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Lattice calculation of weak amplitudes of D and 8 mesons
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A lattice calculation of the pseudoscalar decay constants and the [b(flavor) =2] mixing matrix
elements for D and B mesons is reported. Calculations are done (in the quenched approximation)
with P=6. 1 on a 123X 33 lattice; results from P=5.7 on a 16 X25 lattice contribute to our estimate
of the systematic errors. An extrapolation to large meson mass is required in order to treat
the B meson. We find fbd =105%17+30 MeV, fb, =155+31+48 MeV, f,d =174+26+46 MeV,
f„=234+46+55 MeV (with normalization such that f„=132MeV). The ratios of these quantities
have considerably smaller errors: f~~ If,d =0.60+0.01+0.03, f„/f„=0.66+0.004+0.09,
fq, lf~„=1.47 +0.07+0.30, and f„lf,„=l.35&0.0720.21. For the lattice "B parameters" we

find BL'L'=1.01+0.06+0. 18 and BL'z'=1. 16+0.01+0.11 for the bd system with quite similar values

for the cu and bs systems. These B parameters are defined slightly differently than in the continuum
and are effectively renormalization-group invariant. The first error in each of our results is statisti-
cal; the second is an estimate of the systematic errors due to scale-breaking, finite-size, extrapolation
and operator-renormalization effects.

I. INTRODUCTION

In the past few years the realization has been growing
that lattice techniques can be applied to the calculation of
weak amplitudes. ' Both Wilson and Kogut-Susskind
fermions are being used to calculate quantities such as
E-K mixing matrix elements, bI =

—,
' and —', amplitudes

for E~2m and the CP-violation parameters e and e' in E
decays. This paper reports our results, using lattice
methods, for weak amplitudes of "heavy-light" mesons
(D,D„B,B, ) containing a charm or a bottom quark and a
light ( u, d, or s) quark. (Preliminary results were
presented in Ref. 3.)

The physical b-quark mass (-4.6 GeV) is rather heavy
for direct simulation in current Monte Carlo (MC) calcu-
lations, with ultraviolet momentum cutoff of order
ir/a-3-7 GeV (a is the lattice spacing). However,
physical amplitudes should have a smooth dependence on
the heavy-quark mass (m&). By varying m& on the lat-
tice, one may hope to extract the functional form, for
large m&, of the dependence of the physical amplitude on
rn& (or at least confirm a theoretically expected depen-
dence) and then extrapolate to the desired experimental
value m&=mb. We find that such an extrapolation is
possible for the quantities we discuss here: namely, the
pseudoscalar decay constants and the mixing matrix ele-
ments.

These quantities are important for understanding the
theory of heavy-meson weak decays and for determining
their decay mode patterns —which in turn can have re-
percussions for their experimental detection. Perhaps the

most interesting implication is in the observed Bd-Bd
mixing by the Argus Collaboration. Reliable knowledge
of the relevant matrix elements should provide both an
important new forum for the comparison of the experi-
mental results with the standard electroweak model and
clues to the onset of new physics.

The remainder of this paper is organized as follows.
Section II describes our basic methods, while Sec. III
gives the technical details of the current calculation. In
Sec. IV we discuss the pseudoscalar decay constants of
heavy mesons and present results for fbd, f», f,d, f„,
and their ratios. We also describe in detail how we arrive
at our systematic error estimates. Section V consists of a
description of the results for BLL and B~„"of the heavy
mesons. A brief summary and the outlook for the future
are presented in Sec. VI.

II. COMPUTATIONAL METHODS

Our general calculational technique has already been
explained, ' so we will describe it only very briefly here.
We de6ne

G„(t,o)= g T(o~y„(t,x)y„(0,0)~0),

P„(t,O) = g T(O~y„(t, x)p'„'(0, 0)IO),

Q„(t,o, t')= g g T(o~y„(t,x)e„(0,0)y„(t',x')~0) .
X X

(3)
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Here T is the time-ordering symbol, y„ is the appropri-
ate interpolating field for meson A (e.g., for B, we would
have sy&b), pz is the time component of the local axial-
vector current (e.g., sy y~b) needed for calculating the
pseudoscalar decay constant, and 8„ is the four-quark
lattice operator (e.g., [sy„(1 y—~)b] +0(g ) correc-
tions ) corresponding to the continuum left-left (LL)
weak operator. As described in Ref. 3, we take
g =gMs(1. 7m/a) in the perturbation corrections, rather
than the somewhat smaller lattice g. (MS denotes the
modified minimal subtraction scheme. ) This is simply
our "best guess" for how to take into account higher-
order effects; the uncertainty in the perturbative correc-
tions is included in our estimate of systematic errors.

The dimensionless meson mass am ~ is obtained as usu-
al from the behavior of the two-point function at large t:

Qm~ f
Gz(t, O)~/Ac (4)

where k, and kz are the hopping constants of the quarks
in the meson A, Z, is the perturbative renormalization
constant for the axial-vector current (again using gMs for

g}, and the sinh factors serve to normalize the result to
that of a free lattice boson with axial-vector coupling
f„B~„(Ref.7).

