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Graviton emission by a thermal bath of photons
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The rate of emission of gravitons by a thermal bath of protons is calculated. Linearized quantum

gravity is used to find the rate of graviton creation by thermal fluctuations of the photons. For the

case of photons confined within a sphere of radius R and volume V at temperature T, the power ra-

diated in gravitons is found to be I' =(2.7X10 erg/s)(V/cm')(T/K)'ln(160RT/Kcm). If the

thermal bath cools solely by emission of gravitons, the cooling time is of the order of ~=(3X 10 '

s) (1 K/T) ln(160R T/K cm). Any region which has been cooling by graviton emission since the ear-

ly Universe has a maximum temperature of 10 MeV at the present.

The semiclassical theory of gravity is the approxima-
tion in which quantized matter fields are coupled to a
classical gravitational field through the semiclassical Ein-
stein equation (we use units in which fi=c =G =ktt =1,
where 6 is Newton's constant and k~ is Boltzmann's con-
stant):

Here ( T„„)is understood to be a suitably renormalized
expectation value. The extent to which this theory is a
good approximation to a more exact quantum gravity
theory has not been fully resolved. It presumably fails at
Planck dimensions when the quantum fluctuation of the
gravitational field cannot be ignored. It also is expected
to fail if the quantum state of the matter field represents a
superposition of very different classical configurations, or
more generally, if the fluctuations of T„„are large. The
range of validity of the semiclassical approximation has
been discussed by several authors recently in the context
of cosmology, where one would like to understand better
the transition from the quantum to the classical eras. ' In
particular, the calculation of density perturbations in
inflationary cosmology requires a matching of quantum
and classical behaviors which is not as well understood as
one might like.

In a previous paper (I), the limitations of the semiclas-
sical theory were studied in the context of graviton emis-
sion by a quantum system in Minkowski spacetime. In
the semiclassical theory based upon Eq. (1), the energy
and momentum emitted in classical gravity waves are
given by the integrated energy-momentum tensor

S"„=8nfd'x d4x'd4x "G„."(x —x')G„(x —x")

X[(T tt(x'))(T ~(x"))

(2)

where G„(x —x') is the retarded Green's function,
T =T, and d x =r dt dQ. Thus, S" is the total energy

X ( T,tt(x')T'~(x") ,'T(x')T—(x—")) . (3)

[Note that an overall sign error appears in Eqs. (10), (12),
and (18) in I.]

The crucial difference between the semiclassical and
quantum expressions is that the former involves products
of expectation value whereas the latter involves an expec-
tation value of products. Thus the semiclassical theory is
a good approximation when

&T. ( ')T, ( ")&=&T. ( '))(T,.( ")& .

As was discussed in I, this holds for quantum states
which are coherent states, but can fail for other choices
of states.

A particular case in which the semiclassical theory
clearly fails is when the matter field is in a thermal state.
Here ( T it ) is constant, so S""=0. However, S""
should be nonzero because thermal fluctuations emit
gravitons. The main purpose of this paper is to exhibit
an explicit calculation of the flux of energy emitted in
gravitons by a thermal bath of electromagnetic radiation
using Eq. (3).

We wish to calculate the energy radiated in gravitons
by a box filled with photons in thermal equilibrium at
temperature T. Our system will be described by the elec-
tromagnetic stress-energy tensor T"', where

T (x)= —,'[E (x)+8 (x)],
T '(x)=e' Et'(x)B "(x) (i,j =1,2, 3),
T'J(x)= —,

'5'tT (x)—[E'(x)Et(x)+B'(x)Bi(x)]

(4)

are the components expressed in terms of the transverse
electromagnetic fields.

emitted in gravity waves. In linearized quantum gravity
theory, it was shown in I that the corresponding expres-
sion is

S,""=gtrfd'x d'x'd x "G„"(x—x')G„"(x —x")
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Because T" is traceless, we only need to calculate the
thermal expectation value of the product of T"', which
in terms of the electromagnetic field is

(T ~(x)T p(x'))p=([E(x).E(x') —B(x}B(x')]

