ip —(8P„Pqb)I,

(t5 w ma )I—
2
—(tgzmz )I3

+(8b )Iq]

and from (4.11) and the relations

( 1/d „)=r „'arctanr „',
( 1/d~ ) =rs 'arctan~~ ',

we get

(4.15)

(4.16)

+((L„:L ) )] . (4.19)

On substituting the expressions (3.15c) and (4.14) for the
I in (4.15), and upon recalling that N+ is imaginary
while the F+ are real, we find that the first term in the
last set of square brackets in (4.19) may be separated into
an imaginary part S, which comes from the n/N+ terms.
present in each of the I and a real remainder R &. After
some algebra one gets

and

S~ =i (8n.a /ps'~ )t (4.20a)

Ri=b {[(P„Pa)+t ]F+/2r„rs —8P„P&bF /2 tg„m„r at c—anr/sr& —tg msrstanca'r/ gr
+8b (1—r„arctanr g 7sarctanrz ')

j . (4.20b)

The contribution of S, to [M' '], is then given by (we

again drop the superscripts on M'4')

[M]', '=(e a /2ps' )r (4.21}

i.e., by a simple pole in t; this term is the analog of (3.21)
and, like that term, will cancel in the difference amplitude
with a corresponding contribution from MI.

Turning now to the remainder R ], we note first that, as
inspection shows, only the terms involving arctangents
are not analytic in t at t=O and the nonanalytic part is
easily split off by use of the relation

arctan~ ' =~/2 —arctanw

This yields a term

R', = —3m&' [(gzmz ) +(g~m~) ']

and a term which is analytic at t=O, defined by

R]' =R] —R ],

(4.22)

(4.23a)

(4.23b)

which consists of the F+ and F terms and the terms
left-over after use of (4.22). It follows that the function
R

&
can be expanded in a power series in t' near t=O;

for example, the first term in this expression is given by
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R, ( s, t) =R, ( s, O)+O(t '~ /m ), (4.24a) 8. Iteration of second-order potential

where, with F'+(s, O) and F (s, O) given by (3.27) and
(3.28), respectively,

R, (s, O)=(8/mzmz )[a F'+ (s, O) aF—(s, O)

The fourth-order transition amplitude generated by use

of V' ' is formally given by

+m„mz] . (4.24b)
x fdl(p'f V"'fl ) (I f

V"'/p) l[ W(p) —lV(I )+i~],
The seagull-graph contribution may similarly be split

into a part Sz which diverges at small t, but only as t
instead of t ', and a remainder Rz,' on use of (4.17),
(4.18), and (4.22) we have, without approximation,

(4.25)

where

where, with the convention (2.55),

V(2) V(2)+ V(2) — ( U(2) + U(2) )a b op a b op

(4.31)

(4.32)

and

Sz =n [(8m „t) /g „—m „+( 8m s t ) /—gz ms ]~

(4.26a)
with U,' ' defined by (2.57a) and Ub

' by (2.57b), rather
than (2.50a) and (2.50b). Corresponding to the separation
(4.32), we have, in an obvious notation, with the super-
script 4 dropped henceforth for ease of writing,

R, = —2[(8m„t)/g„m „r—' )

Xarctan(t' /2(„mz )+(&~&) (4 26b)
Taa + Tab + ba + Tbb (4.33)

For small t we get

S2=8ir(m„+ms)t 'i +O(t'i /2m)

and

Rz= —16+0(t/m ) .

(4.27a)

(4.27b)

The second and third terms in (4.33) are UV finite and in-
dependent of t. If the divergent integral for the fourth
term is cut off at large ~l ~, this term is also t independent.
In order to calculate the long-range potential we need
only the discontinuities of these integrals, so that in the
spirit of the preceding subsection we focus on T„alone,
with

Following the notation of Eq. (3.20) we write the total
discontinuity in the form (4.34)

On use of (4.31), (4.32), (2.48a), (2.49a), and (2.51b), we

where the first term is defined by (4.21) and the second
term is the contribution from R, (4.20b), Sz (4.26a), and

R2 (4.26b). Thus we get, without approximation, T„=[e /(2n ) ](1+p /EzEz)

[M]',"= i (e /16m)(R—, +Si+R.i) .

On use of (4.24) and (4.27), Eq. (4.29) yields

[M]',"= ie [[(m—„+ms )/2]t

(4.29)

where

X f dl C(p, l)(q q' ) (4.35a)

+ [R i (s,0)—16]/16ir]
C(p, l) =(E„'Es+I )C(p, I), (4.35b)

+0 (r 1/2/ —
) (4.30)

E„=E„(p),E„' =E„(1),etc. , and C(p, l) is defined by

(3.41). On using the identity

Note that unlike the case of the scalar Yukawa theory, in

scalar QED there is now a t ' term in [M],. However,

as we shall see, the coefficient of t ' will be greatly
modified by the subtraction of [MI ],.

EqEs+I =E„Eii+p +[& (1)—W (p)]/2 (4.36)

in the integrand of (4.35a) and the relation (2.43c) for a,
we get

MI=[e /(2n) ]a f dl C(p, l)(q q' )
' —[e /(2n. ) ]a fdl(EqEs) '[8'(p)+ W(l)](q q' ) (4.37)
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where Mr is related to T„by

Mr —4Eq Eq T„, (4.38)

Thus, for small t and small p, Eq. (4.43) takes the form

[Dr ],=ie d( 0)t ' +ie 1'(0)p r

consistent with the normalization conventions established
in Sec. II. The angular integral in both lines of (4.37)
coincides with the one already encountered in Eq. (3.31),
if there we set p=O. We have not bothered to introduce
such an infrared cutoff in (4.37) because, as the analysis of
Sec. III already shows, the t discontinuity of the integrals
over j are finite in the @~0limit. Following the methods
of Sec. III B, we readily find that with

+O(p t ' Im )+O(t' /m) . (4.45)

P'a;r'r=([M]i [Mr ]i—) l2i . (4.46)

C. The hvo-photon-exchange potential at large r

We are now equipped to study the spectral function

pd;z associated with the difference amplitude M —Mr,

Mr =Dr+'~r

so that

[Mr ]i = [Dr ]i+i [ Ar ]t 1

(4.39)

(4.40)

On use of Eqs. (4.28) and (4.21) for [M], and Eqs. (4.41a)
and (4.41b) for [Mr], we see that the discontinuity of
M' ' and that of the absorptive part Ar of Mr cancel for
all s, as in the case of the scalar Yukawa theory, so that

the discontinuity of the absorptive part Ar is given by pd;&= ( [M]", —[Dr ], )l2i, (4.47)

[ Ar ],= i (e—a l2ps '
)t

and that of the dispersive part Dr by

[Dr], =i (2e a/m. )K .

Here K, defined in analogy with (3.52), is given by

(4.41a)

(4.41b)

K=(1/4t'r )f dx(1 —x )
' I(aCz(p, l)/2)

—[( W+ W')/2E„'Err ]]
(4.42a)

P~;s'.=a&(s)t 'r + a(3)s+O(t ' rm ),
where now however

(4.48)

where [M]'," is given by (4.29) and [Dr], by (4.41b) and
(4.42a).

The long-range potential U'„R can then be obtained by
substituting (4.47) into (2.28b). The result is complicated
and not very enlightening. To get a more useful result we
consider the leading terms in an expansion of U~R in
powers of r '. On use of the small-t expansions (4.30)
and (4.43) we find that p(d;s' assumes the form (3.71), viz. ,

a2(s) = —e [m „+ms +2d (p )]/4 (4.49a)

with 1 =y related to x via (3.50) and (3.51), and Cz
defined by (3.54b). The analog of the Ki term [Eq.
(3.56)], which was found to make no contribution, has al-
ready been removed in (4.42a).

As in Sec. III, we can find the behavior of K for small
values of t, with the result that

and

a3(s)= —e [R,(s,0)—16]/32m . (4.49b)

On using Eqs. (3.73a) and (3.73b) to compute the long-
range potential ULR associated with this spectral func-
tion we get

K =X(p)(n/4)t '"+O(r '"/m ), (4.42b) U'„R c2(s)r +——ci(s)r +O(r m ), (4.50a)

where, with a (s) defined by (2.43c) and C2(p) by (3.64b), where now

X(p) =aC2(p)/2 —W(p) IE„Err .

The corresponding expression for [Dr ], is

[Dr], =ie (aX/2)t 'r +O(t'r /m) .

(4.42c)

(4.43) and

c~(s)= —(e /4m ) [m„+ms+2d(p )]/2m„ms

(4.50b)

Expansion of the coefficient function d (p ) = aX/2 in
powers ofp yields

c3(s)= —(e /4m. ) [Ri(s,0)—16]/16am„mrs .

(4.50c)
d(p )—=aX(p)/2=1(0)+d'(0)p +

where

d(0)= —(m„+ms+m„s)/2,
with m~z the reduced mass

mph' =mgmrr l(my +ms),

(4.44a)

(4.44b)

(4.44c)

For small p we get, using (4.44a) —(4.44c),

cp(s) =cp(sp )+cp(so)p +

where

c2(so)=(e /4m. ) /2(m~+mB)

(4.51)

(4.52a)

and d'(0) is given by

d'(0)= —[(m„+ms) '+2m„~]/4 . (4.44d)
and cz(so), defined as the derivative of c2(s) with respect
to p at p =0, is given by
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cz(so) =(e /4m ) [ (m„+ms )

+ 2m Aii ]/4m A ms (4.52b)

We note that the 1/r potential is repulsive, whatever the
signs of the individual charges may be.