The matrix element of a b,F =2 operator is most easily
computed by comparing it to its vacuum-saturated value,
calculated on the lattice. We have, for large t, ~t'~ (where
t &0&t'),

g„(t,O,t'), ( A ~e'„'~ ~ )
—'Z2P —„(t,O}P—„(t',0) ( A ~e„~ A )„„

(6)

Here Z can be thought of as an effective lattice renor-
malization constant for the axial-vector current. It arises
from vacuum saturation of the perturbatively corrected
lattice four-quark operator, and is given by

2

Z =1+ (Z++ ', r Z'), —
16&

(7)

where Z+ and r Z' are defined in Ref. 5. Similarly, for
the left-right (LR) four-quark operator, one has

Q~"(t, O, t')

', Z'G„(t, O}G-„(t'-,0) 2—(Z' )'P—„(t,O}P—„-{t',0)

& 2~e'„"(~ )

(2/e'„"/~)„.„., '

where Z and Z' are given by

2

Z =1+ {Z ——'r Z },
16 '

(8)

The pseudoscalar decay constant f„ is extracted, for
large t, from

[2k, k2(„sinh(am& )]'
Z, P„(t,O)/G„(t, O)~ af„, —

sinh am&/2

2
(Z' } =1+ ( —'Z +—'Z + 'r —Z" }a 16 2 9 9 3 7 (10)

III. DETAILS OF THE LATTICE CALCULATION

Most of the results reported in this paper have been ob-
tained on a 12 X33 lattice with the Wilson gauge action
at P=6. 1. We take the lattice spacing to have a nominal
value a =(2 GeV) ' as determined by string tension mea-
surements. We recognize, however, that the presence of
scaling violations means, in effect, that a rather large
range of values for a must be considered when one deter-
mines systematic errors. Altogether 30 gauge
configurations are used for averaging. Successive
configurations are separated by 2000 pseudo-heat-bath'
passes, with 4000 passes used for initial thermalization.
These configurations appear to be statistically indepen-
dent for most of the quantities we measured, though for
the pseudoscalar masses themselves there is some evi-
dence from the jackknife procedure" for small but long-
range correlations. (The errors rise steadily, with a total
of -30% increase, between one configuration left out
and eight left out. ) The quarks are of the Wilson type
with r =1, and are treated in the quenched approxima-
tion. Neumann boundary conditions in the time direc-
tion are imposed on the quark propagators —see Ref. 3
for details. We compute propagators using the over-

and Z, and Z2 are again from Ref. 5. Note that we do
not vacuum saturate the continuum four-quark operators
and then translate the result to the lattice, but do the
translation first and then the saturation. The former
method would, for example, replace Z in (6) and Z' in
{8} by Z„defined above. The two procedures treat
short-distance effects differently and are not equivalent in
principle; they first differ at order g . One can easily see
that they must be different by noting that Z in (7) is
scale dependent (through Z+ —see the second paper in
Ref. 5), while Z, is scale independent (it is associated
with a partially conserved current). Our procedure
results in B parameters which are effectively
renormalization-group invariant: the scale dependence
cancels between numerator and denominator. (Though
this is presumably only exact through order g for BI'I'
and is only approximately true for BPz', it holds to high
accuracy numerically. ) As discussed in Sec. V, lattice
vacuum saturation has two additional advantages.

(1) It is very insensitive to the precise values used for
the mixing coefficients (i.e., to the relation between lattice
and continuum operators). Since perturbation theory
does not give reliable values for the coefficients, this in-
sensitivity reduces systematic errors considerably. In the
case of B&z', statistical errors are also reduced.

(2} It is an excellent approximation for the heavy-light
systems considered here (i.e., the B""values are all quite
close to 1). This simple fact would be obscured if one
used the usual continuum definition because of the depen-
dence on scale and on ill-determined mixing coefficients.
Conversion between lattice and continuum definitions is
also discussed below; it is easy for the most interesting
case: namely, BL,L.
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relaxed Gauss-Seidel algorithm for eight values of the

hopping constant k: 0.154, 0.153, 0.151, 0.150, 0.140,
0.130, 0.115, and 0.100. The residuals varied from less

than 10 at 0.154 to —10 ' at 0.100.
We have done similar computations on 16 X 25 lattices

with P=5.7 which were available from other calcula-

tions. Here the string tension measurements give

a =(1 GeV) '. Eight configurations with 1000 pseudo-

heat-bath passes between them are used for averaging;
2000 passes have been allowed for thermalization. Quark

propagators are calculated [with over-relaxed Gauss-

Seidel and residual 10 —10 ' or the preconditioning
algorithm of Oyanagi' and residual 10 -10 ' ] for
seven k values: 0.168, 0.166, 0.164, 0.155, 0.125, 0.110,
and 0.094. Because of the difference in lattice spacing,
the heaviest physical mass that can be reliably treated at
P=5.7 is clearly much less than at 6.1. Further, scaling

violations are likely to be considerably larger at 5.7 than

at 6.1, and though finite-size effects would certainly be re-

duced at 5.7, we do not expect these to be a major prob-
lem on our P=6. 1 lattices as long as we stick to pseudos-

calar particles and masses which are )mx (Ref. 13). We

therefore use the 5.7 data only as an estimator of sys-

tematic errors due to scaling violations (and perhaps
finite-size effects); the central values and statistical errors

reported here come exclusively from P=6.1. Systematic
scaling-violation effects have also been estimated by two

other methods described below.
In all our calculations, the source point for the quark

propagators is at the center of the lattice (site "0"}.

When the effective mass' is plotted as a function of time
slice away from 0, we find that it is approximately con-
stant for gati

) 8 or 9 for all combinations of k values at
P=6. 1 (gati) 5 —7 at P=5.7). Further, we find that f„,
BL'L', and Bi~+ from Eqs. (5), (6), and (8) are also approxi-
mately constant for such t values. Taking into account
the need to stay away from the boundary (the tiine slices
fixed by the boundary condition are +17 for 6.1 and +13
for 5.7}, we average quantities over time slices t =+9,
+10, +11, +12 at 6.1, and time slices t =+7, +8, +9 at
5.7. The systematic errors inherent in this procedure are
estimated below.

In Table I we show the values of am&, afz, BL'L', and
BL'„" which are obtained at P=6. 1 for various combina-
tions of the hopping constants of the two quarks in the
pseudoscalar mesons. Table II shows the same informa-
tion at P=5.7.

