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S matrix and the ambiguity-free stability criterion

R. Fukuda, M. Komachiya, and M. Ukita
Department ofPhysics, Faculty ofScience and Technology, Keio University, Yokohama 223, Japan

(Received 26 February 1988; revised manuscript received 14 July 1988)

The expansion formula of the effective action in terms of the connected S-matrix elements is de-

rived. They are expressed in terms of the on-shell quantities. The correct stability criterion of the

given solution is discussed. It is free from any ambiguities which are the subjects of recent contro-

versy.

I. INTRODUCTION

One of the powerful and systematic methods to study
dynamical problems in quantum field theory is through
the use of the effective action or the potential. It has be-
come a popular tool particularly when one wants to look
for the nonperturbative solution corresponding to
dynamical symmetry breaking.

The stationary requirement of the effective action
determines the ground-state solution, and expanding
around it we get the off-shell Green's function as the ex-
pansion coefficients. The stationary requirement and the
vanishing of the external source J are equivalent. Re-
cently, one of the authors developed' an expansion
scheme without violating the relation J=O in the course
of expansion. By examining the equation for small devia-
tion and by keeping the lowest term, the correct stability
criterion for the chosen solution was derived. These
studies started from the complete analogy with classical
analytical mechanics.

The purpose of the present paper is twofold.
(1) The previous analysis is extended to higher orders.

The result is the appearance of the scattering matrix (S-
matrix) elements as the expansion coefficients. It is a
novel formula for the effective action and is derived in
Sec. II.

(2) The lowest-order equation is used in Sec. III to pro-
vide an ambiguity-free criterion of the stability. In fact
there is much debate on the ambiguities about the stabili-
ty criterion in terms of the effective potential. We clarify
the sources of ambiguities and keep the criterion free
from ambiguities. This is possible because we are always
on the mass shell. Two examples are discussed in order
to illustrate the point. Section IV is devoted to several
drscussrons.

II. ON-SHELL EXPANSION
OF THE EFFECTIVE ACTION

AND THE SMATRIX

In this section several hitherto unobserved important
properties of the effective action are discussed. They are
the statements about the formal on-shell properties of the
efFective action and are summarized in three formulas:
(13), (29), and (33). Equation (13) has been derived in

Ref. 1 but we recapitulate it for the completeness of this
section. We discuss them before showing their derivation
in detail.

A vacuum solution is first found by the stationary re-
quirement of the effective action. Our three formulas are
obtained by considering the motion in the vicinity of the
chosen solution where the deviation is small. These ana1-
yses are analogous to the ones we perform in classical
mechanics when we discuss the stability of a given solu-
tion. The effective action is replaced in the classical case
simply by the classical action.

Once the ground-state solution has been fixed, the re-
sult (13) for the lowest order in the deviation gives the
condition to determine the excitation level or the particle
spectrum —the "on-shell" condition. The form of (13) is
more general than the conventional criterion that the
particle spectrum is determined by the pole of the
Green's function. Our criterion includes this case and
can also be applied to the situation where the convention-
al one cannot be used. It can be utilized, for example, in
the case where the space and/or time inhomogeneous
background field is present. In such a case, there does
not exist at present any precise statement about how to
define and determine the spectrum. Equation (13) is used
as a stability criterion in the next section.

The second result, Eq. (29), includes the higher-order
contributions to the deviation and we expect that they
are related to the scattering amplitudes of the on-shell
particles determined by (13). Indeed we find the connect-
ed S-matrix elements as coefficients of the higher-order
terms.

The final result, Eq. (33), is the expression for the value
of the effective action corresponding to the motion we are
considering. It is also given by the connected S-matrix
elements.

By these observations we can say that the effective ac-
tion is really a generating functional of the on-shell quan-
titi|:s; it determines the ground state and the excitation
spectrum above the ground state and the scattering am-
plitudes of these excitations. (To set up the whole Hilbert
space, we have of course to prepare the field variables as
arguments of the effective action which couple to all the
channels with different quantum numbers. )

Let us start by defining the effective action I [P] where
we have taken for simplicity a multicomponent scalar

38 3747



3748 R. FUKUDA, M. KOMACHIYA, AND M. UKITA 38

+J;(x)P;(x)]

where the summation over the repeated index is under-
stood. The definition of 1 [(})]is given by

I [(t)]=W[J]—fd x J, (x)5W[J]/5J;(x), (2)

P;(x)—=5W[J]/5J;(x) .