E(x)=—,B(x)=VX A(x),8 A(x)
(6)

where A is the vector potential, which expanded in terms
of creation and annihilation operators becomes

+[E(x).B(x')+E(x').B(x)] )&,

(5)

where ( )& stands for the thermal expectation value at
temperature T=P '. In the following we use normal-
ordered operators for T &(x)T ~(x') in order that the ex-
pectation value be finite. &

In the Coulomb gauge, the transverse electric and mag-
netic fields are given by

X ek, flak, )Pk(x)+ak, kPk(x)l
(k, k)

Here ek k (A, =1,2) are two mutually perpendicular real
unit vectors which are also orthogonal to k, and pk(x) are
mode functions.

In general, these mode functions will be determined by
the boundary conditions and the shape of the cavity.
However, we will be interested in the case when the tem-
perature is large, T &&L, where L is a characteristic
dimension of the cavity. The dominant contribution to
our result will come from modes whose wavelengths are
short compared to L. Consequently, we can neglect the
boundaries and assume that the pk(x) are plane waves:

Pk(x) = 1 lk 'x

+2 Vk

where k x = k t —k x, k =cok= ~k~, and Vis the volume
of the cavity.

The (normal-ordered) thermal expectation value, Eq.
(5), becomes

( T (x)T~&(x') )&= g k &kzk3k4(C, 2C34+D, zD34)

X((a 3a4a&a2 )~ip3p2)s4+ (a 2a4a ta3 )~,p3pz u4 + (aza3a&a4)~, @3@2@4

+& ia4 2a3)pP113I 284'+(ala3a2a4)j9P'lI 3I 2P4+&al 2'a3a4) fP183P214 (9)

Here a; =ak k, p& =pk (x), etc. , p, and p3 are evaluated
I

at x, p2 and p4 at x', and the summation is over k, and
A, , i =1, . . . , 4. We have set, e.g. ,

C,z=e, e2 —(k, Xe, ) (k2Xez),

D)q=e, .(k2Xe2)+e2 (k, Xe, ),
where k denotes a unit vector.

In order to calculate (at a a„a~ )&, we use the fact that
the thermal expectation value for any operator 0 is given
by

(0)p=tr(pO),

where p is the density matrix

p X ~~n, (k)(~Ink(k)1 &(Ink«)]~
In~(k) I

(12)

Here
~ Ink(k)I ) is an eigenstate of the number operator

with nk(k) particles in mode (k, A. ). The factor a( (k)~ is

a(„ Ik~~
= g [1—exp( —Pk }]exp[ Pk nk—(k)] .

(k, A, )

Thus

(,' ' „,)~=(5(„5,+5„5 „)f,(P)f (P), (14)

Pklwhere 5t„=5& k 5k k and ft(p)=(e ' —1) ', the

Planck factor.
From Eqs. (g), (9), and (14), we obtain

( T ~(x)T p(x') ) = g k kzf (P)f (P) g (C +D )(2+ ' ' +e ' ' +cc)
2V

(15)

Using the relation

g ek „e$ )
=5'~ —k 'k '

A.

(16)

for the Cartesian component of the polarization vectors (i,j = y, zx), we get
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g (C,2+D, 2 ) =4(1—k, k2)2 .
] y Ap

With this expression, Eq. (15) becomes

(17)

(T (x)T ~(x'))tJ= — g k&k&(1 —k&.k&) f&(P)f&(g)(2+e ' ' +e ' ' +c.c. ) .

k],k2

The retarded Green's function is

5(t —t' Ix——x'I )
G„(x —x') =

4mIx —x'I

If we use this expression and Eq. (18) in Eq. (3) for the total energy radiated (S'"=S"),the result would be infinite.
However, this is just the result of integrating a constant power over an infinite time. Thus we should drop the integra-
tion on t in Eq. (3) and replace S"by P, the radiated power, which may be expressed as

dQd 'da=a~t 'fd's, d'a, r(t„t,)f"
X (co+ exp[i [co+(Ix—x"

