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Scalar field in a seven-dimensional manifold behaving
as an SO(3)-covariant spinor field in space-time
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In a Kaluza theory with topology Minkowski-space X three-sphere, a metrical field equivalent to
the Pauli matrices introduces a natural spin structure. Other fields occurring naturally on this man-

ifold behave then as spinor fields when viewed from their space-time projection.

I. INTRODUCTION

In Refs. 1 and 2 we have given an eight-dimensional
Riemannian space with a natural spin structure. This is
achieved by considering a special metrical field enforcing
a linkage between rotations of Minkowski space and rota-
tions of an internal sphere S, such that a full rotation in
space-time corresponds to a half rotation of the S . The
existence of metrical fields behaving as spinor fields, when
viewed from their space-time projection, has been de-
duced.

Here, we give a modification of the same idea with the
following improvements.

(1) While in Refs. 1 and 2 the metrical field enforcing
the linkage is of a statistical nature, the same is achieved
in the present model by a field constant over space-time.

(2) The Pauli matrices appear in the present model,
which can be viewed as components of the metrical ten-
sor.

(3) We give here an explicit and particularly simple ex-
ample of a spinor which can be verified by the reader in a
few lines, while in Refs. 1 and 2 the existence of such ex-
amples was the result of a complicated and abstract
theory.

(4) The internal space here is S which is more reason-
able than the internal space S (SS' in Refs. 1 and 2.

II. SEVEN-DIMENSIONAL KALUZA THEORY

trary metrical tensor

0 71;(x t. . . , x ), t J=0, . . . , 7 (2.4)

(x")=(x,x',x,x ) (2.5)

will be identified with macroscopic space-time.
The situation (2.1) will be called the prevacuum. It has

the isometry group

ISO(3, 1) IS SO(4) (2.6)

[we do not consider here discrete symmetries, therefore
we write ISO(3, 1) instead of IO(3, 1) and SO(4) instead of
O(4)] being the direct product of Poincare transforma-
tions on space-time x" and of (constant) rotations of S .

A Poincare transformation is a Lorentz transformation
A"„CSO(3, 1) about a special point P (origin) followed by
a translation a":

in the embedding space instead of (2.1). Again a Rieman-
nian metric is introduced in the subspace (2.2). We call it
EK7 (seven-dimensional Einstein-Kaluza space).

We propose the EK7, endowed with an arbitrary
metric (2.4), as a model for nature, insofar as it reveals
one known aspect of physical reality: namely, the oc-
currence of SO(3)-covariant spinor fields [although not of
SO(3, 1)-covariant spinor fields].

We call (2.2) the physical points, while the other points
of the embedding space have been introduced for the sake
of a convenient mathematical description only. The
coordinates

Consider the following eight-dimensional pseudo-
Euclidean space x, . . . , x with scalar product x'"=A"~'+a" . (2.7)

7

(x ) —g (x') (2.1)
(Obviously, the Lorentz-transformation A"„contained in
a Poincare transformation is unique, i.e., independent of
the choice of the origin P.)

In this embedding space we consider a seven-dimensional
submanifold given by

III. THE HIGGS FIELD

i=4
(x') =1

It has the topology

(2.2)
On the prevacuum of the EK7 we assume a vector field

with the following nonvanishing components:

R4g S' (2.3)
7

H"= g o",t,x'x, @=0,1,2, 3,
a, b =4

(3.1)

and is a pseudo-Riemannian space.
We can generalize that situation by allowing an arbi- where a."are the following constant, real matrices:
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0
0

0
0

0 0 0 0 0 1 0
1 0 0 0 0 0 1

010 "=1000
0 0 1 0 1 0 0 SO(4}=SU(2), SU(2)2, (3.6)

discussed in Sec. VI.
As will be shown in Sec. IV, the symmetry breaking to

the group (3.5) enforced by the vector field H" will come
out because in the direct product