To evaluate c3(s) for p ~0, we use the definition
(4.24b) of R, (s, 0) and Eqs. (3.29a) and (3.29b). We then
find that

and (4.55) yields

[~](1)
lim

m~ m~

4—te

2i '/ (4.57)

R, (so,0)= '~

so that from (4.50c) we get

c3(so)= —(e /4ir) (7/6ir)(mAms )

(4.53)

(4.54)

D. Infinite-mass limit

It is useful to consider the limit mz ~ 00, with p and t
fixed, as we did for the scalar Yukawa theory in Sec.
III D. From Eq. (4.29) we have

R) S2 R2
i (e'/—16~)

mg mg mg
(4.55)

From inspection of the definition (4.16) and for Sz and
R 2 one readily finds that

and

S2
lim

m~ mg
=smt-'" (4.56a)

R2 =0.lim
m~ ~ oo Ply

(4.56b)

With regard to the limit of R
&
/mz as m~ ~ 00, since the

factor b =((AmAgiims) varies as mit for large
ms, the terms not involving F+ and F in (4.20b) make
zero contribution to this limit. The same holds for the
term involving F+(s, t) since, according to (3.75), F+
vanishes in this limit. Finally, from the definition (3.15d)
one finds that F (s, t) is finite in the limit ms~ oo, so
that the contribution of the F term in (4.20b) is also
zero in this limit. Thus

Ri =0lim
m~~ oo mg

(4.56c)

Note that both the r and r terms in U~z vanish
when either m ~ or m~ goes to infinity. In an atom made
of a spin-0 proton and a spin-0 electron the r term
would give rise to a level shift of order (m, /mz) times
the fine structure, of order a m„so that this term
represents a recoil correction to the fine structure. This
is in contrast to the case of the zero-mass scalar Yukawa
theory where the coefficient of r vanishes only if both
of the masses become large; for that theory, in a hydro-
genic bound state the contribution from two-quantum ex-
change would then be as large as the fine structure. We
shall discuss these differences further in Sec. V. In the
following subsection we consider the ms~ oo limit of
scalar QED in more detail.

Turning now to [Dt]„defined by (4.41b), we note first
that since a =2p +2E~E~,

lim =2E„.
mg mg

(4.58)

Combining this with Eq. (3.79) and the definition (4.42a)
of E we find, after some algebra, that

—nf„(p,t)
lim E =

&12
m~ ~ 8Eq t

here

z 2EA I& dx(1 —x )
A(P, t)=

«A+EA }

(4.59)

(4.60)

is the counterpart of the function f„(p,t) introduced in
the discussion of the mz ~ 00 limit of the scalar Yukawa
theory, defined by (3.80b). It follows from (4.41b), (4.58),
and (4.59) that

[Dt]i
lim

m~ mg

~ 4—le

2t &to fA(P (4.61)

This corresponds to Eq. (3.80a). Note the minus sign in
(4.61) and the fact that f„has the value unity at t =0 for
any value ofp:

(4.62)

For the difference spectral function pid;si(s, t}, defined by
(4.47), we get

(4) 4
lim =, [f„(p,t} 1]—

m& 4t'
as the counterpart of (3.81). The quantity UA'(r;p ),
defined as the mz —+ 00 limit of the long-range part of the
two-photon-exchange potential, is therefore given by

UA'(r, p )= lim ULR
m&~oo

2 1/2 A p't 1e
16m. m&r o 4t'

(4.63)

E~+E~
1+ p2 (2

(EA+EA )
(4.65a)

Iteration of this equation yields

(4.64)

So for scalar QED both M' ' and Mt contribute to the
long-range potential in the infinite-mass limit.

From the relation (4.62), it follows that the integrand
of (4.64) behaves at t' rather than t ' for small t. To
find the precise behavior of U~ ' at large r, we need the
behavior off„(p,t) for small t. To this end we note first
that the factor (E„+E„') ' in the integrand of (4.60)
may be expanded in powers of (p 1)/(2E„), most—
simply by use of the identity
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EA+E
1

2EA
1+ P +2 P +

—l —l

(2E„) (2E„)

From (3.51) and (3.50) we infer that, for p=o,

p
2 I 2

[ [t ( t +4p
2

) ] i /2 + t ) /2

On substituting (4.65c) into (4.65b) we get

(4.65}

(4.65c) (Eg+E"+ V)P=EP, (5.1)

A. Summary

In Sec. II of this paper we introduced a general formal-
ism for describing the scattering or bound states of a
two-body system. This formalism is based on a relativis-
tic two-body equation which for spinless particles has the
form

2EA

EA+EA
1 — +2t t(t+4p2)x2+t2

8EA 16EA

3/4(t +4p2)i/2x+2 ~ ~ ~

16EA
(4.65d)

dx(1 —x) ' x = —,
'

7T —1

we get, from (4.60) and (4.65d),

„(p t)=1 +— + +
8E2 4EA4 16EA4

It follows from (4.64) and (4.66) that

(4.66)

U„' '(r, p ) = 2 2

U„'"(r,O)+O —,
A r

(4.67)

where

U„"'(r,O) = — '
(4.68)

8m A3r4

So for scalar QED in the ms~ ~ limit the asymptotic
fourth-order potential is much smaller than the corre-
sponding potential in the scalar Yukawa theory. In Ap-
pendix A we show that (4.68) is also obtained from the
Klein-Gordon equation for a particle of charge e A and
mass mA, moving in a static electric field with potential
A (x)=es /4m r, as one would expect.

V. SUMMARY AND DISCUSSION

In this section we summarize our results and comment
on their significance and on some differences between our
results and those of other workers. %'e then discuss some
questions that have come up in the course of our analysis,
such as the elimination of the infrared divergence in the
fourth-order potential and the use of our results for the
calculation of bound-state energies.

Here the ellipsis in the first line represents monomials of
the form t"(p ), with n and m non-negative integers
such that n+m &3, multiplied by eUen powers of x,
whereas the ellipsis in the second line represents higher-
order terms of the type shown, multiplied by odd powers
of x. Although the function 2E„/(E„+E„' ) for fixed p
and x+0 is not analytic in t at t =0 (except when p =0},
the integral (4.60) is analytic in t at t =0, as well as con-
tinuous in p at p =0, because the terms odd in x make
no contribution to the integral. Since

1 x1—x'
—1

where EP=(p,„+m; )'/ and p, is the c.m. system
momentum operator. The potential V is calculated from
the Feynman diagrams, both irreducible and reducible,
associated with the underlying field theory, as a power
series in the coupling constant. In this paper we have
computed the potential arising from the exchange of one
and two quanta for two different field theories. In both
cases it is convenient to extract some kinematical factors
which are unity in the nonrelativistic limit and to write V
in the form

V =Nop UNop, (5.2a)

where U = U(r;s) is a local, energy-dependent potential
given as a power series in the coupling constant:

U(r;s}=U' '+U' '+ (5.2b)

The first theory is the scalar Yukawa theory with in-
teraction Lagrangian density given by (2.34). In this case
we choose

&,p = ( m g ms /E JEg )

Then U' ' is just the Yukawa potential:

U' '= (g /4n)e—xp( pr. )lr, —

(5.3)

(5.4)

Here pd;~ is the difference fourth-order spectral function
given by (3.69). The K terin in (3.69), defined by (3.62),
involves a transcendental integral which can be expanded
in powers of t . The corresponding expression for ULR
is an expansion in inverse powers of r, of the form

UL„' =c2(s)r +c3(s)r (5.6)

where c2(s) and c3(s) are given by (3.73b} and (3.72). In
the limit p ~0,
c2(s) (g /4') ( m—„+m„ms

+mii )/2m„ms(m„+mii ) (5.7a)

and

c3 (s)~ (g /4tr) /3rrm z—ms (5.7b)

The second theory we have considered is scalar QED,
with Lagrangian density defined by (2.35). We now

with g

=GING+/4m

&ms and p the mass of the neutral
boson. For the fourth-order term, U' ', we have em-
phasized the calculation of its long-range part ULR in the
limit JM=O. This is given by

UL„'=(16' m„m23r) ' J dt p~it(s, t)exp( t' r) . —
0

(5.5)
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ULR = Uc=e~e~/4mr . (5.9)

There is also a short-range part UsR, given by (2.57b).
The fourth-order term U' '(r;s) has a long-range part

ULR given by (5.5), where now the spectral function p'd;ff

is given by (4.47). The coefficients c2(s) and c&(s) in (5.6)
are then given by (4.50b) and (4.50c). For small p we
have

c~(s)= (e /4ir) /2(mA+ma)

+(e /41T) (p /4mgms)[(m„+ms}

+2mgg]+ ' ' '

