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Deuteron as a toroidal Skyrmion
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The minimal-energy baryon-number-two solution of the Skyrme model is a static soliton which is
approximately toroidal in shape. The symmetries of this solution imply that the ground state and
the first excited state of this soliton have the quantum numbers of the deuteron d and its unbound
isovector So state. These identifications are tested by calculating the static electromagnetic proper-
ties of the deuteron and the transition moment for photodisintegration of the deuteron via the exci-
tation, yd~'So. The results are consistent with the interpretation of the deuteron as a quantum
state of a toroidal Skyrmion.

I. INTRODUCTION

Since the original work of Skyrme, physicists have
been intrigued by the idea that in the case of N&=2
flavors the low-lying baryons may be constructed as soli-
tons, or Skyrmions, in an SU(Nf } SU(N& } chiral-
invariant field theory of the pseudoscalar mesons. The
fundamental assumption underlying this construction is
that the conserved topological charge 8 of the meson
field theory be identified with baryon number, so that in-
dividual baryons are solitons of unit topological charge.
This identification remained pure conjecture, however,
until 1983, when Witten proved that this idea could be
extended to N&

~ 3, and that solitons of odd (even) B are
fermions (bosons) if the number of colors N, in the under-

lying gauge theory of strong interactions is odd. As
N, =3 in quantum chromodynamics, the B =1 Skyr-
mions are fermions. Moreover, upon semiclassical quant-
ization, they exhibit the pattern of quantum numbers of
the observed baryons, and possess static properties
(charge radii, magnetic moments, etc.) in reasonable
agreement with experiment. '" The model has also been
successful in describing pion-nucleon scattering phase
shifts and nucleon electromagnetic form factors.

The SU(2) Skyrme model is also expected to have
stable soliton solutions Us(r) with topological charge
8 &1. In particular, it is known ' that a static 8 =2
solution Uz(r ) exists which is classically stable against
decay to two widely separated 8 =1 Skyrmions. Given
the success of the model in the 8 =1 sector, it is natural
to ask whether these solitons with 8 & 1 provide realistic
models for nuclei. The purpose of our investigations
here is to test this idea for the configuration U2(r) and to
ascertain whether the deuteron can be modeled by a
quantum state of this B =2 Skyrmion.

Let us first give a brief synopsis of our current under-
standing of minimal-energy configurations in the B =2
sector of the SU(2) Skyrme inodel. The initial investiga-
tions focused on the extraction of an internucleon poten-

tial. These efforts were based on Skyrme's original obser-
vation' that the B =2 solution describing well-separated
Skyrmions may be approximated by a product Ansatz. If
we place the centers of the two Skyrmions symmetrically
about the origin along the x axis, then this product An
satz takes the form

U(r;s, A) = U, (r+sx) AU, (r —sx) A

where

U, (r)=exp[iF(r)r r] (2)

is the minimal-energy B =1 Skyrmion (also known as the
Skyrme hedgehog). Here A is a constant SU(2} matrix
describing the relative isospin orientation of the two
Skyrmions and F(r) is the chiral angle whose profile has
been numerically evaluated elsewhere. ' Let H be the
static Skyrme Hainiltonian and M, =H[U, (r)] be the
classical mass of a single Skyrmion. Then the difference

V(s, A)=H[U(r;s, A)] —2M, (3)

U, (x,y, z) = U, (x +s,y, z}r3U&(x s,y, z}r3 . —(4)

can, for sufficiently large s, be interpreted as the static in-
teraction energy of two Skyrmions. It is a function of the
half-separation s and the SU(2) matrix A. An internu-
cleon potential can then be obtained by projecting this
function of A onto states of definite spin and isospin.