To find the k value kd corresponding to u or d quarks
(our calculation makes no distinction between these
quarks), we linearly extrapolate m„ to m for degenerate
rnesons made from the largest k values on each lattice.
We find kd =0.155 34(59) at 6.1, and kz -0.17043 at 5.7.
(The statistical errors at 5.7 are about 50%%uo larger than
those at 6.1, but we have not bothered to compute precise
statistical errors in many cases for extrapolated 5.7 data,
since the results are used only for systematic-error esti-
mates. ) To find k, (the strange-quark hopping parameter)
at 6.1 we first do a similar m „extrapolation of
0.151X0.153 and 0.151X0.154 to 0.151Xkd, and of

TABLE I. Values for am„, af„, BL'i'', and Bpz' for various values of the hopping parameters (k
values) of the two quarks. P= 6. 1. Errors come from the jackknife procedure (Ref. 11).

k values

0.154x0.154
0.153x0.153
0.151x 0.151
0.150x0.150

0.154x 0.153
0.154x 0.151
0.154x 0.150
0.154x0.140
0.154x0.130
0.154x0.115
0.154x0.100

0.153x0.151
0.153x0.150
0.153x0.140
0.153x0.130
0.153x0.115
0.153x0.100

0.151x0.140
0.151x0.130
0.151x0.115
0.151x0.100

0.150x0.140
0.150x0.130
0.150x 0.115
0.150x0.100

am„

0.231 (0.038)
0.299 (0.025)
0.413 (0.017)
0.466 (0.015)

0.266 (0.031)
0.326 (0.024)
0.354 (0.022)
0.614 (0.018)
0.846 (0.017)
1.163 (0.016)
1.467 (0.016)

0.357 {0.020)
0.385 (0.019)
0.642 (0.015)
0.872 (0.013)
1.192 (0.013)
1.495 {0.012)

0.691 (0.012)
0.918 (0.010)
1.234 (0.0094)
1.539 (0.0093)

0.713 (0.011)
0.940 {0.010)
1.254 (0.008)
1.561 (0.009)

0.058 (0.014)
0.0695 (0.0092)
0.0870 (0.0070)
0.0926 (0.0064)

0.064 (0.011)
0.0737 (0.0097)
0.0763 (0.0092)
0.0822 (0.0063)
0.0801 (0.0051)
0.0739 (0.0042)
0.0674 (0.0037)

0.0785 (0.0079)
0.0811 (0.0075)
0.0882 (0.0054)
0.0868 (0.0044)
0.0818 (0.0036)
0.0751 (0.0032)

0.0989 (0.0049)
0.0984 (0.0040)
0.0934 (0.0032)
0.0875 (0.0028)

0.1029 (0.0048)
0.1030 (0.0039)
0.0985 (0.0032)
0.0930 (0.0029)

~LL

—0.7 (1.4)
0.44 (0.43)
0.85 (0.12)
0.888 (0.091)

0.10 (0.72)
0.72 (0.32)
0.84 (0.25)
1.02 {0.11)
1.006 (0.083)
1.003 (0.069)
1.004 (0.062)

0.76 (0.20)
0.84 (0. 16)
0.991 (0.071)
0.994 (0.053)
0.994 (0.042)
0.996 (0.036)

0.949 (0.048)
0.963 (0.035)
0.974 (0.028)
0.983 (0.025)

0.937 (0.041)
0.954 (0.030)
0.969 (0.024)
0.977 (0.023)

1.26 (0.23)
1.237 (0.095)
1.181 (0.060)
1.142 (0.048)

1.25 (0. 15)
1.232 (0.089)
1.219 (0.079)
1.147 (0.044)
1.115 (0.039)
1.098 (0.038)
1.108 (0.037)

1.215 (0.069)
1.201 (0.063)
1.116 (0.032)
1.083 (0.023)
1.067 (0.022)
1.067 (0.022)

1.069 {0.024)
1.042 (0.016)
1.030 (0.015)
1.031 (0.017)

1.052 (0.021)
1.029 (0.014)
1.019 (0.014)
1.017 (0.016)
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TABLE II. Same as Table I, but for P= 5.7.

k values

0.168x0.168

0.166x 0.166
0.164x0.164
0.155 x 0.155

0.168x 0.164
0.168x0.155
0.168x 0.125
0.168x0.110
0.168x0.094

0.166x0.164
0.166x0.155
0.166x0.125
0.166x0.110
0.166x 0.094

0.164x 0.155
0.164X0.12S
0.164x 0.110
0.164x 0.094

0.155x 0.125
0.155 X0.110
0.155x 0.094

am„

0.335 (0.015)
0.434 (0.013)
0.527 (0.014)
0.889 (0.011)

0.440 (0.012)
0.656 (0.013)
1.272 (0.021)
1.559 (0.026)
1.862 (0.030)

0.482 {0.014)
0.688 (0.014)
1.292 (0.018)
1.576 (0.021)
1.880 (0.026)

0.723 (0.014)
1.315 (0.016)
1.597 (0.020)
1.900 (0.024)

1.440 (0.013)
1.713 (0.016)
2.008 (0.020)

0.087 {0.053)
0.151 (0.027)
0.159 (0.024)
0.186 (0.020)

0.150 (0.027)
0.162 (0.022)
0.167 (0.020)
0.164 (0.021)
0.160 (0.021)

0.155 (0.025)
0.166 (0.022)
0.172 (0.018)
0.169 (0.018)
0.166 (0.018)

0.170 (0.022)
0.177 (0.017)
0.175 (0.017)
0.171 (0.017)

0.201 (0,017)
0.200 (0.015)
0.197 (0.014)

Blatt

—14(72)
—0.16 (0.70)

0.60 (0.34)
0.95 (0.11)

—0.12 (0.68)
1.06 (0.19)
1.25 (0.13)
1.25 (0.14)
1.26 (0.17)

0.37 (0.44)
0.96 (0.17)
1.104 (0.087)
1.117 (0.092)
1.14 (0.11)

0.93 (0. 16)
1.068 (0.080)
1.091 (0.081)
1.119 (0.089)