(5.10a)

with m „~ the reduced mass and, for p =0,

c~(s)—+ (e /4—n ) (7/6m)/m„ms . (5.10b)

For ms~ ~ both c2(s) and c&(s) vanish and ULa is

given by (4.64); the leading terms for large r are given by
(4.67), which for p =0 reduces to

Uz'(r, 0)= (e /4') /—8mzr (5.11)

B. Discussion

If the masses of the two particles are both finite, then
in each theory the potential U' ' has a leading asymptotic
term" which, for small momentum, behaves as r for
large r and is repulsive. This term, but none of the other
terms in (5.6), has previously been obtained in a
quantum-field theoretic context by Gupta and Radford;
however it is not clear in what two-body equation these
authors mean to use their result. An earlier calculation
of the r term by Iwasaki gave zero; this author, who
uses Coulomb gauge in a nongauge-invariant formalism,
also does not specify the two-body equation he has in
mind. There are additional terms in U' ' proportional to
powers of p and to higher inverse powers of r. Thus for
general masses, the leading correction to the Coulomb
potential in scalar QED is a potential that behaves
asymptotically as r . Note that this asymptotic correc-
tion potential contains five less inverse powers of r than
the retarded two-photon-exchange potential, first calcu-
lated by Casimir and Polder, that acts between neutral
systems. It also contains two less inverse powers of r
than the well-known r potential that acts between a
charge and a nondegenerate neutral system. The reason
for this much slower decrease of our U' ' has to do with
the fact that in the present case there are states arbitrari-
ly near in energy to the initial state of the two charges,
which are linked to that state by photon emission.
Therefore the behavior of the two-photon-exchange po-
tential between two charges resembles that of a charge
and a degenerate neutral system, where we have previous-

choose

&.p=l 1+(p', /&YEa'I'" . (5.8)

Then the long-range part UzR of the lowest-order term
U' ' is the Coulomb potential

ly found a similar behavior, i.e., an anomalously small in-
verse power in V2~.

It should be stressed that the form of the correction
potential is specific to the use of Eq. (5.1), and to our
method for extracting potentials from scattering ampli-
tudes. In this formalism, the potentials V' ' and V' ' are
uniquely determined, and have the indicated forms. In
particular, while we have used the Feynman gauge in our
explicit calculations, our results are manifestly gauge in-
dependent.

In other approaches to calculating corrections to the
Coulomb potential, such as that of Austen and
DeSwart, ' a different wave equation is used, which does
not have the Hamiltonian form of Eq. (5.1},and the po-
tentials have a gauge ambiguity. These authors make use
of this ambiguity to arrange that the entire correction to
the Coulomb potential is an energy-dependent potential
that is of order e 2, not e 4. While we believe that their po-
tential does not have as straightforward a meaning as
ours, the ultimate advantages of either approach depend
on the ease of calculating specific physical quantities, and
that matter remains to be decided.

It is instructive to consider the situation in which one
mass is much larger than the other (ms &)m„), the so-
called "external field approximation. " In this cir-
cumstance, the behavior of the two theories we have ana-
lyzed differs considerably. In the Yukawa theory, the
r term survives in this limit, while in scalar QED it
does not. This difference can be understood by using an
old result, which we discuss in Appendix D. This result
states that, with radiative corrections neglected, in the
limit of infinite mass of one particle, the quantum-field-
theory amplitudes approach the amplitudes generated by
solving the Klein-Gordon equation with only the
Coulomb potential included, rather than those calculated
from Eq. (5.1). These two amplitudes differ by certain
pair terms that are contained in the Klein-Gordon equa-
tion and not in Eq. (5.1) when only V' ' is included there.
Thus the terms in V' ' that survive the limit mz ~ 00 are
these "missing" pair terms, and as shown in Appendix A,
these have different forms in the two theories that we
consider.

With these results we have completed our study, using
dispersion relation methods, of the two-photon-exchange
potential that acts between spinless systems. In previous
papers we have considered the form that this potential
takes between two neutral systems, and between a
charged system and a neutral system which may or may
not possess degenerate ground states. "' In a future pa-
per we will study the corresponding two-photon-
exchange potential between spin- —,

' systems. We conclude
this paper with some remarks about issues related to Eq.
(5.1) and the potential V' '.

C. The Coulomb phase

An important property of Eq. (5.1), with V defined by
(5.2a), (5.2b), and (5.5), is that the scattering cross sec-
tions calculated from this equation are free of certain in-
frared singularities that are contained in the field theory
amplitude M' ', and in higher-order field-theory ampli-
tudes. These singularities sum up to give an infinite
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"' + e "' +0 —,(5.12a)&~„,—e e

where

N„, =a„ilnk (r z)+—b„i

with

(5.12b)

a„,(k) =q(k)a (k), b„i(k)=argI (1+ia„,),
and

(5.12c)

phase factor, which does not aft'ect the cross sections.
This phase factor is well known in nonrelativistic
Coulomb scattering, where it has been discussed for the
case in which there is an additional, short-range potential
acting as well. ' It has also been discussed in the context
of relativistic Coulomb scattering. '

Let us first verify that the solution of (5.1) yields a
finite-scattering amplitude. One can show (see Appendix
B) that the asymptotic form of a scattering solution of
(5.1), associated with an incoming plane wave e'"'=e'"'
is given by

E—„(k)Es(k)
2m. W(k)

(S.14a)

and hence to the Feynman amplitude M =4E~ Ez T by

—1

8m. W(k)

From (2.44) we then find that

g Born 1
M (2) g rel

& sing 8 ~(k) sing J C

(5.14b)

(5.14c)

Returning now to the question of the divergent phase,
in analogy with the usual field-theoretic treatment where
the IR divergence is controlled by replacing 1/k by
1/(k —p ), we introduce a cutoff on Uc(r) in (5.9). For
simplicity we replace Uc(r) by F(pr}Uc(r), where
F(pr)=1 for r &p ' and F(pr)=0 for r &iu '. The
asym ptotic form of P for r »p

' is then e '"'
+f [)]ice'""/r By a. n extension to (5.1) of the method, in-
volving analysis of the partial wave amplitudes, described
for the nonrelativistic problem by, e.g., Goldberger and
Watson, ' one can establish that f [p] has the form

e~eB ~ABa(k)= (5.12d) f[V]=e "'"f„i[I]+&f' (S.ISa)

The factor ri(k) is a correction factor arising from the rel-
ativistic kinematics, given by

Here

4„i[iu]=—a„,i(k)ln(kp ') (5.15b)

E.(k)Es(k) z'(k)
ri(k) =

Eq(k) +E(sk) mqs
(5.12e)

with m~z the reduced mass. The scattering amplitude
f„„is given by

(frel +5f rel
} (5.12f}

Here fc" is the relativistic counterpart of fc, the nonre-
lativistic amplitude for a pure Coulomb potential, viz. ,

fc"=n(k)fc

with

a(k}
k (1—cos8)

(5.12g)

(5.12h)

fc""=fc . (5.13)

In scalar QED, the Born approximation is no longer ex-
act, but it does appear to give exactly the most singular
part of the amplitude, for any values of the masses. To
verify this we note that with relativistic kinematics the
c.m. scattering amplitude f is related to the c.m. transi-
tion amplitude T by

and 5fs'R is a correction to fc' arising from a residual in-
teraction, of order e, associated with the relativistic ki-
nematics, and from V' ', both of which fall off more rap-
idly than 1/r. It follows, as in the nonrelativistic case,
that the differential scattering cross section is given by

~ f„i ~
and so is finite for 8&0.

It is interesting to compare this situation with the non-
relativistic case where, as is well known, the Born ap-
proximation gives the exact answer

is a relativistic analog of the phase 4[p]
= —a (k)ln(kiu ') found in the nonrelativistic pure
Coulomb problem, obtained by setting r =p

' in the
asymptotic form of the outgoing spherical wave, and

f„,[p] has the limit f„i [Eq. (5.12f)]. The quantity 5f'
oscillates rapidly as p~0 and therefore does not contrib-
ute to the physical cross section.

We therefore find, as expected, that in the presence of
the Coulomb interaction and shorter-range interactions,
there is a p-dependent phase factor that multiplies the
finite-scattering amplitude f„&[iu=0]. The shorter-range
potentials contained in V' ' do not contribute to this
phase. They do of course affect the scattering amplitude

f„i[i =o]
If the phase factor exp(i4„i) is expanded in powers of

e, it generates terms in MI which diverge as p, ~O, such
as the one, e.g. , which would arise from AI given in
(4.41a). The divergent dependence on the cutoff iu in Eq.
(5.15b), which arises from the Coulomb-exchange graphs,
has a quite different origin from the usual infrared diver-
gence arising from radiative correction graphs. The
latter divergence cancels, order by order in total cross
sections, when added to the divergence arising from the
emission of soft photons. When calculated to order n in
e, the Coulomb-exchange divergence occurs with a
phase differing by ( n —1 )m /2 from the phase of the soft-
photon infrared divergence. As a result, when the
corrections in different orders are added together and
"exponentiated, " the Coulomb divergence appears as an
imaginary exponent such as the one in Eq. (5.15b),
whereas the soft-photon divergence and the radiative
correction infrared divergences contribute real exponen-
tial factors, whose divergent parts cancel, leaving a finite
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factor which depends on the energy resolution of the
detectors. Since these results are well known, and have
been treated in full detail, for example, by Yennie et al.
we do not review them here any further.