A numerical study of the product Ansatz (1) was first
performed by Jackson, Jackson, and Pasquier, who eval-
uated V(s, A) as a function of s for several values of the
matrix A, and asymptotically (i.e., s~ Oo ) for all values
of A. Their results suggested that the interaction energy
is minimized if the isospin axes of one Skyrmion are ro-
tated 180' about any axis perpendicular to the line of sep-
aration. In terms of the product Ansatz (1) this corre-
sponds to a relative isospin orientation of A =e'
with n any unit vector perpendicular to x. For
definiteness, we take n=z, or A =i~3, arriving at the
configuration
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U, ( x,y, z)=r2U, (x—,y, z) r2,

U, (x, —y, z) =r, U, (x,y, z) r, ,

U, (x,y, —z) = U, (x,y, z)

(5a)

(5b)

(Sc)

It also has a simple transformation law under parity,
which takes an arbitrary configuration U(r} into
U( —r)'

PU, (r)= U, ( r)t=r3U, (r)r3 . — (6)

Note that relation (6) is not independent of Eqs.
(5a)—(5c), but represents the product of all three
reflections.

We now observe that the product Ansatz (4), for finite
s, has only one nontrivial symmetry, obtained by compos-
ing (5a) and (6), or equivalently (5b) and (5c):

In previous work we confirmed this conjecture with a
numerical evaluation V(s, A ) for all values of s and A. In
particular, taking the parameters of the Skyrme model to
be f =108 MeV, e =4.84, and m„lef =0.263 as in
Ref. 4, we found that V (s, i r3) achieves its minimum at
s =so=2. 8lef =1.1 fm, corresponding to a classical
binding energy of —V(so, ir3) = 1.06f „/e =24 MeV.

Thus the minimal-energy product- Ansatz configuration
U, (r) describes two rather loosely bound Skyrmions

0

with an internucleon separation 2so greater than 2 fm.
Cognizant that the physical deuteron displays similar
properties we suggested in Ref. 8 that U, (r) could be a

0

sufficiently accurate variational estimate of the true 8 =2
minimal-energy configuration U2(r). Quantizing the col-
lective modes of U, (r) in a manner directly analogous to

0

the treatment of the B =1 Skyrmion by Adkins, Nappi,
and Witten, we found the lowest-energy state d indeed
had the correct spin (j =1), isospin (i =0}, and parity
(P =+ ) quantum numbers of the deuteron. The
identification of the state d with the physical deuteron
was further strengthened by a calculation of its mean
charge radius, and its magnetic and quadrupole mo-
ments. The values obtained for these observables agreed
with experiment to within 30% (Ref. 8).

A problem with our analysis, however, was that the
spectrum contained a state d' nearly degenerate in energy
with the identified deuteron state d, possessing identical
quantum numbers and similar static properties, a predic-
tion clearly in conflict with experiment. This led us to
suggest that the near degeneracy was an artifact of our
variational approximation, and that the energy of the
state d' would be much larger for the true solution. This
suggestion was dramatically confirmed by Verbaarschot,
Walhout, Wambach, and Wyld (VWWW), who numeri-
cally evaluated U2 by minimizing the full Hamiltonian in
the B =2 sector. ' They discovered that U2 possesses ad-
ditional symmetries which in fact completely eliminate
the state d' from the spectrum. The solution U2 was also
found independently by Kopeliovich and Shtern. ".

To explain this result and to motivate the succeeding
analysis, let us pause for a moment to consider the exact
and approximate symmetries of the product Ansatz (4).
Under planar reflections, U, (r) obeys

U, (x, —y, —z)=r, U, (x,y, z)r, . (7)

Equation (7) states that a spatial rotation of U, by m radi-
ans about the axis of separation is equivalent to an iso-
spin rotation by ~ radians about the same axis. On the
other hand, U, has no simple properties under spatial ro-
tations about the y or z axes.

As shown in Ref. 8, symmetry (7) is crucial in obtain-
ing the correct spectrum of quantum numbers. As we
discuss in more detail below, any symmetry such as (7) is
associated in the quantum theory with a Finkelstein-
Rubinstein' ' constraint on the Hilbert space of physi-
cally allowed states. These constraints implement the re-
quirements of the Pauli exclusion principle and, in partic-
ular, provide that individual 8 =1 Skyrmions are quan-
tized as fermions. In the case of symmetry {7),the associ-
ated constraint disallows the wave function with the
quantum numbers i =j =0, and thereby ensures that the
lowest-energy state has the quantum numbers of the
deuteron (i =0, j=1). Any additional symmetries of the
static configuration would lead to further Finkelstein-
Rubinstein constraints on the physical Hilbert space.