0 0
0 0
0 —1

1 0

0 1

—1 0 3=
0 0
0 0

1 0 0 0
0 1 0 0
0 0 —1 0
0 0 0 —1

(3.2}

For matrices with an even number of rows and
columns, we use a partition into 2X2 submatrices. For
reasons of computational convenience we can introduce a
complex notation for real 2 X 2 matrices: x'=(1 —cos8)(x n)n+ cos&x —sin8(nXx) . (3.7)

one factor, e.g. , SU(2)„will be linked with the spatial ro-
tations contained in ISO(3), while the second factor
SU(2)z will be broken to U(1). (= means local group iso-
morphism. For more details see Ref. 1, Sec. II.} A sym-
metry breaking of an internal SU(2) to an U(l) occurs
also in Glashow-Salam-%einberg theory. ' Thus, ten-
tatively we identify SU(2)2 with the SU(2) of weak in-

teraction and H" with the Higgs field.
A spatial rotation contained in ISO(3) can be given as

0 a
(3 3) Here, the notation

x=(x ',x',x'), (3.8)

i 0 0 1

i ' 1 0

(3.4)

(3.3) is the usual representation of complex numbers by
real 2X2 matrices. Both sides of (3.3} have the same
algebraic (computational) properties.

In this notation {3.2} reads

and the vector product X have been used. Equation (3.7)
gives the transformation of coordinates (3.8) when the
primed frame is obtained from the unprimed one by a ro-
tation with angle 8 about an axis given by the unit vector
n = (n„,n„,n, ). The above-mentioned linkage between
rotations (n, H)EISO(3) and elements of SU(2), CSO(4)
is given by

0 —i
2 0 3

~ 0

1 0
0 —1

x'=Dx, (3.9)

where x is the row of coordinates of the embedding space,

i.e., e', cr, o are the Pauli matrices and cr is the unit
matrix.

The prevacuum, given by its metrical tensor (2.1), to-
gether with the vector field (3.1), will be proposed as a
model for the physical vacuum. We will show that the
vector field has endowed the prevacuum with a spin
structure. Furthermore, the vector field breaks the sym-
metry group (2.6) of the prevacuum to a smaller one:

8
cos

2

8
n sin—

2

8—n sin—
2

8
cos

2

x T=(x4,x', x', x'),
and D is given by

8
n sin—

2

8
n sin—Z

(3.10)

8—n sin—
Z

n sin—
2

ReISO(3) XU(1) . (3 5) 8
n sin

2

8—n sin—
Z

8
cos

2

8
n sin—

2
Here, IR is the additive group of translations of the origin
of time x . ISO(3) is the Poincare group of three-space
x',x,x (equal to the Euclidean group consisting of
translations and rotations). U(1}=SO(2 ) C SO(4) are the
residual rotations of the S leaving the vector field H" in-
variant and will tentatively be identified with the elec-
tromagnetic U(1).

It would be more desirable instead of (3.5) to have

8
n sin—

Z

8
n sin

2
8—n sin—
2

IV. PROOF QF (3.5) AND (3.11)

8
COS

2

{3.11)

ISO(3, 1) eU(l), (3.5')

i.e., Poincare invariance in space-time and a residual U(1)
symmetry in the internal space S . This diSculty will be

I

Invariance of our Higgs field (3.1) under (constant)
translations of space-time is obvious. Invariance under
the combined (linked) transformation (2.7) and (3.9),
where (2.7}is given by (3.7), means

7I'"(x')= g o",bx "x'b=
a, b =4

being equivalent to

D a"D=A" u"

v=O c,d=4a, b, e, d =4 v=O

7 3 3 7

ol;I,D;Ddx'x = g A"~"(x)= g g A"„o,"dx'xd, (4.1)

(4.2)
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Going over the complex notation (3.3),

B'~~B =A~.~

with 0: . 0B= cos—+ino sin —,
2 2

'

(4.3}

(4.4}

02
n 2y Sln

02
n 2 Sln

which is satisfied, as is well known from two-component spinor calculus (see, e.g. , Ref. 11, Sec. 17). The rotations (3.11)
form the subgroup SU(2), in (3.6) of SO(4). The other group SU(2)2 is given by

02
cos

D2=

02
n2, sin

02
Pl2y S n

02—n2„sin

02
cos

02—n2, sin

02
n2y Sln

2

02
n2„sin

02
cos

8,
n2, sin

02—n2 sin

02
n2 sin

02
cos

(4.5)

The D of (3.11) will be denoted by D, . Di and Di com-
mute and a general element D of SO(4) can be written as

02 . . 02
82 = cos + inzn sin

2 2
(4.13)

D =D,D2 =D2D, =( D, )( D2—), — (4.6)

corresponding to the decomposition (3.6). The decompo-
sition of a general D is unique up to a sign as indicated in
the last part of (4.6). Each subgroup (3.11) or (4.5) is iso-
morphic (not only locally isomorphic) to an SU(2). For
more details, see Ref. 1, Sec. 2.