D. Calculation of bound-state energies

h,~=h,~[s]=EJ+Eg+ V[s], (5.16)

as follows. Recall first that the associated transition
operator T, = T,~[s] may be written in the form, with
E =&s,

To [s]=V[s]+V[s] . V[s] .1

OP

(5.17)

Suppose now that there exists a norrnalizable function

pb such that

ho [sb ]pb Eb4'b (5.18)

Let us assume, as seems reasonable, that for s near to
but not equal to sb, the operator h, [s] has a correspond-
ing eigenfunction pb[s] and associated eigenvalue

Eb [s)(&&s ), which approach pb and Eb ——Qsb, respec-
tively, as s sb..

P [s] P [sb]=P

Eb[s] Eb[sb]=Eb .

(5.19a)

(5.19b)

With h, [s] Hermitian in the neighborhood of sb, there
will be for a fixed value of s a complete set of orthogonal
eigenfunctions, I P&[s] J and one of these functions may be
chosen to be pb [s]. We may then write

1, =Pb[s]+Qb[s], (5.19c)

where Pb[s) is the projection operator onto pb[s] and

Qb [s] that for the orthogonal complement:

Equation (5.1) may be used for the computation of
bound-state energies, by looking for normalizable solu-
tions in the region E & m„+ms =+so. In practice one
would use an iterative procedure, first approximating
U(r, s) by U(r, so) and finding an approximate energy
E„' '=(lsb ', then replacing U(r, s„) by U(r, sb ') and
finding an improved energy Eb"——Qsb", and so on.

The association of discrete eigenvalues of h, with
bound-state energies is justifiable despite the parametric
dependence of V on s, at least if this dependence is analyt-
ic in s and not too strong; for clarity we now write V[s]
instead of V, to make the dependence of V on s explicit.
Suppose that the associated transition amplitude T(s, t)
can be continued analytically below s and that one finds a
pole at a value s =s& ——EI,. From the viewpoint of S-
matrix theory, such a pole corresponds to the existence of
a bound-state of total energy E&. We argue that such a
pole is associated with the existence of a discrete eigen-
value of h, , with

where

Nb[s]=(gb[s]
~

V[s] I p) (5.20b)

and T„(s,t) denotes the contribution from Qb[s]. We
see that unless Nb [sb ] vanishes the second term in (5.20a)
has a pole at s =sb In t.he absence of (unlikely) cancella-
tions, T(s, t} will therefore have a pole at s =sb. The ar-
gument is readily extended to bound states of any angular
momentum and degree of degeneracy.

From the definition (5.2a) of V[s], we see that V[s]
will be Hermitian as long as U(r;s) is real. From the
representation (5.5) we see that a sufficient condition for
the reality of ULa(r;s) is that of the difference spectral
function pd;s(s, t). This function is real through fourth
order, as our calculations show, even for JM =0. In higher
orders p~s, t) will certainly become complex if
s)s, =+so+@, the threshold for the production pro-
cesses A +B~A'+B'+P; the resultant non-
Hermiticity of V[s] is then required to satisfy unitarity.
For s & s &, and in particular for s & so, the precise charac-
ter of V[s] in higher orders with regard to Hermiticity
requires further investigation. It should be noted that the
Hermiticity of V[s] is not necessary for the existence of
real eigenvalues. For p=O and s (so we indeed expect
V[s] to become complex in higher orders in order to per-
mit the eigenvalues associated with discrete states, other
than the ground state, to develop an imaginary part, asso-
ciated with the width for radiative decay. In this connec-
tion, the corresponding eigenfunctions pb [sb ] can be used
to compute radiative decay amplitudes in the standard
way, with some relativistic corrections thereby included.

To see that our assumptions are not unreasonable, we
consider a soluble model involving an s-dependent poten-
tial operator V. We choose for V a separable potential of
the form

V[s]= —A, (s)
i

v )(u i (5.21a)

Here k(s) is an energy-dependent coupling constant and
in r space,

V[s]f (r) = —A(s)v (r)I u '(—r)f (r)dr (5.21b)

with v(r) square integrable. Let us assume that for some
value s =sb &so there is a normalizable function pb(r)
which is an eigenfunction of h, [sb ] with eigenvalue
Eb ——Qsb. Then the Fourier transform pb(p) of pb(r)
satisfies the equation

For simplicity we shall assume that pb[s] corresponds
to a nondegenerate S state. On inserting (5.19c) into
(5.17) and taking the matrix element of (5.17) with plane
wave states

~
p) and

~

p') we then get

Nb' [s]Nb [s]
T(s, t)=(p'

~
V[s]

~
p)+ +T„(s,t),E E—

b s
(5.20a)

Pals)=
I kb[s) &(yb[s] I

Qb[s) = g I 4p[s) & & Wp[sl I

(5.19d)

(5.19c)

W(p)y(p) —&(sb }u(p)(V
~
y) =Eby(p) . (5.22}

This implies that Eb is an eigenvalue if and only if A.(sb )

is such that
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1=A(sb) Jdp
W(p) —Qsb

(5.23)

On the other hand for this case T(s, t) can be comput-
ed exactly

k(s) & p'
i

u ) & u
i p )

1 —A.(s)f dp
W(p) —&s

(5.24)

Since the denominator in (5.24) vanishes at s =sb if and
only if Eq. (5.23) is satisfied, it follows that for a wide
class of function A,(s) and u(p), the transition amplitude
has a pole at s =sb if and only if h,~[sb j has Qsb as a
discrete eigenvalue.

1. Composite spinless charged particles

All known spinless charged particles are regarded as
composites. Examples are the He nucleus and six-times
ionized ' O. For the scattering of two such composites,
the scattering amplitude we obtained in Eq. (2.44) must
be modified through multiplication by a factor G(q ),
where q is the photon four-momentum. G(q ) is essen-
tially the product of the charge form factors of the indi-
vidual particles and satisfies

G(0)=1 (5.25a)

and

G(q )~0 as q ~~ . (5.25b)

The result of this modification is to change the poten-
tials U,' ' and Ub

' of Eqs. (2.50a) —(2.50c). For U,' ' the
change amounts to adding an additional short-range po-
tential which falls off exponentially with r. For Ub ', the
change is more significant. Instead of being a delta func-
tion this potential becomes a short-range potential which
decreases exponentially with r. The form of this poten-
tial, which we will call U, is essentially the Fourier trans-
form of G(q ). Now U can be iterated without produc-
ing ultraviolet divergences, but there is no need to do so,
because its iteration will generate only short-range
fourth-order potentials that we will anyway not include
in ULR.[3)

E. Effect of the delta-function potential in scalar QED

We have seen in Eq. (2.44) that in the one-photon-
exchange contribution to the scattering of spin-0 charged
particles there occurs a term which goes as a constant at
large t, corresponding to a delta-function potential.
When such a potential is iterated, it produces ultraviolet
divergences. While these divergences do not contribute
to the long-range potential that is of interest to us, their
occurrence cannot but make us uneasy about the status of
the theory that we are considering. Indeed, it is well
known that the Schrodinger equation with a delta-
function potential has no scattering solutions. We com-
ment here briefly on this state of affairs; as mentioned
earlier, an approach which avoids the occurrence of delta
functions is described in Appendix F.

We note further that in the dispersion theory calcula-
tion that we use for the two-photon-exchange graphs, we
only need to know the photon emission and absorption
amplitudes on the photon mass shell. However, in these
graphs the charged particles can be off the mass-shell

(p &m ). By use of the Ward identity it can be shown
that, for this case,

G(q =O,p )=I+0(p —m ) . (5.26)

On substituting this form into the expression for [M' '],
we obtain the previous result from the first term in G.
The other term generates corrections that are dependent
on the charged-particle structure and which correspond
to potentials that fall off at least as fast as r for large r
These corrections and other terms due to excited states of
the charged particles are similar in form to those found
previously in the potential between a charge and a neu-
tral system. We conclude that the results summarized in
Sec. V A apply with minor modifications to the potential
acting between composite spinless charges.

F. Concluding remarks

We have calculated the two-photon correction to the
Coulomb potential acting between charged spin-0 parti-
cles. This correction is given in Eq. (5.5). The additional
potential is most conveniently expressed as a power series
in r . When substituted into Eq. (5.1), this potential, to-
gether with the Coulomb potential (2.48a), generates
scattering amplitudes and bound-state energies that are
correct to order e, and to all orders in m~ /m~. To or-
der zero in this ratio, the results obtained in order e
agree with those of the Klein-Gordon equation. The ad-
ditional terms are essentially recoil corrections.