As we have already noted, the product Ansatz U, has
no nontrivial symmetries outside of relation (7). Consid-
er, however, the situation as the individual Skyrmions are
separated to infinite distance, s ~~. Using the approxi-
mate relation

U, (x,y, z) =r3U, (x,y, z)r3 as s ~ ao, (8)

in conjunction with Eqs. (Sb) and (Sc), one may show that
the product Ansatz enjoys approximate symmetries analo-
gous to (7) which become exact in the infinite s limit. It
was the suggestion of VWWW that these additional sym-
metries are in fact exact for the minimal-energy B =2
configuration U2. Specifically,

Uz( x,y, z)=—r2Uz(x, y, z} r2,

U2(x, y, z)=r2U2(x—,y, z) rz,

U2(x, y, z)= r3U2(x—,y, z) r3

Composing these two at a time yields the symmetries

U2(x, —y, —z)=r, Uz(x, y, z)r, ,

U2( —x,y, —z) =r, U2(x, y, z)r, ,

U2( —x, —y, z)= U, (x,y, z) .

(9a)

(9b)

(9c}

(loa)

(10b}

(10c)

Besides symmetry (10a), which is identical to relation (7)
obeyed by the product Ansatz, there are two additional
symmetries, Eqs. (10b) and (10c), associated with rota-
tions by m radians about the y and z axes. The associated
Finkelstein-Rubinstein constraints eliminate the spurious
state d', leaving a unique state d with the quantum num-
bers of the deuteron. '

The discrete symmetries {10)do not in fact exhaust all
the symmetries of the solution U2. As originally conjec-
tured by Manton, ' and later confirmed by direct exam-
ination of the numerical solution, '

U2 possesses a con-
tinuous cylindrical symmetry. If we choose the z axis as
the axis of symmetry, then the cylindrical symmetry of
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U2 takes the form

U2(p, P+ a, z) =e 'U~(p, P, z)e

where a is any real constant. Symmetry (10c) is just a
special case of (11)with a =m..

One consequence of (11) is that both the baryon-
number and energy densities of the configuration Uz are
independent of the azimuth P. Closer examination of the
numerical solution reveals that the densities are peaked
in the (p, z) plane about po-1.4/ef =0.5 fm and z0=0.
Therefore, qualitatively speaking, Uz has the structure of
a toroid and looks roughly like a donut.

In this paper the implications of the discrete sym-
metries (10) and the cylindrical symmetry (11) of U2 are
examined in more detail. In addition to identifying the
ground state of this soliton with the deuteron, it is shown
that some of its excited states can be interpreted as un-
bound states of the two-nucleon system. These
identifications are tested with a calculation of the static
electromagnetic properties of the deuteron and the transi-
tion moment for its photodisintegration into the unbound
isovector 'So state. A calculation of the electromagnetic
form factors of the deuteron in the Skyrme model will be
presented in a forthcoming paper. '

The outline of the paper is as follows. In Sec. II we be-
gin with a general discussion of cylindrically symmetric
static configurations in the SU(2) Skyrme model. Impos-
ing relations (9) retrieves the specific form of the
minimal-energy configuration U2, described by two func-
tions of p and z, namely, F(p, z) and e(p, z). Solving the
static equations of motion for F and e, and computing
the energy and baryon-number densities, we obtain re-
sults in agreement with the previous computations of
VWWW (Refs. 10 and 15) and Kopeliovich and Shtern. "
In Sec. III the semiclassical quantization of U2 is per-
formed. Here we shall find that the symmetries of U2
have, via the Finkelstein-Rubinstein constraints, pro-
found implications for the spectrum of the quantized
theory. In particular, these constraints ensure that the
lowest-lying state has the quantum numbers of the deute-
ron. Next, in Sec. IV we give our results for the static
electromagnetic properties of the deuteron state as well
as its photodisintegration moment. We also o8'er some
comments on the comparison of our results with experi-
ment, emphasizing quantities independent of the values
of the Skyrme-model parameters f and e. Finally, in
Sec. V we contrast our approach, in which nuclei are in-
terpreted as quantum states of solitons in the Skyrme
model, with the "potential approach" advocated by oth-
ers. While our approach may at first seem counterintui-
tive since it does not build up nuclei out of individual nu-
cleons, it can be tested by calculating the physical proper-
ties of the solitons. The calculations presented in this pa-
per do in fact support our interpretation of the deuteron
as a quantum state of a toroidal Skyrmion.