We shall frequently use the well-known identities

5I [P]/5$;(x)—:I;„=—J;(x),

(3)

(4)

field P;(x) (i =1—n} and the Lagrangian density is as-

sumed to be X((t)). Now W[J] is first defined by the
functional integral as

exp(iW[J])= f [d(})]exp i f d x [X((I))

r,„=o . (7)

Let one of the solutions to (7) be P,''(x) and expand
I [P] around P'; '(x) by writing (});(x)=P', )(x)+5/, (x).
Then we get the 0+shell expansion

I [y]—I'[y(o)]+ y I (n)

n =2

X5$, (x, )5$, (x2) 5$,. (x„),

where I '"' is known to be the one-particle-irreducible
(1PI) Green's function of our theory evaluated at
$;( )=(})'; '( ).

In order to get the on shell -expansion, we have to stay
on the trajectory of P;(x) satisfying J;(x)=0. Therefore,
we look for another solution to (7} in the vicinity of
P'; '(x). For that purpose we set

I (2) Pr(2) —Pr(2) ~(2)
ixjy jykz , ixjyz jy, kz 5ik5xz (5) i', (x) =P( '(x)+haiti;(x)

where the integration fd y over the repeated space-time
variables is implied and 5„,=5 (x —z). We also define

I', "„',„,„=—5"I [(}I)]/5$, (x, )5$; (x2) 5$, (x„)

(6)

and similarly for W'"'. By (4) we see that the equation of
motion for (t), (x) under the theory specified by X(P) is the
stationary requirement:

and write b, (});(x)as

ay, (x)=Sy("(x)+ay("(x)+a(t)("(x)+, (10)

assuming b, (t)(;"(x) is small and 6(()(;")(x) (n ~2) is of the
order [6(()',"(x)]".

Consider the equation
0= r,„[y]=r,„[y"+ay],

and expand it as

(3)

+ I",."„k.i.—~4,'"(j )~4'k"(z) ~Pi "(~)+2 X —I';."j,k.~4,'"(~)~4'k"(z)+ I;."„~4,'"(~)+ (12)

I (2) 2( y(1)(~) 0
t

Thus,

(13}

Here all the coefficients are evaluated at P;(x)=((),' '(x).
We now investigate the possibility that (12) is satisfied or-
der by order. This leads us to the on-shell expansion we
are looking for.

The lowest order. The requirement that the first term
of (12) vanishes, turns out to be the zero-eigenvalue equa-
tion for 6((}';"(y)(Ref. 1):

in the Fourier representation

I' )(p )= d (x —y)e'y'"
/J IX,JP

with p
—= (p") . Equations (15) and (16) mean that

bP'"(p) has the support only at the pole of Wj(p ), and
b(I) "(p) is the eigenvector corresponding to the pole of
Wj (p ). Let U;, (p ) be the orthogonal matrix which di-

agonalizes I ', '(p2), and W( '(p ) as

[U '(p'}I "'(p')U(p')] =—~" (p')

det(I,'„j )=0, (14} =5;,y;(p'»

where the determinant is taken regarding ix and jy as the
indices of the matrix I' '. We call (13) or (14) the gen-
eralized on-shell condition. In order to see the reason, let
us take the space-time translational-invariant case
P(; )(x)=P,'. ' where I',„' is a function of x —y and (5)
and (13) take the form

y'(m„)(mk —p )
(17)

and let the solution of y;{p )=0 be p =m;. We first
solve f' '; '(p )hP (p) =0 with the solution

&P, (p)=Cj.(p)5(p —mj ), where Cj(p) is an arbitrary
function. Then the pole part of W,'2'(p2) is given by

I (2)(p2) W
—

1( 2)

I (2)(p2) j( y(1)(p) 0 (16)
with y'(p ):—dy(p )/dp . Now the general solution of
(16) is thus
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6(}I),'"(p)= g U,„(p')C„(p)5(p'—m„')
k=1

k=1

(18)