Several questions remain which we hope to address
elsewhere. (i) If in Eq. (5.1) the full potential V' '

+ V' '+ - . is used, then the scattering amplitude ob-
tained from the solution will, by construction, agree with
the field-theory amplitude computed in the generalized
ladder approximation. Suppose however that V in (5.1) is
approximated by V' '+ V' '. The amplitude obtained
from the exact solution of the approximate equation will

2. Elementary spinless charges

It is conceivab1e that elementary charged particles with
spin-zero exist. A possible example would occur if there
is more than one doublet of Higgs mesons, in which case
one charged Higgs-boson particle will survive spontane-
ous symmetry breaking. It has been known for a long
time that the QED of spinless charges is renormalizable.
However, in order to carry out the renormalization, in
addition to the familiar charge and mass counterterms it
is necessary to introduce additional terms, such as

A term of this kind will also generate, in
order A, , a constant amplitude similar in form to the
second, constant term in Eq. (2.44). This appears to im-

ply that a proper treatment of the higher-order effects of
the delta-function potential Ub

' will necessarily involve a
study of divergent radiative corrections and the overall
renormalization of the theory. This is beyond the scope
of this paper.
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still contain terms of order e and higher and of all orders
in mz /mz. It would be of interest to know the relation
between the terms beyond order e generated in this way
and the actual higher-order terms that would follow from
quantum field theory, for example, from exchange of
more than two photons. (ii) One could also study the
short-distance behavior of the potential between two
charges, to given order in e, by using the methods de-
scribed. But other methods may be more convenient for
this purpose. (iii) We have not included radiative correc-
tions to the photon-exchange graphs. Because of the
need to cancel infrared divergences in such corrections
against similar divergences in the emission of soft pho-
tons the possibility of a description of such corrections in
terms of potentials requires further study. (iv) Once we
fix the lowest-order potential V' ', the higher-order po-
tentials are uniquely determined in our approach. It
would be interesting to explore the question of whether
there is, in some well-defined sense, an optimal choice for
y(2)

In a future paper we will extend this work to the case
of the two-photon-exchange potential between charges
with spin, where additional, spin-dependent terms will

occur.
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APPENDIX A: SCATTERING
OF A SPIN-0 PARTICLE BY AN EXTERNAL FIELD

In this appendix we derive some results which, though
well known, are not readily available in standard texts on
relativistic quantum theory.

[B„c)"+m + A (x)]P(x)=0 . (Al)

This can be regarded as the Euler-Lagrange equation
arising from addition of a term P (x)P(x)A (x) to the
usual Lagrangian for a complex spin-0 field. For a static
external field we write A (x)=2mU(x) and consider a
scattering-state wave function of the form P(x)
=P(x)exp( iEt). Then (Al) ta—kes the form

(E E, )P(x)=2mUQ(x) —. (A2)

1. External scalar field

The interaction of a spin-0 particle of mass m with an
external scalar field A (x) can be described by a Klein-
Gordon- (KG-) type of equation of the form

EX=(E,p+ Vx)X,

where

(A4)

Vz ——[2m/(E+E, )]' U[2m/(E+E, )]'~ . (A5)

The amplitude T for a transition from a plane wave state
~ p & to a state

~

p' & of the same energy E is then given by

T=&p
~
V, +V,(E —E.,)-'V, + ~p&. (A6}

On use of the form (A5) for Vz and the relations

E., I P& =«p)
I
p& E., I

p'& =«p }
I
p'&

we get, with E =E(p) =E(p'),

(A7)

T =(m/E)& p'
~
U+U[2m/(E E, )—

X(E+E., )]U
I p&+ («)

The term of order U contains contributions from states
which in quantum field theory correspond to the presence
of virtual particle-antiparticle pairs. These may be isolat-
ed by introducing a lowest-order effective potential V",si,

defined by

V',z ——(m/E, )' U(m/E )'

and noting that

(E E, )—'(E+E,p)

(A9)

=[(E E,p } ' (—E +E,p } ']—/2E, . (A10)

It follows that T may be written in the form

T= &p i
v",,'+v",,'(E —E., )-'v",,'ip&

+ & p'
I

v'.~ I p &+ .

where

(A11)

pair E+E(1)
which coincides with & p'

~

V',s'
~ p &.

In the nonrelativistic regime we may replace E and E
p

by m in (A12), yielding

V', ir' = (m /E, p )
'—U [m /E, (E +E,p ) ]U ( m /E, )

' ~

= —V",,'(E+E., )-'V",,' . (A12)

The last term in (All) contains the pair-effects. Note
that the minus sign in (A12) corresponds to the fact that
in a field-theory calculation the energy denominator asso-
ciated with, say, the production by V',z' of the final parti-
cle of momentum p' and an antiparticle of moinentum 1,
in the presence of the initial particle of momentum p, is
just E —[E(p)+E(p')+E(1)]= [E+E(l)]. Thus in-
field theory we get

We wish to compute the scattering amplitude to second
order in U. To this end it is convenient to introduce a
new wave function 7 defined by

U2
v'.r =—

2m
(A14)

X(x)=[(E+E, )/2E]' P(x)

and to rewrite (A2) in the Schrodinger-type form

(A3) This coincides with the leading term for V' ' in the scalar
Yukawa theory, in the limit mz ~~, provided we identi-
fy m with m„, in Eq. (3.85) of the text, and U with the
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Yukawa potential U', defined by (2.41c). Thus the po-
tential V' ', in the m&~~ limit of this theory, repre-
sents, to order g, the difference between using (5.1) and
(Al).

2. External electromagnetic jgeld

T = (p'
I

v",,'+ v",,'(E —E.,)-'v",,'Ip)

+&p'I V".e Ip&+.

where

(A20a)

(A20b)

[(8„ie—A„}(B" le—A")+m ]P(x)=0 . (A15)

For a spin-0 particle of mass m and charge e moving in
an external electromagnetic field with four-potential
A„(x), the KG equation is

and

V(2) —Ucff
Op

E —E,U=U " U.
2E (2E)(E+E,p)

(A20c)
For an electrostatic field, we may take A'=0 and A
=A (x) only. With U(x)=eA (x), Eq. (A15) becomes,
for P(x)=P(x)e

((E —U) E, )P—(x)=0

or

We now identify U with the Coulomb interaction Uc
by setting e =e~ and A =es/4trr, the electrostatic po-
tential of a point source "B." We may then compare the
result (A20) with the ms = ~ limit of scalar QED.

Note first that with the convention

(E E, }P(—x)=(2EU —U )P(x) . (A16) (n) (n)V" =z,pV "z,p, (A21)

On defining X(x}as in (A3} this takes a form analogous to
(A4): adopted in Sec. II [Eq. (2.55)] and used throughout Sec.

IV, and the fact that, as follows from (2.51a),
EX=(E,p+ VE )X,

where

(A17)
lim zop 1

m~ —+ 00
(A22)

VE (E+E, )
——' (2EU —U )(E+E,„)

The transition amplitude is now given by

(A18)

Keeping only terms through order U we get

T=(p'
I

V +V (E E, ) 'V—+ I p) . (A19)

we have, on use of (2.57a}, the relation

lim VLR
——ULR ——Uc .(2) (2)

m~~00
(A23)

Thus VLa agrees with V', Ir', given by (A20b), in this limit.
With regard to V',s', we restrict ourselves to a compar-
ison of (A20c) with VLR in the limit of large m or
equivalently, in the domain p =p' « m . In this region
we may replace E and E, by m +p /2m and
m +p, /2m, respectively, so that

T= p' (2EU —U )+(2EU)
&2E

U (p2 p2 ) U

Sm
(A24)

2EU) p +.
E E, E+E,p

— v'2E Acting between plane-wave states
I p) and

I
p') of the

same energy, the right-hand side of (A24) is equivalent to

or

2E
(E —Z.,NZ+Z. , ) ')

3
—([p,~, U]U+ U[U, p,~])= 3 [[p,~, U], U]Sm' 2 16m

( V'U)
8m

With U =e~ez/4m. r and m identified with m~, this be-
comes

Using the fact that (e /4m. )

sm. „'r' (A26)

2E
(E E., )(E+E., ) —E E., E+E., —

we may rewrite T in the form

in agreement with Eq. (4.68) for the p =0 limit of the
leading term at large r of U„' '(r, p ) So in this .case as
well, V' ' represents, to order e, the additional term that
is required because we use (5.1) instead of (A15).
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APPENDIX B: THE RELATIVISTIC
TWO-BODY COULOMB EQUATION

i(kz +N) i(kr N)—fc
T j2 (82a)

where

N =a Ink(r z)+b,—

with

(82b)

To examine the qualitative changes in the Coulomb
wave function that are introduced by the relativistic kine-
matics in Eq. (5.1) let us first recall some facts about the
nonrelativistic two-body Schrodinger equation for a pure
Coulomb potential, viz. ,

2
k+ Uc(r) (81)

mAB m AB

where m AB is the reduced mass.
The asymptotic form of P, with an incident plane wave

of momentum k=kz is given by'

For p =k, (86) simplifies to

g(k)=g(k, k)=
m„i) k) '

where m„ii(k) is a relativistic "reduced energy, "
E„(k)Es(k)

E„(k)+bi(k)

(87a)

(87b)

It follows from (85) that (83) may be written in the form

2 2
POP k

0+gop zop Uczopk
mAB mAB

(88)

where g,p
——g(p, ,k). Since for large r, ((') consists of a

plane wave e'"' plus terms of order 1/r, the operator fac-
tors g, and z, may, to leading order in 1/r, be replaced
by the values they have when acting directly on e'"', viz. ,
by g(k, k)=g(k) and by z(k)=[1+k /E„(k)E a(k)]'~,
respectively. Thus for large r, (88) takes the form

2
k+rl(k}Uc+5U P= $, (89)

2m A mAB

eAea mABa= b =argI (I+ia),
4m k

(82c) where

and fc, the scattering amplitude, is identical with that
given by the Born approximation, viz. ,

fc= —a/k (1—cos8) . (82d)

If a short-range potential 5 Usa is added to Uc, fc must
be replaced by fc+5f.