l. = Tr(B UB"U )

+ Tr[U B„U,U B,U]
32e

+—m f„Tr(U —1) . (12)

U is an SU(2) matrix describing the three pseudoscalar
pion fields n'(x), a =1,2, 3, viz. , U(x)
=exp[2im'(x)r'/f „].For the parameters f„,e, and m,
we employ the values listed below, as obtained from a
semiclassical fit to the masses of the nucleon and delta:

f =108 MeV, e=4.84, m /ef =0.263 . (13)

U(r) I ), )

= 1 (14)

fall into topological sectors labeled by the baryon number

B= rBO r (15)

where

QVp7
B~(x)= Tr(U'a. U)(U'a U)(U'a, U)

24m
V p

(16)

(e ' = —1) is the conserved-baryon-number current.
We are interested in that subclass of configurations,
Us ( r ), B = 1,2, . . . , which minimize the Hamiltonian
functional,

H[U(r)]= J d r Tr VU VU
16

[U 8;U, U 8 U]
328

——m„f„(U—1)Z 2 (17)

subject to the condition that, in each case, the total
baryon number B is fixed. For B =1 it has been estab-
lished' that the minimal energy configuration U, is pre-
cisely the Skyrme solution given by Eq. (2). As men-
tioned in the Introduction it has recently been ascer-
tained' ' ' that Uz respects the discrete symmetries (10)
and the cylindrical symmetry (11). The form and/or
symmetries of the remaining minimal-energy
configurations Us(r), B & 2, are as yet unknown.

The cylindrical symmetry of a chiral field U(p, g, z)
does not imply that U is independent of the azimuth P,
but rather that a rotation 5/=a about the axis of sym-
metry may be compensated by an isospin rotation:

U(p, /+a, z)= A(a)U(p, g, z)A(a)t . (18)

As is well known, configurations U(r) obeying the
boundary condition

II. THE CLASSICAL CONFIGURATION U2(r)

The dynamics of the SU(2) SU(2) Skyrme model is de-
scribed by the Lagrangian density ei

arne

/23
(19)

The matrices A (a) must form an U(1) subgroup of SU(2),
which without loss of generality can be chosen to have
the form
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Single valuedness under P~P+2nr. equires that m be an

integer. The most general configuration satisfying Eqs.
(18) and (19) is

proved quite useful in checking the accuracy of our nu-
merical computations.

The boundary condition (14) implies that
—i m /~3/2 im Pr3/2

U(p, P, z) =e ' exp[iF, (p, z)r, ]e (20) F(p,z)~0 as p +z2~ m . (26)

where the quantities F„a= 1,2, 3, are functions of p and
z. The spherically symmetric Skyrme Ansatz (2) must
clearly be a special case of (20). The correspondence is
achieved by taking m =1 and

Along the axis of symmetry (p=O) we also demand that
U VU be continuous so that the energy density there is
finite. This latter condition implies that F(p, z) is con-
tinuous and that

F, =F(r}sin8, F2=0, F3=F(r)cos8 . (21) sinF(O, z)sin8(O, z) =0 . (27)

F, (p, z) =F,(—p, z),
F (p, —z)= F(p, z) —.

(22)

Comparing with the Skyrme hedgehog (21) this suggests
a polar coordinate representation for U2, defining F(p, z)
and 8(p, z) via

From Eq. (11) we see that U2 describes a cylindrically
symmetric configuration (20) with a winding number rn

equal to 2. The discrete symmetries (9), however, impose
additional restrictions on the functions F, (p, z}. The pla-
nar reflections (9a) and (9b), which in cylindrical coordi-
nates correspond to transformations of azimuth it)~nit). —
and p~ —

(I), respectively, prescribe that F2 =0. Symme-

try (9c) then requires that

Hence 8(O,z) must be an integer multiple of m but can
have jump discontinuities wherever sinF(O, z} is zero.
The simplest possibility is that its only jump discontinui-
ty occurs at z =0. Then, without loss of generality, we
may take 8(0,z)=0 for z &0, and thus arrive at the
boundary conditions

r

0, z&0,
F(0,0)=kir, 8(O,z)= ' (28)

Here k is any integer and I is the odd integer specified by
Eq. (24).