(19)

By a straightforward mathematical induction we can
easily show that the recovery of the one-particle-
reducible graphs persists for general t}),(}}("'(x)and it is

given by

—:g Ck(ep)8(ep') . (20)

We assume mk )0. (The Goldstone particle with mk =0
is expected if the theory has a continuous symmetry and
if p',

' breaks the symmetry. ) We also assume y'(mk ) &0
because otherwise the particle of mass mk becomes a
negative-norm state by (17). Since there are two solutions

p =+(p +mk)' =+co(p ) for the on-shell condition

p wk, we can always wr~te

Ck(p)=Ck+(p)8(p )+Ck ( —p}8(—p )

gy(n)( )
— W(n+ 1) W(&)

lX, l IXI, l~X2~ . , l X l X, l Xn. n n

xm'" '
12X2 « l 2X irt Xn ' lrt Xn

Xb,p(. ,"(xI )bp', ,"(xz) ' ' ~p, (x, } (24)

Equation (24) can also be derived by a similar procedure
as in the case of the proof the tree theorem for any field

theory. Insert (9) in (7) and expand (7) in the power series
of b,P, (x):

These coefficients C„—(+p) are to be determined by the
boundary conditions on b,P(;"(x). We have to specify, for
example, bp"'(to, x) and d j()p'"(to, x)/dto at some time
t =to For ea. ch k, b(I}jk(p) in (19) is an eigenvector cor-
responding to the particle with mass mk. Since 8'„,'„ is
the causal two-point Green's function, our Eq. (13) coin-
cides with the usual definition of the particle spectrum.

Higher order term-s By (12.), b, (}}'; '(x) is given by

(2) (3)

1 (3= I';„'yb, (}},(y)+ —I';„, k, hit)j(y )b, it)k(z)+

The solution is given as

6(I},(x)=hP;(x)

+ W,'„' j'y , lj(y k, ,~ h—it)k(z)AP, ( io) +

(25)

~ixjy, kz iyj'y' Wkz, k', z'~4j'

~(3) ~(3) ~(2)—1 ~(2)—1 tsz(2) 1
(22)

In the solution (21), we do not have to add the solution of
the homogeneous equation I',„'jyhPj '(y)=0 since in the
sum (10) it can be absorbed by redefining b, (}}(,"(x). For

(x), a new feature arises; we recover the one-(3)

particle-reducible graphs and get 8" '. %e differentiate
(22) with respect to Pi(io) and obtain the relation between
I' ' and W' ', W( ', W' '. Using this formula, b, (I}' ' in
(12) can be solved as

(21)

where we have used the following identity derivable from
(5):

W~'j~' '(p )bPj"(p)= —Uj(p )yj(mj )Cj(p)

X(p —m )5(p —m, ), (26)

where tI),P, (x) is the solution of the homogeneous equa-
tion (13) so that we can set bP, (x)=bP("(x). The itera-
tive solution of (25) is known to produce all the "tree dia-
grams, "but in our case the bare vertex is replaced by the
full 1PI vertices r"),r'", . . . , and the bare propagator
by the full propagator 8" '. Since all the "tree dia-
grams" exhaust all the one-particle-reducible diagrams,
we have proved (24}.

Now Eq. (24} is well defined since W' ' 'b, (I} cancels
the pole of 8""+"and we are just taking the residue of
the pole of W'"+". Therefore, b,P(") is expected to be re-

lated to the S-matrix elements. In order to see this, let us

suppose again that (}}( '(x) is a constant. By (17) and (18)
we have

X W(2) —i gy(1)(y )gy(()( ) gy(i)( ) (23)
l

which is inserted into (24). Then with (20) we get

j(p(n)( ) I.. . f1

nI

n
(n+1)

=+ JI~JP~ ~J„

d'
X ff U, , (p )y'(m )5(p —m, )8(e~ )C, (e p )

a=1 (2n. )
(27)

By defining the wave-function renormalization factor of the kth channel through Zk =y'(mk ) ', we define the connect-
ed S matrix S(1,n) by