1.051 (0.064)
1.076 {0.060)
1.098 (0.058)

BI

0.847 (0.080)
0.927 (0.035)
0.947 (0.029)
1.017 (0.026)

0.927 (0.034)
0.993 (0.020)
1.090 (0.025)
1.127 (0.037)
1.186 (0.062)

0.938 (0.032)
0.989 (0.019)
1.067 (0.031)
1.096 (0.041)
1.138 (0.058)

0.993 (0.019)
1.061 (0.034)
1.086 (0.043)
1.120 (0.056)

1.062 (0.040)
1.077 (0.043)
1.095 (0.045)

0.153X0.153 and 0.153X0.154 to 0.153Xkd. We then
extrapolate m„at 0.151Xkd and 0. 153Xkd to mk =498
MeV, giving k, =0.151 93(61). At 5.7 we use
0.155 X0.166, 0.155 X0.168, 0.164X0.166, and 0.164
X0. 168 in a similar fashion to get k, =0.16006. We
prefer this method of fixing k, to, for example, fixing the
vector ss (P) mass, because it stays entirely within the
pseudoscalar sector, thereby eliminating some sources of
systematic error. We only have to worry about extrapo-
lation errors, which we can estimate by repeating the ex-
trapolations using different starting k values; we do this
below.

IV. PSEUDOSCALAR DECAY CONSTANTS
OF HEAVY MESONS

We now focus our attention on mesons containing
one heavy quark and one d or s quark. At 6.1, we define
"heavies" to be the set of k values I O. 140,
0. 130,0. 115,0. 100) . We linearly extrapolate
0.153Xheavies and 0.154X heavies to get kd X heavies,
and use 0.151X heavies and 0.153X heavies to get
k, X heavies. Similarly, at 5.7 "heavies" is the set
(0. 125,0. 110,0.094) which is combined with k values
0.168, 0.166, 0.164, and 0.155 to get [kd, k, j Xheavies.
Using the nominal values for a, the resulting decay con-
stants f„are plotted in Fig. 1. A large-mass expansion
shows that when the heavy-quark mass is increased while
the light-quark mass is held fixed, the pseudoscalar decay
constant is proportional to m„' (Refs. 15 and 16). We
therefore plot our data for f~ as a function of m „'
Using only P=6. 1 data, we ftt the three heaviest mass
values in kd Xheavies and the two heaviest mass values in

k, X heavies to a straight line passing through the origin.

It is clear that the behavior of f„ is quite consistent with

the predicted large-mass behavior. For masses lighter
than those fit, there is a turnover in the data; we interpret
this as a breakdown of the large-mass approximation for
smaller values of m&, the heavy-quark mass. The fact
that the large-mass behavior appears only for larger

I I t I I I I I I I I 1 I I f I I

200—

i00

0
0.0 02 0.4 0.6

1/j rn(Gev)
O. B

FIG. 1. The pseudoscalar decay constant vs m„' . Key:
cross, @=6.1, k~ Xheavies; diamond, P=6. 1, k, Xheavies;
square, @=5.7, kd Xheavies; octagon, P=5.7, k, Xheavies. Fits
are to P=6. 1 points only, with the three heaviest included for
kd X heavies, and the two heaviest included for k, Xheavies. To
show results in physical units the nominal values of a '=2
GeV at @=6.1, and a '=1 GeV at P=5.7, are used. Statistical
errors in the abcissa values are much smaller than those in the
ordinate, and are omitted for clarity.
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values of m& in the Qs states than in the Qd states is con-
sistent with this interpretation. We can thus use the
straight lines to extrapolate to f~z and f~, ; for f,z and f„
we merely interpolate linearly between the points on ei-
ther side of the D or D, (Ref. 17).

An important concern is whether some of the mass
points shown in Fig. 1 are too heavy to be properly treat-
ed on lattices with the given values of a. Indeed, at
p=6. 1 the two heaviest Qd states have am„&1 (the
values are 1.12 and 1.43) and similarly for the two heavi-
est Qs states (1.21 and 1.52}. All the points shown for
p =5.7 have am „&1 (the highest is 1.95). A first
response is that such values of am z are not obviously so
bad. Perturbative calculations suggest that the proper
scale to compare with m„ is not a ' but m/a, the max-
imum lattice momentum. (See, for example, Ref. 3 and
the second paper of Ref. 5.) A more direct response
comes from Fig. 1 itself. The fact that the three highest-
mass Qd states for P=6. 1 fit quite well to the expected
constXm„' behavior is a good indication that the
heavy quark Q is being treated more or less correctly,
even when k =0.100 and am~ =1.43. The evidence for
the p= 6. 1 Qs states is by itself somewhat less convincing,
but since the values of m& are the same here as in the Qd
case, we believe that they, too, are being treated more or
less correctly. (Changing the mass of the light quark
should not cause any special problems. ) To get a quanti-
tative estimate of the systematic errors caused by the
high values of am„, we will throw out the heaviest Qd
and Qs states in Fig. 1 and then recompute the values of
the decay constants (see below).

At p=5. 7 there is no internal evidence that the masses
are light enough, and this is one of the reasons we use
that data merely in estimating systematic errors. Still, a
comparison of p=5. 7 to p=6. 1 reveals no evidence of
large problems for the heavy 5.7 points.

The similarity of the hopping-parameter (small-k) ex-
pansion to the large-mass expansion of Eichten (Ref. 15)
may make the reader worry that the apparent
const/m„'~ behavior is merely a lattice artifact, a symp-
tom of the use of improperly large values of am&.
Note, however, that in the k, ~0 limit, af „actually falls—(m~ /2)
like e " due to the factor of Qk& in Eq. (5). Other
symptoms of the small-k regime also do not occur: nei-
ther g„nor P„/G„are independent of k&. In addition,
Z, appears to be quite insensitive to am„even for
am „&1 (see below}, and the difference between the sinh
factors in Eq. (5) and their small am „ limit is small.