The complex notation (3.3) fails here because the sub-
matrices in (4.5) do not have the form (3.3). All state-
ments given in the following can be formulated and
proved by using in each step the corresponding real rep-
resentations, such as (4.5) only. However, it is much
more convenient to introduce the special real 2 X 2 matrix

1 0
0 —1

(4.7)

A general real 2 X 2 matrix can then be written as

(4.8)

where a"' and a' ' are complex numbers in the sense of
(3.3). The quantity o, which from a mathematical point
of view is a quaternion, has the properties

which is analogous to (4.4).
The internal symmetry group U(1) in (3.5) of our physi-

cal vacuum is given explicitly by

nz=(0, 0, 1), 0(Oz(4n. (4.14)

in (4.13) or (4.5). Invariance of the Higgs field under this
group means [compare (4.1)]

D2 0 "D2 =Cr"

or in quaternionic notation

ZB ~~Zcr&B2Z= a." .

(4.15}

(4.16)

z' ——z', ze(L', (4.18)

Transposition T of real matrices corresponds in quater-
nionic notation to Hermitian conjugation f, when Hermi-
tian conjugation A of an arbitrary quaternionic matrix
A, i.e., a matrix consisting of quaternionic entries, such
as (4.12}, is defined as taking the transposition of the ma-
trix and taking the Hermitian conjugate of each entry.
We have the following rules:

(4.17)

0. =1,
o.z =z*cr, z EC,

(4.9)

(4.10)
(w, w, }t=w', a t, (4.19}

(4.20)
where an asterisk denotes complex conjugation. Equa-
tion (4.5) can then be written as For

D2 =8828 (4.1 1) B d2i g( eaxp(i82/2), exp( i 02/2) ),— (4.21)

with

1

0
0

p 2
7 (4.12)

(4.16} can easily be verified. Thus we have proved that
the symmetry group of our physical vacuum is at least
(3.5).

To prove that there are no further symmetries, we con-
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sider the general symmetry of the prevacuum, i.e., a Poin-
care transformation combined with a rotation of the S,
which leave the Higgs-field invariant; i.e., we have to con-
sider the general solution of (4.2), where D is an arbitrary
orthogonal matrix and A4„ is an arbitrary Lorentz trans-
formation. The case p=O in (4.2), o =1 and D =D
implies that A „ is a spatial rotation. Let us denote by
D„ the D given by (3.11), which corresponds to the rota-
tion A4, and satisfies (4.2), i.e.,

a=4

Using the complex abbreviations

f,(x"} $4(x4)+i P&(X4)
f(x4) =

L

we find

$6(X4)+i /7(X4)

7

gi, (x4)= g f,'(x'4)Di'„b=4, . . . , 7 . (5.4)

(5.5)

DAo "DA =A" o. (4.22}
g'(x '"

) =8f(x") (5.6)

By (4.6) the general orthogonal matrix D can be written
as

D DzD i D

whence it follows from (4.2) that

D cr"Dz =D 0 "D$ .

(4.23}

(4.24)

In quaternionic form, we find [compare (4.4) and (4.13)]

ZB2+ Fo&BiZ=B,o "8, . (4.25)

. . Ial'+lpl'=1, (4.26)

and similarly for Bz, we can work out the matrix equa-
tions (4.25), decompose it into complex and quaternionic
part to obtain

a,'p2=0, (4.27}

alai —
p~pz =a'a'+pp=a*a' pp=a'a p—p' . —

(4.28)

There follows P=0, and a =+1. The case az =0 in (4.27)
leads to a contradiction. Thus, we have p2=0 and

la, l
=1.

We have to show that the only solution of that equation
is 8, =El and 82 given by (4.21). [8 = —1 can be ab-
sorbed in Bz without changing the D in (4.23), compare
(4.6)]. Writing

with 8 given by (4.4). That is the well-known transfor-
mation law of a complex two-component spinor field.