3750 R. FUKUDA, M. KOMACHIYA, AND M. UKITA 38

s ~'J1~1'J2~2' ' ' '~n~n
lim

~=i p m QZ.
~a

U, 1 (p )0(e~ )(m~ —p )Wz",+", (28)

This represents the scattering of n + 1 particles where the first particle is off the mass shell and the remaining n particles
are on the mass shell. Each particle has the corresponding internal quantum number and if e is + ( —) then the ctth
particle is incoming (outgoing) with the four-momentum p . Thus, our final formula for b,P,.(p) is

00 n d3
ay, ( )=ay"'( )+ g ' g P J C,""( .}, , S'„'.,"'. ..„=2 n!i" ~. , =, (2n) 2' (p )

(29)

where C~"':—C~'/QZJ. If we take the residue of the pole corresponding to the first particle, the usual connected S-
matrix elements S'"' emerge:

EI(.'[C]—:f AP, (p)U,"(p )(m, p—N(p m—, ) g C"'(ep)8(ep )
d p

oo l 1
fl p~

(n I)! &n (2~)42 ( 2) Ja I 1' 2 2''''' n n
1l =3 ~ l a=1 7T COJ p~a

(30)

Equation (29), with (18) and (20) for bpI "(p), is the formula for Ap, .(p) in terms of CJ*(p) and the connected S-matrix
elements. Since C" (p) is fixed by the initial data for b,p, (p), we see that the connected S matrix -elements completely
determine b P;(p) or b,P;(x).

Conversely, if we consider Ap, (p) as a functional of the initial data CJ (p), then the connected S-matrix element is
obtained by the formula

n

Ja

Our final formula is obtained by inserting (24) into (10) and then into I [P]:

(31)

1.[y]=l.[y~o~+gy]=l. [y~'~]+ y W ~"' Sy'. "(x )ap'"(x ) . bp'"(x )

3 n!
(32)

where W'"' is W'"' with the external legs amputated by W' ' '. It is evaluated at P;(x)=P,' '(x). The above formula is

easily obtained by a simple mathematical induction. Compare (32) with the off-shell expansion (8};in (32) the term n =2
is missing and

DPI�

"(x) specifies the on-shell condition. In terms of the connected S-matrix element S'"' we get the on-

shell expansion for the value of the effective action:

1 1
n p~

a a a

(33}

This has the structure that once P' ' and CJ
+—(p) are

given as initial data, I [P] is fixed by the connected S-
matrix elements. I [P] can also be regarded as a generat-
ing functional of S'"'.

Since we always stay on the configuration satisfying
(11), it looks at first sight strange that we have
I [$]&I [P' '] (Ref. 2). The answer to this question lies
in the fact that the stationary requirement (11) does not
determine P, (x) completely and we have C +—(p) left un-

deterrnined. These freedoms are utilized in order to ar-
rive at the configuration which has a different value of
the action. Note also that in the classical analytical
mechanics, the variational principle leads to the equation
of motion without taking the variation at the boundary.
The function C—(p) corresponds to this freedom of the
boundary value.

There are ample applications of our formula in various
fields. We list several examples below.

(1) Although our discussions have been given in terms
of the relativistic quantum field theory, the results given
above are applicable to any quantum-mechanical system
where we can calculate the effective action in a straight-
forward way (even easier than the field-theoretical case).
To determine the spectra and the scattering among the
modes corresponding to these spectra is the central prob-
lem of any quantum theory.

(2) Restricted to the quantum field theory, it appears to
be an interesting application to introduce a source J(x,y)
coupled to a bilocal field P(x)P(y). In this case, (13) be-
comes an exact bound-state (BS) equation' and we can
obtain an exact expression for the S-matrix elements of
the scattering of these bound states. These can be done
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as a straightforward extension of the present method
(3) Our method is in contrast with the approach of

several authors who make use of the e-number field,
the background field, satisfying the classical equation of
motion. In particular, Jevicki and Lee derived a full or-
der relation which expresses the S matrix implicitly in
terms of the effective action evaluated at the stationary
solution. Our scheme, however, does not rely on the clas-
sical field and the particle spectrum itself is determined
within the formalism and the S-matrix elements among
these calculated eigenstates naturally emerge. Extension
to the bound-state problem will be impossible for the
background-field method.