The statistical errors shown in Fig. 1 are found by the
jackknife method. " However, it is inconvenient for us to
do a full jackknife estimate for the errors of the final
answers given below, which come after fitting and extra-
polation. Instead, we divide our p=6. 1 sample of 30
configurations into 3 groups of 10, perform all fits and ex-
trapolations for each group, and compute errors from the
variance of the final answers over the groups.

Although the points in Fig. 1 have fairly small statisti-
cal errors, which allows one to be quite confident of the
trends in the data, ' there are two important systematic
errors in the overall normalization of the data for each

value of p. The value of Z„which enters through Eq.
(5), is not very well known. The perturbative evaluation
used here is not likely to be very good for these values of
P; one evaluation' of a related quantity (the renormaliza-
tion constant for the nonlocal axial-vector current) at
p=6.0 showed a significant difference between perturba-
tive and nonperturbative values. Further, the value of a
is not well determined. For these reasons, we compute
instead the ratio of decay constants: in particular, we
compare f for heavy mesons to f», and then use its mea-
sured value (=160 MeV) to normalize the results. An
additional possible advantage of this method is that
quenched approximation errors may be reduced: the in-
clusion of virtual-quark effects is more likely to affect two
decay constants in the same way than it would a decay
constant and string tension.

The f/f» method will change the central values
shown in Fig. 1 and increase significantly the statistical
errors. The latter is true simply because f» fiuctuates
more in our simulations than does the decay constant of a
heavier meson. Indeed, using the nominal values for a,
we find

f» = 125+27 MeV (P=6. 1),
f»=150+25 MeV (P=5.7) .

In addition to increasing the statistical errors, this
method has three disadvantages. First, the results are
still not completely independent of the assumption for the
nominal value of a. This is because a enters in the deter-
mination of k, and the placing of the physical D and 8
mass values in Fig. 1. Second, Z, may not be mass in-
dependent for the larger values of am„. Because Fig. 1

shows good agreement with the large-mass expectation,
however, such variation of Z, with mass seems small.
We have in fact made a rough estimate of the mass
dependence of Z, by computing the difference between
the lattice and continuum quark wave-function renormal-
izations (b,X, in the notation of Ref. 5) as a function of
am&. Since the wave-function renormalization term is by
far the dominant contribution to Z„ this should give a
reasonable estimate. We find that ~b, X&~ decreases by
only 10% between am„=0 and am„=1.4 (the mass of
the heaviest Qd state in Fig. 1)—which produces a
change of only 2% in Z, (only 1% over the range in
masses for which the const/m„'~ behavior is seen in Fig.
1). Finally, one cannot rule out the possibility that
finite-size effects are significantly altering the lighter mass
result (f»). Though on balance we still consider the

f /f» method to be the safest choice and will quote its re-
sults for our central values, we use the differences with
the direct method (i.e., Fig. 1 values) as inputs to our sys-
tematic error analysis. We also allow the nominal value
of a to vary in the analysis.

The results of the computation and the various sys-
tematic error estimates are shown in Table III. Column a
gives the f values at p=6. 1 using the f/f» method and
the nominal value for a; errors come from the three sub-
samples. These are our final central values and statistical
errors. Columns b—i are used to compute systematic er-
rors.
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TABLE III. Values for the heavy-meson pseudoscalar decay constants (in MeV) using various
methods and assumptions (columns a—e), and percent errors coming from various other systematic-
error sources (columns f—i). Column a gives the results for P=6. 1 and uses the fif+ method and the

nominal value a ' =2 GeV; these are our final central values and statistical errors. The other columns

are used to determine the systematic errors: see text.

fbd
f,a
fb,
f-

105(17)
174(26)
155(31)
234(46)

94
157
113
187

128
203
171
247

82
136
121
183

100
168
144
225

16.7
13.5
11.5
6.5

1.4
2.3
6.6
3.0

2.5
2.4
3.2
2.7

4.1

4.5

Column b gives the f values at P=5.7 using f /far and
the nominal a value; the differences with column a gives
one estimate of systematic errors due to scaling viola-
tions.

Column c represents another method of estimating er-
rors due to scaling violations. Lack of scaling means that
the nominal value of a should be allowed to vary; a typi-
cal range for a can be extracted from a recent spectrum
calculation. At p=6. 2, Gupta et al. found values for
a ' ranging from 1.9 to 2.6 GeV, depending on which
physical quantity was fixed (m, mN, f„, etc. ) and on
whether Wilson or staggered fermions were used. Of
course, these numbers should be lowered somewhat in go-
ing to 6.1 (asymptotic scaling would give —1.7 —2.3). As
a somewhat conservative estimate, we then take the 10.

range for a ' at 6.1 to be 2.0+0.4 GeV, where we have
centered a ' at our nominal value. Column c is then
computed like column a, but replacing the nominal a
value with 2.4 GeV. (Using 1.6 GeV gives slightly small-
er deviations from 2.0 GeV. )

Column d gives the f values at P=6. 1, a '=2.0, us-

ing the direct method (i.e., as in Fig. 1). It represents yet
another way to estimate errors due to scaling violations.

As explained above, finite-size effects, in addition to
scaling violations, may inhuence the difference between
column a and columns b and d. Based on the calcula-
tions done here, we are not able to separate out these
effects explicitly (though we expect' them to be consider-
ably smaller than scaling violations). For each meson, we
therefore simply take the [argest difference of columns b,
c, d with column a and consider it to be a measure of the
combined errors due to scaling-violation and finite-size
effects.

Column e gives the f values computed as in column a
but using the naive normalization of the pseudoscalar de-
cay constant for heavy mesons. The differences between
column e and column a (which uses the "free lattice bo-
son" normalization —see Ref. 7) can be thought of as esti-
mates of the errors which are due to the rather large
values of am~ used here. Note that these errors are
small compared to those due to scaling violations.