The value of the integer k is fixed by the total baryon
number 8. Computing the baryon-number density

80(p, z) for the configuration U we find

F((p,z) =F(p,z)sin8(p, z),
F3(p, z) =F(p, z)cos8(p, z)

Conditions (22) are then replaced by

F(p, z) =F(p,z),—

8(p, —z) = —8(p, z ) + Im',

(23)

(24)

80(p, z)= — sin Fsin8(F„8, —F,p8„),
27T p

yielding a total baryon number of

mF(0, 0}
7T

(29)

(30)

—imfr3I2 ie(p, z)r&I2 iF—(p, z)r3
U p, ,z=e ' e

' ' e

l'e(p, Z]&p/& &'~ /&3/&Xe ' ' e ', m=12. (25)

By reproducing the known results of the Skyrme
hedgehog (corresponding to m =1), this unified form

where I is an odd integer which we specify below. With
definitions (23) we may represent the minimal-energy
configurations U1 and Uz with the unified form

In deriving (30) we have used the boundary conditions
(26) and (28). Since the minimal-energy configurations
U1 and Uz correspond to m =1 and m =2, respectively,
we infer that k =1 in both cases. Finally, the value of the
integer I defined by (24) is determined by direct compar-
ison with the known numerical solutions;10 15 this gives
l =1forboth U, and Uz.

Having fixed the boundary conditions, and consequent-
ly the baryon number, of the configurations U under
consideration, the functions F(p, z) and 8(p, z) are evalu-
ated by minimizing the classical mass:

M =H[U ]= f pdpf dz E (p, z}, (31a)

e (p, z)= —+ sin F sin 8 [F, +F„+sin F(8, +8„)]+sin F(F„8, —F, 8„)m & 4
T

+ sin F sin 8+P sin (31b)
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where P=m /ef . In the integral, all lengths have been

expressed in units of 1/ef .
Before giving our results for F and e, some comments

on our numerical methods are in order. Note that by (24)
the classical mass (3la) can be rewritten as an integral
over the quarter-plane, Q = (0(p ( ~, 0 z ( 00 ). On

Q, the boundary conditions (26) and (28) are supplement-
ed with the condition

O

e(p, O) =n/2, (32)

as follows from (24) and I = l. To accommodate the
asymptotic behavior of F as +p +z goes to infinity, we
have found it convenient to map Q onto the unit square
(0, tr]S (0, m ], using a scaling function that roughly
matches the chiral angle F(r) of the Skyrme hedgehog
(2). On the unit square, F and e are represented by two-
dimensional arrays on a uniform 20X20 lattice, and are
evaluated by minimizing M, m =1,2, using the Gauss-
Seidel technique with overrelaxation. ' Numerical accu-
racy was checked by computing the classical mass, inertia
tensors, isoscalar charge radius, and isoscalar magnetic
moment of the Skryme hedgehog (corresponding to
m =1); the known results were reproduced to within 1, 7,
1, and 3 %, respectively.

In Figs. 1 —4, we present our results for F(p, z), e(p, z),
the baryon-number density (29), and the energy density
(31b). These contour plots agree with the three-
dimensional results of Verbaarschot et al. ' ' In partic-
ular, a peak in the baryon-number and energy densities is
evident near the point po=1. 38/ef„, zo=O confirming
the toroidal structure of Uz. Note that the contours of
energy density follow those of the baryon-number density
rather closely, except that the energy density does not
vanish at p =0.

The classical mass Mz is determined to be 1659 MeV

O

~A
I

O
I

0.0 j..o 2.0 3.0 4.0 5.0

FIG. 2. Contour plot of e(p, z) for the B =2 Skyrmion
U&(r).