(4) The effective action for the system of the finite tem-
perature has been discussed in several papers. By our
formalism, we can study the spectrum and the scattering
matrix for the finite-temperature system in a systematic
way.

III. AMBIGUITY-FREE CRITERION
FOR THE STABILITY

It became recognized and has been discussed by many
people' ' that the effective potential possesses ambigui-
ty especially when we choose a composite operator as an
argument of the potential. In fact the second derivative
of the effective potential evaluated at the stationary solu-
tion is not unique and it depends on how one calculates
the effective potential. ' ' Moreover, it has been
found' ' that in some cases the effective potential is not
bounded from below. There is also a case where the
chosen solution corresponds to the state of the lowest en-

ergy yet the second derivative of the effective potential at
the solution is not positive definite. The stability of the
solution seems to depend on the procedure one has em-
ployed in evaluating the effective potential.

The purpose of this section is to answer the above con-
troversial problems using formula (13). Based on this
equation the general criterion for the stability has been
given in Ref. 1. The crucial observations which consti-
tute our starting point of this section are summarized in
(i)—(iii) below. For this purpose we need the effective po-
tential V[/] which is obtained by the first term of the lo-
cal expansion of I [P]:

I [P]=jd x [—V(P(x)}+—,'Z(P(x)}B„P;(x)B"P;(x)

+ ] (34)

Now we state our observations.
(i) The stability problem is essentially a time-dependent

phenomenon and it cannot be discussed by the effective
potential. In order to make clear this point, let us take a
classical mechanical system with the particle coordinate
q (t) and the Lagrangian

L(q) =
—,'mq —v(q) (q:—dq/dt) .

Let one of the static solutions to the equation of
motion 5I[q]/5q(t)=0 be q' ' where I is the action
defined by I [q]= f X(q)dt. The stability of q' ' is deter-
mined by inserting q (t) =q'0'+ 5q (t} into
5I[q]/5q(t)=0 and retaining the linear term in bq(t):

mbq(t)= —V"(q' ')hq(t) (V"—:d V/dq ) .

The requirement that b,q (t) does not contain a blowing
up solution is equivalent to V"(q' '))0, which is the
well-known stability condition of the solution q' '. Note
that the condition V"(q' ) )0 follows because the kinetic
energy term is known to be —,'mq . In any quantum sys-

tem, however, we have to calculate Z(P(x)) and also all
the terms with higher derivatives for the discussion of the
(space-)time dependence of the solution. The condition
V" & 0 is not necessarily the stability criterion.

(ii) The original theory is recovered only at J, =0
which is equivalent to the equation of motion (7) of P, (x).
We have always to satisfy (7) in order to discuss our
theory governed by X(P). This is quite different from the
variational approach where the theory itself is not
modified. The second derivative of the effective potential
is, however, an off-shell quantity in general (except for
the case where it has the vanishing second derivative) so
that it involves the information of the theory with
J;(x)&0.

(iii) The stability of a given solution is a physical state-
ment and it is determined once the theory is fixed. It fol-
lows that the stability criterion should not depend on (1)
the gauge we have chosen in the case of the gauge theory
or on (2) the renormalization scheme or on (3) the opera-
tor we have chosen to study the stability. The last state-
ment needs clarification. We choose the operator 0 to
study the ground state which might have the finite expec-
tation value of 0. But we can equally utilize another 0'
and should get the same physical results (such as the en-

ergy of the condensed state and the stability) as long as 0
and 0' have the same quantum number and therefore
mix. The fact that we get different answers to the stabili-
ty problem for different operators is precisely the ambi-
guity problem stated above.

Now we state our stability criterion' which clarifies the
points (i)—(iii) above: any solution to (13) does not blow
up for large t. If P'; '(x) is space-time independent,
P'; ~(x)=P'; ', then we have the solution (18). In x space,
we see from (18) that the stability condition of our solu-
tion P,

' ' is that there do not exist any poles of W' ' (eval-
uated at P; =P,' ') in the spacelike region (m; (0), the ab-
sence of the tachyonic pole. Otherwise b,P';"(t,p) for
p2 (—m,

2 blows up for large t, as exp[hi (p +m, )'~2t]

Our derivation naturally answers questions (i)—(iii)
since it is the position of the pole of the Green's function
which determines the stability. Several examples are
given below for composite operators since it is for this
case that the ambiguity has been pointed out.