The simplest relativistic analog of (Bl) for scalar QED
is obtained by including only the lowest-order long-range
part of V, viz. , z,„Ucz, where z,p=z(p, p) is defined by
(2.47). Thus we study the equation

z (k)
r)(k) = (810)

a„,=rl(k)a, (811)

which leads to the replacement

and 5U is a "short-range" operator, arising from this re-
placement. The asymptotic form of P can therefore be
obtained by substituting for a everywhere in (82b) the
quantity

W,pg+z, Ucz, P= W(k)((),

where

(83)
fc~fc"=rl(k)fc (812)

W(k)=E„( k) +E (i)k),

W, —=E„(p,p)+Ei)(p, p) .
(84)

and by adding to fc" a term 5f arising from 5U. Thus
fc is replaced in (82a) by

f rel fre)+ 5f

To facilitate coinparison between (83) and (Bl) we note
first that, as some algebra shows,

Inclusion of a term such as V' ' in (5.1), will change 5f
but will leave fc" unaffected.

W(p) —W(k) = g (p, k),p2 I 2

277l AB
(B5)

APPENDIX C: ANALYSIS
OF THE INFRARED DIVERGENCE PROBLEM

with

(2m„~)[W (p)+ W (k)]
g(p, k}=

[E„(p)E~(p)+E„(k)E&(k)][W(p)+W(k}]

(86)

We consider in this appendix the fourth-order Feyn-
man graphs for the scalar Yukawa theory, in order to
clarify the occurrence and cancellation of infrared diver-
gences.

The fact that the amplitudes ML and Mz, associated
with the box and crossed-box Feynman diagrams shown
in Figs. 3(a} and 3(b), each have an infrared divergence
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(IRD) if one sets Ir, =O in Eqs. (3.2a) and (3.2b) is obvious

from power counting. For example, with t =Q &0, for2

small k the integrands of ML and Mz are proportional,

apart from a factor t ', to ( —k p„kps. k) ' and

(k p„kps. k ) ', respectively. If we work in the Euclide-

an region, with d k ~E dK dQ3, we see that each in-

tegrand behaves as I( ' for small K, corresponding to a
logarithmic divergence in both Ml and Mz. Moreover,
for Q = —(ps —ps )&0, these divergences do not cancel.
As shown in the text by use of dispersion theory tech-

niques, the difference M' ' —Mr=a +M& —MI, where

MI is the iteration amplitude obtained by using the one-

meson-exchange potential V' ' in second-order perturba-
tion theory, is IRD free in the p~O limit. This fact may

appear somewhat mysterious, because although it is plau-

sible that ML contains iteration effects from V' ', which

are responsible at least in part for its IRD, this is not true

for Mx. To be specific, while ML, if regarded as a sum of
contributions from time-ordered diagrams, contains

pieces which involve only two-particle intermediate states
and which can therefore in part be associated with itera-

tion of V' ', the corresponding time-ordered diagrams for

Mz always involve states of three or more particles,
which are beyond the ken of V' '. The reader may there-

fore be puzzled, as we originally were, as to just what the
mechanism of the IRD cancellation is from the viewpoint
of ordinary perturbation theory. The purpose of this ap-
pendix is to describe this mechanism.

The answer, in brief, is as follows. Of the 24 time-

ordered diagrams associated with ML at most six„ those

involving no virtual particle-antiparticle pairs, can have

enough sma11 energy denominators to lead to an IR diver-

gence problem. These diagrams are shown in Fig. 5. Of
these only the first four, each of which involves some

pure two-body intermediate states, actually have IRD's
in the p=0 limit. The contributions of these four
"dangerous" diagrams are, however, not purely of "po-
tential type. " They become so only if one neglects the
recoil energy of one of the initial or final particles occur-
ring in a three-body intermediate state, relative to the en-

ergy of the exchanged meson. If these recoil energies are
at first neglected, one finds that the resulting contribu-
tions are precisely canceled by those of Mr (whether or
not Ir, ~O). However, the remainder is still IR divergent.
This is fortunate, because as analysis shows, the left-over
divergence in ML —MI serves to precisely cancel the IRD
in the crossed-diagram contribution Mx.

We now give the details. If the propagators in (3.2)
and (3.4) are separated into positive- and negative-
frequency parts via

Dg '(&)=
E„(I—)+i~

1

I +E„(I) ie— (Cl)

TIt
' = &f I Hr GoHr GoHr GoHr

I

i &, (C2)

where Hz is the interaction piece of the total Hamiltonian
H =Ho +Hr with Go = ( E Ho+i e ) ', a—nd retaining
only those terms which do not involve more than two
heavy particles in intermediate states, the so-called "no-
pair terms. "

the integration over 1 can be carried out by closing the
Feynman contour, say, in the upper half-plane. The re-
sulting sum of terms may, after some algebraic reorgani-
zation, be written as another sum of terms, each of which
has a simple interpretation from the viewpoint of old-
fashioned perturbation theory and can be associated with
a suitable time-ordered diagram. In Figs. 5 and 6 we ex-
hibit 6 of the 24 such diagrams associated with ML and

Mz, respectively. The remaining 2)(18=36 diagrams all
correspond to processes involving some intermediate
states with more than two "heavy" particles. Thus, they
contain at least one large energy denominator and need
not concern us at present. It should be noted that the
amplitude associated with the "no-pair" diagrams shown
in Figs. 5 and 6 can be most simply obtained by studying

a 8

(a)

I
8

(b)

Pe

'a '8
(c)

I PIPa 8

Pa Pe

I
Pa~

I
iipe

I
paI~

I
li pe (b) (c)

i

Pa'

(e)
Pe Pa

)pl

pe

ie"

FIG. 5. Six of the 12 time-ordered graphs describing two-
meson exchange, without creation of virtual pairs or crossing of
meson lines. (a)—(d) Graphs involving some intermediate states
with no mesons; (e), (f) graphs involving some intermediate
states with two mesons.

(e)

FIG. 6. The remaining six no-pair two-meson-exchange

graphs, obtained from those of Fig. 5 by crossing the meson

lines.
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1. IR analysis of the no-pai r part of Mc

Whichever way one proceeds, one finds that ML~, the
sum of the "no-pair diagrams" shown in Fig. 5, is given

by

@a=Ea{l'»

co ={k2+ p2)1/2 ~i (ki 2+F2) i &2

we have

(C4)

f
Mt"i'= g ML.

a=a

where, with k=p„—/, k'=l —p'„,

(C3)

Here

=G I 3
(16@„@ttcoco') 'I

(2n. )
(C5)

and

I, =(E~ —hs co'—+is) '{d +is) '(E„—8„co—+is)

Ib =(Ez —@z co'+—ie) '(d +i@) '(Es —gs co+—ie)

I, = (Es —6s co'—+i E) '(d +i e) '(Es —gs —co+ t'e)

Id=(E„' —8z co'—+if) '(d +is) '(Ez —8z co+—ie)

(C6a)

(C6c)

(C6d)

I, ={Eti—@Jy —co'+i&) (Eg —Eg co co—'+i—E) '{E„—e „co+if—)
II —(E„—@g co'+t e—) '(Ett'Ett —co ——co +«) {EB EB

co+le�)

(C6e)

(C6f)

with

d =Eg +Eg —cog —cog {C7}

The denominators in each case are just equal to the ener-

gy Ez +E~ of the initial state minus the energy of an in-
termediate state.

The first four diagrams are "dangerous" (D) in the
sense that even for Q &0, they become IR divergent if we
let p~0. For future reference we note that ID, the sum
of the dangerous I,

d

In=+ I

then

6 dl 1 1

4 (2tr )

(Cl 1)

In the c.m. system we have, therefore,

G I dI (p ( U )[I)(I
~

U(2)~p)

4g (2m)

@ques

Eq+Ett —8q —6s+ie
(C12a)

may be written in the compact form

ID F'(d +i e) 'F——, (C8b)

where now Cs=Ett( —I)=En(I). Since G2=4m„mug~
we get, in terms of V' 'rather than U' ',

where

F =(Ez —8z co+te) —'+(E„—6z co+to)—
(Cgc)

F'=(E~ —8s co'+is) '+(E„——8„co'+is)—

M"'. "'=N 'N '' V' ' . V' ', (C12b}L;D — y' P E & +,. P
0

where E =E~ +Ez. Thus

2. The no-recoil part of MI"~

Suppose now that we "neglect recoil, " that is, neglect
E~ —Nz and Ez —6~ relative to co' and Ez —@z and
E„—6 „relative to co. Then

no rec 4
ID ID

COCO d +lE

Correspondingly, if we define

dl 1
M~ D= g ML =G I. , . , ID, (C10)

(2~) 166 g 6 scoco

Tno rec t y(2) y(2}1

E —Ap+EE'

which is just the first term in (2.15b}. In view of this re-
sult we identify ML'. D"' as MI ', the "iteration part" of

M(4) Mno recI = L D (C14)

Thus the definition (2.40b} of V' ' has the virtue that, if
used in second order, it reproduces exactly the no-recoil
part of ML ', as defined in the c.m. system.