O

and agrees, to within a few percent, with the values 1620
and 1660 MeV obtained in Refs. 10 and 11, respectively,
using the same parameter set (13). By way of compar-
ison, the classical mass of the minimal-energy product
Ansatz U, is 1708 MeV.

0

Another quantity of interest is

O

I

0.0 2.0 4.0 5.0

O
I

1.0 2.0 3.0 4.0 5.0

FIG. 1. Contour plot of F(p,z) for the 8=2 Skyrmion
U&(r),

FIG. 3. Baryon-number density Bo(p,z) of Ut(r) [cf. Eq.
(29)].
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tion, spatial rotation, and isospin rotation:

U(r;X, A, B)= AU(R (B)(r—X))A (34)

Here we have chosen to represent spatial rotations by an
SU(2) matrix 8 and

R, (8)"= ,'Tr(—r,Br 8 ) (35)

0.0 1.0 2.0 3.0 4,0 5.0

is the associated rotation matrix. [The distinction be-
tween the SU(2) matrix 8 introduced here and the total
baryon number should always be clear by context. ] As is
well known, the classical degeneracy of the configurations
(34) is removed when the theory is quantized. A minimal
quantization procedure incorporating this feature pro-
motes the parameters X, A, and B to the status of
dynamical variables X(t), A(t), and B(t). One then
quantizes the resulting dynamical system according to
standard canonical methods. As we shall only be con-
cerned with the computation of static observables below
(e.g. , at the limit of zero momentum transfer), we shall ig-
nore the translational degrees of freedom X(t) and quan-
tize the Skyrme solitons in their rest frame.

Our dynamical Ansatz for the chiral field is then
FIG. 4. Energy density ez(p, z) of Uz(r) [cf. Eq. (31b)].

U(r, r) = A (1)U(R (8 (t) )r) A (t) (36)

{p}= —,
' Jd r pBo(r) (33)

III. SEMICLASSICAL QUANTIZATION

Given a generic static configuration U(r), there exists
a nine-parameter set of configurations, all degenerate in

energy, obtained from U by some combination of transla-
I

which measures in a rough sense the mean radius of the
toroid. We obtained (p) =2.06/ef =0.78 fm, in
reasonable agreement with the value trRo/4=1. 95/ef
quoted in Ref. 15.

T= —,'a;U;a —a;Wj j 2 I ij j
where

(37)

a = —iTrr A A, b =iTrrBB (38)

and the inertia tensors U;, W;, and V, expressed as
functionals of the background field U(r), are given by

where the caret serves to distinguish 0, the quantum
operator, from U, the static background field. Inserting
(36) into the Lagrangian (12), the kinetic energy contribu-
tion to the total energy is determined to be

j 3
d r Tr U —,

' r;, U U —,
' rj, U + U k U, U —,

' r;, U U k U, U —,
' rj, U

1

3 (39a)

W,, = —U„ t [ ,' r), U]~ i—(r X V ),
—U ],

V; = —W, t[ —,'r;, U]~ —i(rXV);U),

(39b)

(39c)

where all lengths are in units of 1/ef „. In the quantized
theory, a and b are expressed in terms of operators E;
and L; conjugate to the coordinates A and B, via the
linear relations

(40)

where the superscript T denotes transpose. The opera-
tors K and L are in fact the body-fixed isospin and angu-
lar momentum operators, respectively, and are related to
the usual coordinate-fixed isospin (I) and spin (J) opera-
tors by orthogonal transformations:

I;=—R;(A)K, J, = R, (8)L—"

[I;,IJ]=if,,„IJ„[K;,K ]=i@;kKk,

]=&&,r Jk [L; L, ]=i'e;, L

By (41) the Casimir invariants satisfy the equalities

J~= L2

(42)

(43)

Thus the operators I,J,K, and L form the Lie algebra of
O(4)q KO(4)t z. Their action on the coordinates A and
B is given by

The four sets of operators mutually commute and indi-
vidually satisfy the SU(2) commutation relations
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[I, , A]= —
—,'g, A, [J,,B]=,'B—~;,

[E,, A]= —,
' Ar„[L;,B]=—

—,'r;B,
(44)

with all other commutators between momenta and coor-
dinates zero.