A. The local field

We take as an example the Gross-Neveu (GN) mod-
el, ' the O(N)-symmetric two-dimensional ferrnionic
model, with the Lagrangian

=g(i')g+ ,'g (PP)—
The source J(x } is introduced in two ways.
(I) J(x) couples to the auxiliary field of o(x). In this

case we add the term —
—,'(o —gpss) +Jo to X and
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=5I &[a]/5a (x),
A (x,y)=[i8 +go( x) ]5(x —y) .

(35)

We use in the following this cr(x) for
a,(x)=5 W, [j]/5 J(x ). For the space-time-independent
solution a' '(x)=a' ' of 5I,/5a =0, after renormaliza-
tion we get, in Fourier space,

51 &/5a„=a'„o)I —I+(g, /2~)[in(o /a' ' )+2]I
=0

I (2)(p2) 521 /5 2( 2)

(36)

calculate WI [J] by the Lagrangian

r GN =qi dq ,—a—2+g aqq+ Ja .

(II) J(x) couples to gg(x)f(x). We consider here the
Lagrangian

~GN )( gqy J)2+ Jyy J GN ) J2

The only difference between (I) and (II) is the term —
—,
' J .

We have to calculate the effective action I for two cases
in order to discuss (13). We use a in what follows as an
argument of I in conformity with the usual notation.

For case (I), I, is known to be obtained, for large N, by
the stationary-phase contribution of o satisfying

—a(x) iN—g Tr[ A '(x, x)]= —J(x)

Z = —1+(A,„/2m)[ln(A /g„oo) —2] .

Note that the solution cr' ' is the same for (I) and (II)
since at J=O, a«(x)=a, (x). Therefore, Eq. (16) takes
the form

CI'"(p )ho „(p)=0,
C:—Z [I' '(p )+Z ]

Since the factor C does not vanish for finite p, we get the
same stability condition as case (I). The second deriva-
tives of the effective potential are different for the two
cases and are given by

V&'(a'„) ) = 1 —(A,„/n )ln(ao/a'„'),

V,",(a'„))= IZ /[Z —I+(A,, /n. )ln(oo/a'„))] I

X [1—(A.„/m )ln(ao/a'„')] .

They are renormalization-scheme dependent and for VrI
it depends even on the cutoff.

The result is easily understood in terms of W[J]: It is
clear that —

—,
' J does affect the second derivative of the

effective potential but it is also clear that it does not have
any effect on the position of the pole of O' '. It can also
be shown that the ambiguity of adding an arbitrary poly-
nomial ' ofJdoes not affect the stability.

B. The bilocal Seld.
= —1+(1,„/2a) [ln(ao/a', o'2)+2 —B],

/(I M2/ 2}l p +M ++ p
2 2 2

'

+—p +M2 —V —p2

(37) We next discuss the following action of the
component boson Geld:

S = ,'i it);Go—.
& P~+ ( I /4N)P;P; V,, k, itl (38)

where ~, =g,» M =4g, a'„', and r denotes the renor-
malized quantity. We have employed the renormaliza-
tion condition' i} V/Ba,

~

= 1 with V representing
the corresponding effective potential. From (36) and (37),
we find that Eq. (16) becomes [we delete the superscript
(1) for haI" in the following]

I' '(p )bo, (p) =0

and has the following nontrivial solution ha&(p) for (i)
p2=M2&0 (stable) corresponding to the symmetry-
breaking solution ~a„~ =aoexp(1 —m/A, „) and (ii)
p = —g„a oexp(2 —2m /A, „)(0 (unstable) corresponding
to the symmetric solution cr ' ' =O. These agree with the
well-known results.