Columns f—i give estimates of the errors (in percent)
which come from various other sources. Percent errors
resulting from the use of Eq. (5) at finite t values are
shown in column f. As explained above, we average over
time slices +9, +10, +11,and +12 on the p=6. 1 lattices.
While the values of am& and P~ /Gz change little from

~t~ =9 to ~t~ =12, the quantity g„can vary by quite a bit,
particularly for the larger values of am~. This is because

is extracted from Eq. (4), where small fractional
changes in am& can, when the exponent is large, result in

large changes in g„. To estimate these "finite-time
effects, " we compare the value of g„at a fixed time slice
to its average value. The fixed time slice chosen (t = —9)
gives the largest (or very close to the largest) difference at
each mass value over the whole range of masses con-
sidered. An alternative method of estimating finite-time
effects is the comparison of our result for g„ to an aver-

age over time slices +11, +12, and +13; it gives slightly
smaller error estimates.

Column g shows estimates of the percent error caused
by the inclusion of large values of m „(~ a ') in our ex-
trapolations. For the bd and bs cases, we find the percent
change in the values in column a when each fit (to the
function constlm' ) is repeated using only the middle
two mass values (i.e., throwing out the highest mass point
in each case). For the cd and cs cases, we replace the in-
terpolation between the middle two mass values with an
extrapolation from the second lightest mass, assuming
m ' dependence.

Column h shows estimates of the percent errors in our
extrapolation of the light quarks. We make these esti-
mates by repeating the computations that give column a,
while reducing the dependence on the lightest quark
masses. To find k, and fir, we now extrapolate
0.150X0.153 and 0.150X0.154 to 0.150X kd',

0.151X0.153 and 0.151X0.154 to 0.151Xkd, and then
use 0.150Xkd and 0.151Xkd to find that value of k,
which gives the right mass mz for k, X kd. We then ex-
trapolate 0.151 X heavies and 0.153X heavies to
kd Xheavies; and 0.150Xheavies and 0.151Xheavies to
k, Xheavies. Each of these changes from the k values
used for column a (see Sec. III) moves the decay con-
stants in the same direction; so we make all changes at
once to get the largest error estimate.

Column i gives our estimates of the percent errors
which arise from our omission of the logarithmic correc-
tion' to the functional form const/m ' in our extrapo-
lation. Note that this is only an issue for B or B, mesons,
since they require an extrapolation to masses beyond
those studied on the lattice; for the D or D, we need only
interpolate between two relatively nearby masses, and the
results are therefore very insensitive to the functional
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form used for interpolation. We estimate the errors by
comparing the logarithmic factor at the 8 or 8, mass to
that at the largest corresponding lattice mass.

To arrive at the final systematic error estimates, we
then add, in quadrature, the errors coming from columns
e—i and the largest error coming from columns b—d. We
get, for our final answers,

fid =105+17+30 MeV, fb, =155+31+48 MeV,

(12)

f,d =174+26+46 MeV, f„=234+46+55 MeV .

Here, the first error in each result is statistical and the
second is systematic. The systematic errors are dominat-
ed by scaling violations and possible finite-size effects
(columns b—d), which contribute to 80% or more of the
total. Finite-time effects (column f) have a secondary im-
portance, and all other sources give a marginal or negligi-
ble contribution. This means that the systematic errors
of the current calculation are, roughly speaking, the er-
rors of any current lattice calculation; the special prob-
lems associated with using large lattice masses and per-
forming extrapolations to yet larger masses seem to be
under control. In particular, columns e and g can be
thought of as two different ways of estimating such
large-mass effects: these effects are only -20% of the to-
tal systematic error for the heaviest state (bs) and consid-
erably less than that for the other states. The result of
throwing out all results from m &a ' would, in fact, be
to change the final answers by much less than one "stan-
dard deviation. "

We have also computed the ratios of heavy-meson de-
cay constants. The errors here are considerably reduced
simply because the various systematic sources (as well as
statistical fluctuations} tend to move all these decay con-
stants in the same direction. Furthermore, the answers
are essentially independent of the light-meson results (the
lattice value of fir is now irrelevant), so any finite-size
effects which were present above should now be reduced.
We do not give the details of our systematic error
analysis here, but note that most of these errors can be
calculated directly from Table III. In particular, the
scaling-violation effects (which still dominate) are found
simply by comparing the ratios from columns b and c
with those from column a. (Note that column d, the
"direct method, " now gives the same results as column a,
the "fIf'" method. ) We find

because of the large statistical fluctuations (see Tables I
and II}. However, we have reanalyzed the data, includ-
ing these k values, in order to arrive at the systematic er-
rors. Clearly, the close agreement of the central value in
(14) with experiment should be considered fortuitous.
We have chosen to quote asymmetric errors here because
the upper and lower errors differ by so much, and be-
cause we want to make clear that elf is definitely
greater than l. Any asymmetries in (13) are considerably
smaller, and we therefore choose to quote symmetric er-
rors. However, we do feel that the conclusions

fb, /fbd &1, f„lf,d &1, and f, If& &1 (q =u, d, s) are
firm.