Let us now apply this formalism to the semiclassical
quantization of the minimal-energy B =2 configuration
U2, whose explicit form (25) we developed in the previous
section. The discrete symmetries (9) and cylindrical sym-

metry (11)of U2 have immediate consequences for the in-

ertia tensors (39). Applying first the discrete symmetries
(9b) and (9c), one may easily deduce that UJ, WJ, and Vl
are all diagonal. Symmetry (9a) then implies that
W„=W22=0. [Contrast this last condition with the
case of the Skyrme hedgehog, which obeys

Ul ( x—,y, z) = r& Ul (x,y, x) rl instead of (9a) and whose
inertia tensor satisfies W„=W22= W33+0.] Next, by
virtue of cylindrical symmetry, one has U» =U22 and
V» = V22 for the perpendicular components while for the
parallel components the identity

U2
i (—r X 't)')3U~ = i— = —2[—,'r3, Uz], (45)

implies that

U33 =
—,
'

%33 =
4 V33 . (46)

Finally we may evaluate the independent components
U)], U33 and V„as explicit functions of I' and e. We
obtain

Ull= pd dz sin F ,'+F +—F,+—sin Fsin 8+cos 8[—,'+F +F,+sin F(8 +8, )]2 2 2 4 2 2
3

P
(47a)

V„= fp dp dz [(zF pF, ) +—sin F(z6 —p8, ) ] —+—sin F sin 8
e p

42+ sin F sin 8[—,'+F +F,+sin F(8 +8, )]+(p +z )sin F(F,6 —F 8, )
p'

(47b)

U33= pdpdz sin F sin 8[—,'+F +F,+sin F(8 +8, )] .= 2~
3

(47c)

Numerical values for U& &, V] &, and U33 in units of
I/e f„, are found to be 127.8, 200.2, and 86.9, respec-
tively.

The equalities (46), inserted in Eqs. (40), lead to the fol-
lowing constraint on the physical Hilbert space:

(2E3+L3)~phys) =0 . (48)

I2+
2U» 2 V» 2 U33

4 E3.
»

(49)

Finkelstein-Rubinstein constraints

Heretofore, we have implicitly been working in the
coordinate representation ~A, B) of the Hilbert space,
with state vectors ~g) represented by wave functions

This is simply the statement of cylindrical symmetry in
operator form: namely, that a spatial rotation of a radi-
ans about the axis of symmetry can be compensated by an
isorotation of —2a radians about the ~3 axis. Incorporat-
ing (48) and the results above for the inertia tensors, and
also utilizing the Casimir equalities (43), the kinetic ener-

gy operator is found to be

g( A, B)= ( A, B ~ f). A more convenient basis is given by
the direct products

~ll3k3 ) ~ JJ3l3 ) (50)

where i &i3,—k3 &i and —j &j3, l3 &j. In basis (50),
the operator T is diagonal and constraint (48) is easily
satisfied by eliminating all states (50) save those with
I3= —2k3. Not all the remaining states are physical,
however. In addition to (48) we must specify constraints
on states which implement the requirements of the Pauli
exclusion principle. In particular these constraints must
be such that an isolated B =1 Skyrmion is a fermion:
when adiabatically rotated by 2m. radians, its wave func-
tion should pick up a phase of —1.

In the context of soliton physics, the necessary con-
straints were first formulated by Finkelstein and Rubin-
stein' and later elaborated by%'illiams. ' They observed
that a 2m. rotation of a single Skyrmion is a closed path in
the Hilbert space of configurations

~
U(r)) which is not

continuously deformable to a point. Furthermore, ac-
cording to the homotopy mz(SU(2))=Z3, there are only
two topologically inequivalent types of closed path, those
that are contractible to a point and those that are not.
Therefore, a general rule consistent with the quantization
of single Skyrmions as fermions may be stated as follows:
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A (8) eien IAe —iHn I —i' ~/2A

B(8)=e'" IBe ' '=B 0& 8&2~ .
(51)

In deriving (51) use has been made of the commutation
relations (44). Now at the end point 8=2m, the coordi-
nate A has been transformed to —A, and A to —A .
This path is nevertheless closed since

e2nin IU(r t)e
— zinn. l Q(r t) (52)

As argued for above, the closed path (51) must be associ-
ated with a Finkelstein-Rubinstein constraint. To deter-
mine it we quote the result of Mitten, who demonstrated
that path (51) is contractible if the baryon number B is
even and noncontractible if 8 is odd. Consequently,

znin l~q) —
( 1)B~q) (53)

for physical states ~it)). Analogous considerations apply
to spatial rotations, giving

to the end points of every closed path in the space of
states, assign a relative phase of +1 if the path is con-
tractible and —1 if it is noncontractible.