Consider the next case (II). Since W&, = W, —
—,
' J,

a»(x) =5W„/5J (x) is given by a,(x)—J(x)=a (x)—J(x) where cr(x) satisfies (35). We see therefore that
WI&~ =—5 W&&/5J(x)5J(y) equals 6a(x)/5J(y)—5 (x —y). Using this relation and the equation ob-
tained by taking 5/5J of (35), we get, for a space-time-
invariant solution o'

W'"(p')= —I-'"( ')-' —Z-'

where Z is the renorrnalization constant of the o. propa-
gator. It is given, by using the cutoff A, as

where o. satisfies the stationary-phase conditions

p Vij, kl(GO Va kl 2 Vij, klakl Jij (41)

where Vo. represents Vj kI cr kI . We use this o.,z for
a „.1 = ( 1/N)5 W, [J]/5J J.. The corresponding effective
action is given by

I t/N = ,'i Tr ln(Go—' i Va ) ——,'a;j V;, k—lakl

where i2, b =1 Nand Go re—presents the free propagator.
The subscripts i,j, . . . , represent the space-time coordi-
nates as well as other degrees of freedom. The action (38)
includes most of the models discussed in the literature if
we take V;, „, as the nonlocal potential. We now intro-
duce a bilocal auxiliary field o.; by adding the term

(N/4)[a—;, (1/»it);—0;]V,;ki[aki (1/»it)kit)l ]

to (38). We thus consider

2it)';(iGOij + Vij, klakl )it)j (N/4)ail Vi&, kiakl.

(I) We add the source term NJ, o,j to (39) and "define

Wt[J]. For large N, it is easy to obtain

W, [J]/N = ,'i Trln(Go ' ——iVa)

1

4 +ij ~ij, kl o kl ~ij ij
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(42)

This is the BS equation in large-N limit. ' '
(II} We adopt the source term J;jP;Pj and calculate

W»[J]. The large-N limit is obtained by the similar pro-
cedure as in (I). We find, after some calculations,

IVII [J]/N IVI[J]/N Jij Vij, kl Jkl

where WI [J] is given by (40) and (41). The term—JV J is the source of the ambiguity of the effective
potential. Now, by defining OII; through 51VII[J]/5J;j,
we calculate I „[cr»]. The result is

r„[~]/N = ,'iTrln—o '+ ,'i TrG—p 0+ OJ'VJ—ki'o'ki

This agrees with the one calculated from the diagram-
matic rule. ' ' The stationary equation 0=5I &&/50&& is
the same as for case (I) since at J=O, crI; =~r II; . The sta-
bility equation is

(IN/—2)( ~'" '~I" '+iv g,~ =0.i k lj ij, kl IIkl (43)

We conclude that the stability criteria (42} and (43) are
the same.

We can generalize the above formulation easily to the
fermion field and can discuss QED. It has been found' '
in QED-type theory that the effective potential V~„(aux-
iliary field method) predicts the stability of the chiral-
symmetry-breaking solution while VcJ+ (Cornwall-
Jackiw-Tomboulis method) leads to the conclusion that
the solution is at the saddle point. Our criterion (16)
leads to the identicct1 condition for these two methods. In
order to determine whether or not the solution which
breaks chiral symmetry is stable, we have to solve (43).
This amounts to solving the BS equation for the fermion-
antifermion system, where the coefficients are evaluated
at the solution of the SD equation.

C. Free field case

For V,"ki =0, the effective action for cr, =(1/N)p";p' is
given by

so that we get the Schwinger-Dyson (SD) equation as a
stationary equation; since we have

51 I/5crij = ~NVii, ki[(Gp ' «cr }ki' ~kl]

by introducing V ' through Vi. kl Vkl mn ~im~ n, we find

—
1 r —1 .r~

+ij ~Oij ~ "ij,kl+kl

Denoting one of the solutions by cr' ', Eq. (16) takes the
form

I [cr)/N=(i/2)Trina '+(i/2)TrGp 'o.

so the effective potential is not bounded from below. '

But it does not cause any trouble. Since 5I /5o. =0
means 0 =Gp, Eq. (16) takes the form

A+(P, q)A (P,q)bo(P, q)=0,
A+ =(P/2+q) p—

where P(q) or iu is the total (relative) momentum or the
mass of the two-particle system. The nontrivial solution
of ho exists when (1) A+ =0, A &0, or A =0, A+&0
and (2) A+ = A =0. The condition (1) is actually relat-
ed to the stability in the single-particle channel. Since
P )4p, the condition (2) predicts the stability of the
solution o. =GO in the two-particle channel if the one-
particle channel is stable, i.e., p & 0.