Thus far, we have taken the forrnal view of considering
passive, i.e., coordinate transformations. Any formula of
a passive transformation can be read actively by consider-
ing a mapping of the manifold into itself and by changing
the fields at any definite point to new ones. By postulat-
ing field equations (not specified in this paper), e.g., Ein-
stein field equations, which are form-invariant under gen-
eral coordinate transformation, the new fields again satis-
fy the field equations. The physical vacuum, specified by
certain fields, should satisfy the field equations (note
verified in this paper). Since the field equations are non-
linear, an arbitrary "superposition" upon the physical
vacuum, e.g. , the scalar field (5.1) will not satisfy the field
equations. Suppose, however, that a special field (5.5)
will satisfy the field equations. Since the physical vacuum
is invariant under a symmetry of the vacuum, the
transformed field (5.6) will again satisfy the field equa-
tions.

For reasons of simplicity, we have chosen a scalar field
as an example for a field behaving as a spinor field when
viewed macroscopically, i.e., when projected upon space-
time. Other examples, e.g. , metrical fields, can be formed
to behave as spinor fields. This is achieved by consider-
ing fields with an appropriate functional dependence on
the inner space variable x. A complete classification of
all possibilities is given in Ref. 12.

Finally, we note that the complex notation introduced
in (5.5) can be used for a compact formulation of the vec-
tor field (3.1), i.e.,

V. A SCALAR FIELD BEHAVING
AS A SPINOR FIELD

Consider the following scalar field

H4=$ a4$
with

X +lX
x'+~x7

(5.7)

(5.8)

7

s(x,x")= g g, (x4)x'
a=4

given by the four real macroscopic fields

(5.1)
The complex coordinates (5.8) for the S can also be used
for an economical formulation of the rotations of the S,
i.e.,

(5.9)

g, (x"}, a =4, 5, 6, 7 . (5.2)

Under inhomogeneous rotations (2.7), where A"„ is a ro-
tation (3.7) which is linked with an internal rotation
(3.11), the scalar field (5.1) transforms as

with 8 given by (4.4) corresponding to D given by (3.11).
This is discussed more completely in Ref. 1, Sec. 2.

VI. DISCUSSION

s (x,x")=s (x',x'")

leading to

(5.3) We have provided a model consisting of a manifold to-
gether with fields occurring naturally on manifolds,
namely, tensor fields. Some of these fields behave as
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SO(3)-covariant spinor fields. Thus, we have constructed
a manifold with a natural spin structure. This is in con-
trast to most other models where spinors are introduced
ad hoc, i.e., with no motivation why double-valued repre-
sentations of the symmetry group of the vacuum should
occur.

It seems worthwhile to recapitulate the essential results
of this paper in a group-theoretical language. We have
considered the Cartesian product of Minkowski space
and a three-sphere, endowed with its natural product
metric, together with a vector field H. The vector field is
chosen so that there is a unique lift of the three-
dimensional rotation group on Minkowski space to a
faithful action of SU(2) as a group of isometrics of the
seven-dimensional geometry that leaves H fixed. As a re-
sult, if there is a vacuum state for the metric together
with a vector field of the form (5.7), scalar fields on the
seven-dimensional manifold will behave as SO(3)-
covariant (although not Lorentz covariant) spinor fields
on spacetime.

It is an inessential detail of the present formulation

that in (3.1) we used a vector field enforcing the linkage
between SO(3) rotation of space-time and internal rota-
tional of the S and thus providing the manifold with a
natural spin structure. By replacing (3.1) by

7

H„= g cr„xt', p=0, 1,2, 3, m =4, . . . , 7
a=4

(6.1)

we obtained a metrical field satisfying the same purpose.
Similarly, we could construct second-rank tensor fields
behaving as spinor fields. Thus, a purely metrical theory
can be obtained.

The lack of Lorentz invariance of the physical vacuum
does not mean that particles cannot exist (electrons, pho-
tons, etc. ) having a larger symmetry. This is analogous to
the situation that fields exists (e.g., the free Maxwell field)
which have a symmetry (conformal invariance) larger
than Poincare invariance of the vacuum. However, other
perhaps less well-known particles should exist, which
spoil the Lorentz invariance,
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