38 TWO-PHOTON EXCHANGE FORCE BETWEEN CHARGED. . . 3793

3. IR analysis of the no pa-ir part of the crossed
ladder diagram

Turning to Mz, we have

f
Mg= g Mx.

where

Ca=Ea(l"), 1"=pa+k' .

With

(C16b)

with

2n. ) 166 „Cacoco'
(C16a)

d '=E~+Ea @~——@a

we have

(C17)

J, =(Ea —6a co—+i@) '(d" co —co'+—ie) '(E„—8, co+—ie)

Jb=(Eg —@g —co'+i&) '(d" co —co'+—ie) '(Ea @—a co—'+is)

J,= (Ea —6'a co+i —e) '(d" co c—o'+i—e) '(Ea —6'a co'+i e—)

Jg =(E„' —8„co'+ie—} '(d" co co'—+i e—) '(E„—6„co+—i e)

and, with d q =E„E„',da—=Ea Ea, —

J, = (Ea —6a co+i e—) '(d „' co co—'+i—e) '(E„—6 „co+i—e)

Jf =(Eq —6'q —co'+i e) (da —co —co'+i e) '(Ea —6'a co'+i —e)

(C18a}

(C 1gb}

(C1gc)

(C18d)

(Cl ge)

(C18f}

We have labeled the diagrams in such a way that dia-
gram (a) of Fig. 4 is obtained from the corresponding (a)
of Fig. 3 by interchanging the photon-line end points on
the world line of particle B. Inspection shows that the
dangerous terms are now (a),(b), and (e),(f} rather than
(a),(b) and (c),(d).

Thus we define

dl
M~.D—= g M2. —6 JD,

(2m ) 16'„r7acoco'

(C19)

1 1 1 Jf~—CO —CO —CO —CO

1 1
I I—CO —CO —CO

7—CO

(C23a)

(C23b)

1 1 1
t t t—CO —CO —CO —CO

where

JD ——J, +Jb+J, +Jf . (C20)

—1 2 2
JD p+v p v

(C24}

4. Cancellation ofIR divergence

and the integrand of (C19) reduces, apart from a factor
(2n), to

We now show that the IR divergence of Mx. D for
p~O just cancels the IR divergence contained in the
recoil correction MI'.'D to ML. D ..

1 —1

16E~E~ p+ v

2 2+
pv pv

(C25)

~I.; D ™I.; D ™L;D (C21)

To see this we keep p finite and study the integrand of
ML".D and the dangerous part Mz. D of MP at the points
I =p and l =p', corresponding to k=0 and k'=0, respec-
tively. It is at these points of the integration that diver-
gences occur as p~0. For l ~p we have

(@2+ 2)1/2

@s Ea .

Since E„' =E~ and E~ =Ez in the c.m. system, we get

1
AID —=ID —ID "—— . F'F—

d + 1 E' COCO

(C26)

We may write, suppressing the ie, and using Ez ——Ez,

at 1 =p (as well as at 1"= —p'). Because of the 1 dl fac-
tor in the volume element dl, it is the p factor which
signals the presence of an IR divergence, i.e., a noninte-
grable ~1

—
p~ behavior if we let JM ~0.

Let us study the integrand of Ml'". D at the same point,
I =p. The relevant quantity is
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—2 Ea —@a
+ +

co (Ett —8s —co)to (E~ —6'„—co)co

(C27)

ToL„™oiA/4E„(p)E&(p) . (D2)

We now define T„as the m~~ ~ limit of T«„, with
the understanding that gs =Gtt/2m', p and t are fixed.
Thus

—2 &a-@a E+'—
co' (Ett —A's —co')to' (E~ —6 q

—co' ko

(C28)
with

For I ~p, 8„~E„,8s ~Ett and, as a short calculation
shows

T„—= lim ToLA ——g T„'"'

lim M""'/4E„(p)ms .

(D3)

E„—6„
rt „—= lim

l~p d +l6

EB @B
gz =—lim

l~p d +l6'

E~
E~ +E~

&~+Em lim ps Imtt —— lim ps Imtt ——(1,0,0, 0)
m~~00

(Dsa)

Note that in this 1imit the c.m. frame and the laboratory
frame, with 8 as the target particle, coincide. Moreover,
with fixed three-momenta

Since g„+gz =1, one finds that

lim AI~ =, —+2 1 1

I~p NN 9) Q) l=p

and since Qo= (Ett —Ett ), —

lim QO=0 .
my~ oo

From Eqs. (2.36) and (2.38b) we see that

(Dsb)

It follows that the integrand of ML".n is given, at I =p, by

1 1 2 1 1+
16E&E& pv pv v p

(C30}

(16E„Es) '4p, v (p+ v) (C31)

which only has a p singularity. This completes the
proof of the absence of IR divergences in ML".&+M&.z
and hence in M' ' —Mt.

For @~0, (C25} is proportional to —2/p v whereas
(C30) is proportional to +2/p v, so the p singularity
cancels. More precisely, the sum of (C30) and (C25) is
given by

T„''= —(m„/E„)g /(Q +p ) . (D6)

On comparison with the first term in (A8) we see that
T~ ' coincides with the lowest-order term obtained from
the external KG equation, with U the Yukawa potential,
given by (2.40).

To compute T„' ' we use the symmetrized form (3.4) of
M' '. Consider first the factor 8+ in (3.4),

B+ =D~ '+D~ (D7a)

on the 8-particle mass shell. It follows from (D5a) that

with Dtt and Dt't, defined by (3.3a) and (3.3b), given by

D&=2p~.k+k +is, D~=2pz k'+k' +iE'

(D7b)

APPENDIX D: INFINITE-MASS LIMIT
OF THE GENERALIZED LADDER DIAGRAMS

1 1
lim m&B+ ——-- . +

m& oo 2ko+l 62ko+ je'' (D8a)

The purpose of this appendix is to study the mz ——00

limit of an approximation to the Feynman amplitude
M(s, t), called the generalized ladder approximation
(GLA). For simplicity we confine our attention to the
scalar Yukawa theory studied in Sec. II. In this approxi-
mation one considers only those Feynman graphs which
are generalized ladders, i.e., graphs in which n mesons
are exchanged by particles A and 8 (n = 1,2, . . . }, with
arbitrary crossings of the meson lines allowed. Thus
Moi A(s, t), the GLA to M(s, t) is given by

and from (D5b), since Qo =ko+ko, that

ko+ko ——0 .

Hence (D8a) reduces to

(D8b)

lim ms8+ —— ni5(ko ) —. .
my~co

(D9)

Note further that for ko ——ko ——0, the factor A in (3.4)
reduces to

(2p~ 1
—1') '+(2p~. k' —&') ' . (D10)

Mo„~(s, t)= g M' "'(s,t),
n=l

(D 1)

where M'"'(s, t) is the sum of those graphs of order G ",
n~ in number, which describes the exchange of n mesons.

The associated c.m. system transition amplitude T~„A
is related to MG„~ via Eq. (2.10b), viz. ,

(E~(p) —E~(1)) ' ' (D11a)

here I is the three-momentum of A in intermediate states,

These two terms give equal contributions to the integral,
because of the symmetry between k and k' and the first
term may be rewritten in the form
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(D 1 lb)

and we have dropped the subscript A on p~. On denot-
ing Ez(p) and Ez(1) by Ez and Ez, respectively, we see
that in the limit mz ~~, we may make the replacement

This agrees with the sum of the second and third terms in
(Al 1) obtained from the KG equation. The agreement
may not be immediately obvious because (Al 1) was writ-
ten for a difterent purpose. However, we may use the re-
lations

A+ ~2(E„E„'—} (D12)

It then follows from (D4}, (3.4}, (D9), and (D12), together
with the relation 6 =16g m~ m~, that

2

E„—Eq

and [see (2.39)]

E~ —E~
1 1

E~+E~ E~
(D14)

2
m&

TA
E~

d k 1 1 2

(2~)3 lr2+i22 gi 2+i22 E2 E'2

( p'
~

U
~

I ) = —g'/(&' +p, '),
( I

~

U
~ P ) = —g'/(k'+((2'),

(D13) to rewrite (D13) in the form

1

Eg ( p)+ Eg (I )
(D15)

where V',Ir is given by (A9). The agreement with (Al 1) is now manifest.
To extend this approach to any order n, we write M' "' in a form used long ago in an analysis of the eikonal approxi-

mation in quantum field theory, ' viz. ,

7
n —16 2n n

M' "'= d k d k d k 5' '
Q —~~ k D'"'A'"'B'"',

)4( n —11 1 2 n l'r i=1
(D16)

where

D(n) (k2 i22)
—1(k2 i22)

—1. . . (k2 i22)
—I (D17a)

and

A '"'= [(p„—k, )' —m „] '[(p„—k, —k2) —m „' ]
' . [(p„—k, —k2 — —k„1) —m „] (D17b)

B'"'=g [(p21+k„„)' ma] —[(p +21k„, +1k& )21—m2'1]
' [(ps+k&, 1+ +k&„,1) —ms] ', (D17c)

with n(i ) denot. ing a permutation of the indices 1,2, . . . , n. If we replace 2 '"' by a symmetrized form analogous to B'"'
and, correspondingly, divide the right-hand side of (D16}by n!, then for n =2, (D16) reduces to (3.2). For the present
purpose it is more convenient to use the form (D16) as written.