IV. DISCUSSIONS

From the discussions of the previous sections, we can
say that the effective action is really a generating func-
tional of the physical quantities. Expansion coefficients
appearing in (33) are all physical: I [P' '] is the value of
the action of the ground state. If PI ' is a time-
independent solution, then I [P' ') is the negative of the
total energy of the ground state times the whole time in-
terval. The higher-order terms are on-shell scattering
amplitudes. They are (i) gauge invariant (remember that
C"—is gauge invariant) in the case of the gauge theory,
(ii) independent of the renormalization scheme, and (iii)
independent of the choice of the operators as the argu-
ments of the effective action as long as these operators
have the same quantum numbers.

The first property may open the possibility of the
gauge-invariant approximation scheme. The third is
equivalent to the well-known statement that we can use
any operator as an interpolating field provided that it
couples to the channel we are interested in. The applica-
tions of the formula (33) are reserved for future study.

We want to emphasize again that our procedure is a
general one and it can be applied to a system as long as it
is described by a Lagrangian or a Hamiltonian. We can
also discuss the static case and the time-dependent case
(stationary or nonstationary) by the same formalism.

ACKNOWLEDGMENTS

One of the authors (R.F.) thanks Professor Y. Ohnuki
and Professor T. Kugo for enlightening discussions. He
is also grateful to Professor H. Kodama and Professor J.
Kodaira for referring him to the papers of Ref. 4—6.

R. Fukuda, Prog. Theor. Phys. 78, 1498 (1987).
This was pointed out by T. Kugo.
E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

4B. S. DeWitt, Phys. Rev. 160, 1113(1967); 162, 1195 (1967).
L. D. Faddeev, in Methods in Field Theory, edited by R. Balian

and J. Zinn-Justin (North-Holland, Amsterdam, 1976).

A. Jevicki and C. K. Lee, Phys. Rev. D 37, 1485 (1988).
7A. J. Niemi and G. W. Semenoff, Ann. Phys. (N.Y.) 152, 105

(1984).
K. Chow, Z. Su, B. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).
R. Fukuda, Prog. Theor. Phys. 77, 825 (1987);77, 845 (1987).

'oM. E. Peskin, in Recent Advances in Field Theory and Statisti-



3754 R. FUKUDA, M. KOMACHIYA, AND M. UKITA 38

cal Mechanics, 1982, Les Houches, edited by J. B. Zuber and

R. Stora (North-Holland, Amsterdam, 1984).
' R. Casalbouni, S. de Curtis, D. Dominici, and R. Gatto, Phys.

Lett. 140B, 357 (1987); 150B,295 (1985).
~R. W. Haymaker and T. Matsuki, Phys. Rev. D 33, 1137

(1986); R. W. Haymaker, T. Matsuki, and F. Cooper, ibid. 35,
2567 (1987).
T. Morozumi and H. So, Frog. Theor. Phys. 77, 1434 (1987).

' M. Inoue, H. Katata, T. Muta, and K. Shimizu, Frog. Theor.
Phys. 79, 519 (1988).
E. Schrauner, Phys. Rev. D 16, 1887 {1977); H. Kleinert,
Phys. Lett. 62B, 429 (1976).

' T. Kugo, Phys. Lett. 76B, 625 (1978).

'7D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974). Our
discussions on the effective potential for cases (I) and (II)
below are different from those given by these authors.

' C. De Deminicis and P. C. Martin, J. Math. Phys. 5, 14 {1964);
5, 31 (1964).

' J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D
io, 2428 (1974).

~ The inverse cr ' ' should exist to get this conclusion, which is
guaranteed if Eq. {14) itself is well defined. Actually o' '=0
determines the stability in the one-particle channel and we
are interested here in the stability in the genuine two-particle
channel. See the free field case below.