I

—Ix —x'I ) —k+ ~ (x' —x")]
J

+co exp[i[a) ( x —x" —Ix —x'I) —k (x' —x")]j+c.c. ) . (20)

Here we have performed the t' and t" integrations, replaced the sums on k, and kz by V (2n ) f d k, d kz, and intro-

duced the notation

and

k+ —k ~+k2, co+ —co ~+co~, (21)

F(k), k2) =co)A@2(1—kt k2)f )(P)fq(P) . (22)

Because the power may always be measured at a distance which is large compared to the dimensions of the system, we
may assume that r ))r', r" (r = Ix I, etc.) and write

I
x —x'

I I
x —x"

I

—r '

in the denominator and

I
x —x"

I

—
I
x —x'

I

—r 'cos8' —r "cos8"

inside the exponentials. Now the d fL integration becomes trivial and we have

P=2(2n) fd k~d k2F(k„k2) fd x'd x "(co+ exp[i[co+(r'cos8' r "cos—8") k+ (x—' —x")]]

+co exp[i [co (r'cos8' —r "cos8")—k .(x' —x")]]+c.c. ) .

(23)

(24)

(25)

If we choose to perform first the integrations on k, and k2, then we find, after some calculation, that

P = ,' T'fd'g'd'g-"g(g),

where g= Ig' f 'I and—
(26)

g(g)= [10( (12(cothg —( +6)csch g
1

I 5gl0

+2/ [30$' coth3$+ 10$ (60—g'2)coth g —g(g + 15$ +45)cothg —
g

—225]csch g
—2g(P —30$ +225)cothg —4/+630] . (27)

Here g'=2vrTx' and g" =2m Tx", and the integrations on these variables are over the volume of the cavity expressed in
these units. The function g(g) is plotted in Fig. 1. Because g(g)) 0 for A%3 and g(g) (0 for g) 3, pairs of points
(x', x") which are separated by less than a few thermal wavelengths yield a positive contribution to P, whereas those
with larger separations yield a negative contribution.

Note that if g(g) were constant for all g, then we would have P ~ V T' However, the fact t.hat points for which
3 give a negative contribution indicates that P should increase less rapidly with increasing V or T. To evaluate P, it
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son

P =8rr f dk, dk~( k, k2 ) f, (P)f~(P)[y+ (k, k2)+y (kt tk2)],
0

(28}
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5 [sin(R 5+)—R 5+cos(R 5+ )
2y+= dx(1 —x) co+ ~ sin

(29)

in which case we clarge-R limit ofy+,

+g 2 3 +
' ' Si 4k R)—Si(4(k, —k2)R}]}+ f dk2fqIn3+Si(4k, R )+n3 [Si 4k2R —idk f dk2(re++co' )ftSi(4k, R )+1 1
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teg ration. T

M(4R p ')+20N3 2+10N, 4 4+5NP=rr VT [—„m

+10N3 2+10N2 3+5N) 5
—

5 0—N No 5]

(31)

3
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~dXX
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(32)

and

M(a) ——'m 1na+0. 890+0(a —I)
2 (33)

the N and N„ integralsNumerical evaluation of the N„an
yields the result (in Planck units)
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3X10 ' s

T 1n(160RT)
(38)

P&=2X10' ergls . (36)

On the other hand, a newly formed neutron star has a
temperature of about T=10" K. Taking R =10 cm
yields

PNs-10 ' ergls . (&7)

This is still too small to contribute noticeably to the cool-
ing of the neutron star, which is dominated by neutrino
emission.

We can also estimate the cooling time for an object
which cools by graviton emission. If the energy content
is pritnarily the thermal energy of the photons, then the
time scale ~ for this energy to be radiated is

(Again, T is in K and R is in centimeters. ) Thus an object
formed in the early Universe (r=10' yr) can have a tem-
perature of no more than T = 10" K = 10 MeV at
present. Various authors have speculated on the possi-
ble existence of confined regions of an exotic phase of
matter created in the early Universe and persisting at
present. Assuming these objects are transparent to gravi-
tons, we have a bound on their present interior tempera-
ture.
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