V. THE 8 PARAMETERS OF HEAVY MESONS

Since all the B values for mesons with one heavy quark
are quite close to 1 (see Tables I and II), we know that the
final extrapolated answers will also be close to 1, and
furthermore that the answers will be rather insensitive to
the method of extrapolation. At p=6. 1 we therefore
simply follow the method of Sec. IV and first extrapolate
linearly the values in Table I to get BLL and B~z' for

kd X heavies and k, X heavies. One then needs to extrapo-
late the results to the masses of the bd, bs, cu mesons.
Here, our method depends on whether a trend in the
(kz, k, ) Xheavies numbers is apparent (i.e., whether the B
values increase or decrease monotonically with mass).
For the LL case there are such trends: the results de-
crease slightly with increasing mass for a heavy meson
with a d quark, and increase slightly for one with an s
quark. We then make a straight line fit to the two heavi-
est mass points to get B or B, meson results, and make a
linear interpolation between the two central mass points
to get the D-meson results. For the LR case no trends
are apparent. We simply fit all four mass values to a con-
stant to get results for B or B, mesons, and fit the two
central mass points to a constant to get results for the D
meson. All these results and the attendant statistical er-
rors are shown in column a of Table IV. Estimates of the
systematic errors inherent in this procedure are obtained
by repeating the calculations with various choices of the
mass points fit, of the fitting functions, and of the k
values for the light-quark extrapolation; the errors (in
percent) are shown in column c.

fbd If,d =0.60+0.01+0.03,

fb, If„=0.66+0.004+0.09,

fb, /fb„= 1.47+0.07+0.30,

f„lf,d =1.35+0.07+0.21 .

(13)

TABLE IV. Values for the heavy-meson B parameters.
Column a gives the results for p=6. 1; these are our final central
values and statistical errors. Column b gives the results for
P=5.7. Columns c and d give percent errors coming from ex-
trapolation and weak-coupling corrections, respectively.

State

For comparison, we also present our result for fz/f:
fK lf =1.22+0.05+ c,2 (Expt. =1.23) . (14)

In computing the central values for f„we have thrown
out the lightest degenerate meson results in each case
(i.e., 0.154X0.154 at p=6. 1 and 0.168X0.168 at p=5. 7)

BL bd
Cll

bs

bd
CQ

bs

1.01 (0.06)
1.02 (0.12)
1.01 (0.03)

1.16 (0.01)
1.15 (0.01)
1.06 (0.01)

1.18
1.18
1.08

1.11
1.11
1.08

4.2
0.7
2.7

8.8
2.5
6.5

1.4
1.5
1.1

0.9
0.9
0.5
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At P=5.7, we follow a similar procedure. Values of
the B parameters for 0.166Xheavies and 0.164Xheavies
are extrapolated linearly to get kd Xheavies. (We do not
use the 0.168 X heavies results since they suffer from rath-
er large statistical errors in Bz'r' —see Table II.) Extrapo-
lation to k, Xheavies is performed exactly as in Sec. IV.
8 values for the physical mesons are then found as at
P=6. 1, but always using a flt to a constant for all three
mass points. (The rather large values of am„here make
us reluctant to trust any apparent trends in the data; such
trends are in any case quite mild. ) The resulting B values
are shown in column b of Table IV. The results at P=5.7
can be compared directly to those at 6.1, despite the fact
the scales are different, because our definition of 8""is
effectively scale independent, as explained in Sec. II.
(One may check this by repeating the P=5.7 calculations
while using the scale appropriate to P=6. 1 in the one-
loop corrections; Br"r' changes by less than 0.2%, and
Br"R' changes by less than 0 4%.)A.s always, P=5.7 re-
sults are used only for systematic error estimates.

Column d gives our estimates of percent errors due to
uncertainties in the relation between the continuum and
lattice four-quark operators. We have used the perturba-
tive (one-loop) evaluation of this relation (with the MS
values for the coupling ). The errors shown are found

simply by repeating the calculations using the tree-level
relation (i.e., using the naive operators) and comparing
the results. Note that the errors are quite small, despite
the fact that the one-loop corrections change the matrix
elements themselves [i.e., the numerators in Eqs. (6) and

(8)] by large amounts (typically -40%).
It is not hard to understand the reason for this insensi-

tivity. Consider, for example, the continuum four-quark
operator

e„„,=sy„(1—y, )bsy„(1 —y, )b, (15)

where we have chosen quark Aavors b and s and the LL
operator for concreteness. The corresponding lattice
operator can be written as a linear combination of the
naive lattice version of (15), e„«(chosen to be local for
convenience), and of the ten operators '

s I,b spI, bp or s I,bpspI; b (16)

where I, is any one of the five usual Dirac structures

(S, V, T, A, P), and a,P are color indices. (In the present

case, with only two distinct flavors appearing in (16),
these operators are not independent: the "color-mixed"
ones [the second type in (16)] can be obtained by Fierz
transformation from the "unmixed" ones. } Suppose now

that vacuum saturation was exact (i.e., B =1) not only

for the naive lattice operator, but also for all the other
lattice operators (16) which can mix with it. Then any
linear combination of these operators would also have

B =1. One could then deduce that the continuum opera-
tor had B""=1even if the correct linear combination of
lattice operators needed to form the continuum operator
were not known. If vacuum saturation is merely a good
approximation for the lattice operators (i.e., B&1 but

B =1), then "most" linear combinations of them (i.e.,
combinations for which the coefficients are not near cer-
tain special values} will have B=1. The result B""=1

for the continuum operator will then in general be very
insensitive to the precise values used for the coefficients.
This is apparently the situation that holds in the present
calculation.

To test this explanation, we computed the 8 parame-
ters individually for the naive operators and for all the
operators in (16) at k values 0.153X0.130 and
0.154X0.140 (P=6. 1). Only the color-unmixed SXS
operator had a 8 which differed significantly from 1: its
values were 1.5 and 1.9, respectively. A11 11 other opera-
tors [i.e., the others in Eq. (16) and the naive LL and LR
operators] had B values within 15% of 1 (20% at
0.154X0.140), with eight of them within 9% (13%).
Furthermore, the unmixed S XS operator had the small-
est (next-to-smallest) matrix element and contributed less
than 1% (1.6%) to the total, one-loop corrected, matrix
elements. It is thus clear that the one-loop results for
B'"' will be quite accurate, even if the corrections are not
well determined at one-loop.