The counterpart of the limit (Dga) is

lim m21
'B'"'=—S„(k,+is„k2+ie2, . . . , k„+is„),

m~~ oo 2" "

where

(D!8)

1 1S„(a,,a2, . . . , a„)=g
a&1) a ~1)+a&2) 7r(1) + 7rf 2) + + 7r[ —1)

(D19)

We have extracted a factor of 2 from each denominator and given labels to the e's to emphasize that they tend to zero
independently. Since also Q ~0 for md( ~ao, the factor 5(Q —k, — . —k„) reduces to 5(k, +k2+ +k„) and
we are led to consider the quantity

Y„=S„(k,+ie„.. . , k„+ie )5(kn, +k2+ . +k„) (D20)

We now make use of two theorems. The first is an algebraic identity which played a key role in the analysis men-
tioned above, ' viz. , the following.

Theorem 1.

S„(a,,a, , . . . , a„)= a1+a2+ . +a„
Q1Q2 ' a

(D21)

The second theorem is of a distribution-theoretic nature; it gives a formula for Y„, the limit of Y„as e, ~0,
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Yn = lim Yn
e.~0

I

We simply state it here and give a proof based on (D21), in Appendix E.
Theorem 2:

Y„=( —2mi)." '5(k, )5(k3) . 5(k„) .

(D22}

(D23)

Accepting (D23) we see, on using the definitions (D4) and (D16), recalling the relation G =4g m „ms, and eliminat-
ing the integrations over the k,. via the delta functions, that

(2g m„}" n
T(n) dk dk 5(3) g y k D(n) g (n)

A
(2 )3(n )) ) n i 0 0

i=1
(D24a)

where Do"' and Ao"' denote the values of D'"' and A'"' for k, =k2 —— ——k„=0. On introducing new variables
1„12,. . . , I„via

k) ——pz —I), k2=1, —13, . . . , k„,=In 3
—I„,, k„=l„,—I„,

we may write Do"' and A 0"' in the forms

and

D(0) ( 1)n (I„,—I„) +p

g (0)— 1

Ea(pw ) Ea(l„—))+if

1 1

(I) —12) +)M (p„—I, ) +p

1

E„(pa ) Ea ( I ) )+—i e

Since —g I[(i;—I;+, ) +p, ]=(I;+)
~
U~l; ) when Uis the Yukawa potential, we see that T'„"' is given by

T„'"'=,
)) f dl) dl„) (l p'q12mz Ull„) )(1„)12m&UII„—2} ' ' ' (I)12m& Ulpq }

(2 )3(n —) l

1
X

Ea (pa ) Eg (I„))+—i e

1

E~(p~ ) E~(I»+—& e
(D24b)

T„'"'= p'~ (2m~ U( (2m„U) (2m„U( p„) .
(2n) 1 1

E„(Eg) +ie- E„(E'J)+ie— (D25}

[E —(Eg ) —2m „U]P=0 (D26a)

for a static external field U. For a scattering problem
(D26a} may be written in the integral form

We may compare this with the amplitude obtained
from the external-field Klein-Gordon equation, viz. ,

is that the two-body Bethe-Salpeter equation, ' with the
kernel defined by the sum of all two-body irreducible gen-
eralized ladder diagrams, but radiative corrections
neglected, is equivalent in the mz~~ limit to the
external-field KG or Dirac equation. This fact about the
BS equation has been known for a long time. '

p =$0+ 2
(2m „U)p,1

E (Eg) +ie— (D26b) APPENDIX E: PROOF
OF A DISTRIBUTION THEORETIC EQUALITY

where $0 is a plane wave of momentum p „.From (D26b)
we see at once that, with E =E„(p„),the nth-order am-
plitude generated from the KG equation coincides with
(D25) and hence with the mz ——ao limit of the sum of the
generalized ladder graphs of order 2n.

With the use of the same methods, analogous results
can be proved for the case of interacting spin- —,

' and spin-
0 particles, or for two spin- —,

' particles, with the KG equa-
tion replaced by the external-field Dirac equation.

An immediate consequence of the theorem proved here

+&1)+ ++Qn —1)
(E1)

where n. is any permutation of 1,2, . . . , n, that the quan-

The purpose of this appendix is to provide a proof of
Theorem 2, used in Appendix D (Ref. 19). This theorem
states that with x„.. . , x„real variables (n )2) and

1 1S„(x„.. . , x„)—:g
+%1) +&1)++sr(2)
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tity Y„,defined by

Y„=S„(x,+i e». . . , x„+i e„)5(x,+ +x„),

has, in the limit e; ~0 (i = 1,2, . . . , n ), the value

Y„=( 2—mi )" '5(x, ) . 5(x„) .

(E2)

(E3)

S„(x,,xz, . . . , x„)
1 1= S„,(x„xz, . . . , x„ i)

Xn X)X2 ' '
Xn

1=S„ i(xi, xz, . . . , x„,)
~n

n=1

(E4)

To prove (E3) we first use the identity (D21) to write
S„(xi,xz, . . . , x„) in the form

where g„,=x, +xz+ +x„ i. Because of the fac-
tor 5(x, +xz+ +x„) in (E2) we may replace x„ in

(E4) by —g„ i so that Y„may be written in the form

Y„=S„ i(x i + & pi, . . . , x„ i+i e„ i }
1 1 5(x, +xz+ +x„),+le„g +jp„

(E5)

n —1 n —1

where e'„=e&+ ez+ e„&. The factor in large
parentheses may be replaced, for infinitesimal e, 's, by
( 2ni)—5(x, +xz+ +x„,) and we infer that

Y„=( 2ni)—Y„.,5(x, +xz+ +x„) (E6)

Y„= ( —2iri)" '5(x, )5(x, +xz)

Using the same formula for Yn, we can "roll back" this

equation to get

APPENDIX F: ITERABLE SECOND-ORDER
POTENTIAL FOR SCALAR QED

V = V.'+ V,',
where

(F1)

As mentioned in Sec. II D 2, it is possible to define an
alternative second-order potential with the property that
its iteration does not lead to ultraviolet divergences. An
example of such a potential, call it V', is given by

X . 5(x, +xz+ +x„), (E7}

which is equivalent to (E3).
It may be worthwhile noting that a number of other

identities may be obtained as corollaries of (E3}, by re-
placing (x, +is;) by P(1/x;) in5(x;) a—nd equating
the resulting sum of products to the form given by (E3).
For example, for n =3, we get

a op C op

Herez,' =z'(p, ) with

z'(p) = [1+p /2E„(f)E~(f)]'~z,

and

Vb ~op b~op

with

(F2)

(F3a}

1 1P P +c p. 5(x, +xz+x3)
X) X2

b pop Ucpo /2mAma (F3b)

and

5(x, )5(xz).5(x&) (Eg)

It is easy to verify that V' satisfies the constraint (2.16a),
i.e., reproduces the lowest-order field theory amplitude.
The iteration amplitude T ' ' associated with V' is given,
in an obvious notation by

1P 5(xz)+c.p. 5(xi+xz+x3)=0 .
X)

(E9)

Some of these identities may be dificult to prove directly.

T'' '=T'' '+T'' '+T'' '+T'' ' .aa ab ba bb (F4)

The analog of the previously divergent term arising from
the iteration of the delta-function term (2.57b) is the term
T' bb', defined by

Tbb
'= f [di /(2~)']&p'I I'bll ) &I I vblp)/[~'(p) —W(1)], (F5)
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where W(p)=E„(p)+Ett(p). For large k the product
of the matrix elements in the numerator of the integrand
of (F5) is proportional to p' kp k/k so that the in-
tegrand behaves as 1/k . Since dk ~ k dk, the integral is
convergent. It can similarly be shown that the other
terms in (F4) are ultraviolet finite.

We have also verified that the associated sixth-order
iteration amplitude T' ' is ultraviolet finite. Because the
high-momentum behavior of V' is no worse than that of
the Coulomb interaction it seems likely that the

Schrodinger equation (2.6) with V as the potential has
well-behaved scattering solutions, unlike the correspond-
ing equation with V given by (2.55) and (2.57).

Note that unlike Uc, Ub involves derivative operators
in coordinate space. The matrix elements of the operator
V' differ from those of V' ' ofF the energy shell and this
difference will be reAected in a change in the higher-order
potentials V' ', V' ', etc. Since the difference between
V' ' and V' is a long-range "potential, " the long-range
parts of V' ', etc. , will also change.
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