We now compute the total systematic error for the 8
parameters by adding in quadrature the errors coming
from columns c and d in Table IV and the difference be-
tween the values in columns a and b. Our final answers
are

bd': 8~'~' = 1.01+0.0620. 18,
8~'~' = 1.16+0.01+0.11;

cu: B""= 1.02+0. 1220.16,

8,","=1.15~0.01*0.05;

bs: 8'"'= 1.01+0.03+0.08,
8'"'= 1.06+0.01+0.07,

(17)

where the first error is statistical ahd the second sys-
tematic. Several comments are in order.

(I) Though the statistical and systematic errors are un-

der control for the 8""parameters of these heavy-light
mesons, and for 8&'z' at all mass values, the same is not

true for BJ'~ of light mesons. (See, for example, the Br"r'

values for 0.153X0.153 and 0.154X0.154 in Table I or
for 0.166X 0.166 and 0.168 X 0.168 in Table II.) In fact,
B~~ becomes negative for m „&mK, which is in disagree-
ment with the behavior expected from chiral perturba-
tion theory. This fact was first noticed in the seond paper
in Ref. 2, and is believed to be caused primarily by the
failure of perturbation theory to give the correct relation
between continuum and lattice operators at these values
of P. Note, however, that B&'r' of heavy-light mesons
should be insensitive to this problem, as explained above.

(2) For the LL case, it is trivial to convert our results to
the usual continuum definition of B:

Z (p)
Btr. (P, ) = ~

B~'~',
z.' (18)

where p is the continuum renormalization point. This
gives —16% reduction using P=6. 1 and @=1.7m/a
( —11 GeV for our nominal a). For the LR case, one
needs the intermediate results in order to make the con-
version because the denominator in Eq. (8) is a sum of
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terms. The net effect is an increase in BLR of —10—20'%%uo

in going to the continuum. We do not quote final BLL or
Blz values for the continuum definition because it is not
clear what systematic error one should associate with the
conversion factor (Z /Z, ) in (18) or the corresponding
ones for BL„. It is certainly clear that the errors associat-
ed with these factors ' are comparable to the difference
they imply between continuum and lattice definitions.
Further, note that for application of the results here to
meson mixing in the standard model, one is interested in
the total LL matrix element ~Bir f . The errors in f
will certainly dominate this combination, and it makes a
negligible difference which definition of B one uses.

(3) Note from (17) that lattice vacuum saturation is an
excellent approximation for both LL and LR operators.
Physically, this means that the two halves of the quark
fiow diagram (each "half' connects two quark fields in
the operator with one meson) do not communicate with
each other and fluctuate independently in the average
over gauge configurations. It is not immediately clear
why this is true. If both quarks in the meson were heavy,
then one could explain B= 1 by asymptotic freedom: the
mass scale for gluon emission would be large, and there-
fore it would be difficult for one half of the diagram to
communicate with the other. In the present heavy-light
case, however, the "reduced mass" is small and there is
no obvious reason why gluon emission should be
suppressed. One could try the following "hand-waving"
argument, however: The heavy quarks must propagate in
more or less straight lines from the operator to the
mesons. The light quarks are then forced, by
confinement, to stay close to their respective heavy
partners, and therefore the mesons in the two halves of
the diagram are not close enough to interact except near
the operator itself. At this short distance, however,
asymptotic freedom does suppress the interaction.

VI. CONCLUSIONS

We have described a Monte Carlo calculation of pseu-
doscalar decay constants and mixing (B) parameters for
heavy-light mesons. Compared to our preliminary calcu-
lation, we have here increased the statistics (30
configurations instead of 18 at P=6. 1) and greatly im-

proved our systematic error estimates.
The most important source of systematic error is the

lack of scaling at currently accessible values of P. This
error source is of course paramount in most other recent
lattice calculations; that it dominates here too is, in a
way, encouraging, because it means that the special prob-
lems of treating the heavy quark are under control —at
least in comparison. Although we have not been able to
estimate cleanly the finite-size effects, we believe them to
be considerably smaller than the scaling violations. Some
control over these effects is provided by the comparison
to the @=5.7 results. The effect of the quenched approx-
imation is not known and has not been included in sys-
tematic error estimates. Again, we expect it to be rela-

tively small, especially in the ratios of heavy-meson decay
constants. We have taken a preliminary look at the
effect of the quenched approximation in some other phys-
ical situations (heavy-heavy and light-light but not
heavy-light) and found it to be smaller than the statistical
errors. All these error sources will be subjects of future
studies.

One source of error which could have been reduced
even on the present lattices is the effect of the "finite-
time" on the decay-constant calculations. Because our
project has been mainly concerned with the calculation of
three- (or higher-) point functions, we have always started
the quark propagators in the middle of our lattice, which
has aperiodic boundary conditions in the time direction.
If we had started the propagators near one boundary, we
would have had a much greater time over which to let
the mesons decay to pure states.

The statistical and systematic errors in the present cal-
culation are quite large (especially for the pseudoscalar
decay constants). To put these results in perspective,
however, one should recall that there have been many
calculations of the decay constants using continuum tech-
niques, and the results are spread between about 50 and
300 MeV for B mesons and about 90—350 MeV for D
mesons. Further, lattice calculations are more or less
"first-principles" calculations, whereas there is often no
way to estimate the systematic errors due to various ap-
proximations used in the continuum.

After our preliminary calculation was reported, we re-
ceived several papers which deal with the same, or closely
related, subjects. DeGrand and Loft calculate, among
other things, the pseudoscalar decay constants of D and
D, . Gavela et at. calculate f and BLL for D and D„
and also extrapolate the f values from D and D, to B and

B, by assuming (but not explicitly verifying) the large-
mass formula f =const/m'~ . The results of both these
papers agree with ours within errors. Eichten' suggests
a different approach to heavy-light systems on the lattice.
He proposes integrating out the heavy quarks from the
beginning and evaluating only light-quark matrix ele-
ments. It is too early to evaluate the success of his ap-
proach or compare his results with ours, but we expect
that ultimately both methods will be very useful.
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