As an application of this rule to our quantum system,
consider isorotations about any axis n by an angle 0 that
increases from 0 to 2m. radians. This one-parameter set of
transformations is implemented by the operators e'
0 0 2~, and corresponds to a path in the Hilbert space
of zero modes given by

iQK) +Lz) ~ —iniK) +Lz)

=e 'U(r, t)e (56)

Consequently, when acted upon by any of the end-point
lm(K&+L& ) iAK&+L2) imL3

operators e ' ', e ' ', or e ', physical states
must acquire a phase depending on whether or not the as-
sociated paths (55) are contractible. Actually, we may
deduce the contractibility of path (55c) by indirect argu-
ment: using constraint (48) we have

e '~phys) =e '~phys) = ~phys), (57)

where the last equality follows from the fact that, for
B =2, the quantum number k (=i), and hence the eigen-
values of K3, are integral. That (57) is not an indepen-
dent constraint is not surprising, since symlnetry (10c}is
after all only a special instance of the cylindrical symme-
try (11}.

Turning to the remaining end-point operators let us
first use constraint (48} and the fact that K) has integer
eigenvalues to derive

i&Kt +L2) iCK1+L&)~, 2miKl inL3phys)eephys)

transformed dynamical field U, at 0=m. , to its original
value at 0=0:

iniK) + L) ) ~ —iniK) +L) )

e n'"
~y) =( —1) ~y), (54)

=~phys) . (58)

(55a)

i er) /2 iK
) i) —iK

)
i)

&i)22/B iLzi)B —iLzi)
(55b)

A(8)=A, B(8)=e ' B=e ' Be ', (55c)

where 0 runs from 0 to m. in each case. One may verify
that the paths (55) are closed in the sense of returning the

For baryon number B =2, Eqs. (53) and (54) imply that
p(A, B)=f(—A, B)=i|i(A, B), and th—erefore the iso-
spin and spin quantum numbers i and j are integral. [We
remind the reader that the argument B of It) represents an
SU(2) matrix, and should not be confused with the
baryon number. ]

Constraints (53) and (54) hold for any static
configuration U(r) of given baryon number B. Addition-
al Finkelstein-Rubinstein constraints may result whenev-
er U(r) possesses any special nontrivial symmetries, since
these same symmetries could be associated with the end
points of closed paths in the Hilbert space of zero modes.
This is indeed the case for symmetries (10) of the
configuration U2. The closed paths associated with each
of these three symmetries are given by

i77(K1 +L] ) i4Kl +L~)
This shows that the operators e ' ' and e
must give the same phase when acting on physical states.
To show that this common phase is —1 we must show
that path (55a) is noncontractible. Since contractibility is
a topological invariant we can deform path (55a) into
another path which is easier to analyze. A particularly
convenient path is obtained by replacing the
configuration U2 by the product Ansatz configuration U,
given by Eq. (4):

A (8)Uz(R(B(8)).r)A(8)

~A(8)U, (R(B(8)) r)A(8) . (59a)

To show that a deformation between these two paths is
possible we must exhibit a continuous one-parameter
family of configurations U(r) which have the symmetry
U (x, —y, z) =r) U( r )r I

—and which interpolate between
Uz(r) and U, (r). The existence of such a deformation is
implicit in the work of VWWW: in order to define a po-
tential V(R), they explicitly constructed configurations
with the symmetries (9) and with (p ) =m R /4, where
(p) is defined in (33). At R =Ro the configuration is
Uz(r ). For very large R, the configuration represents two
very distant Skyrmions and can be well approximated by
a product Ansatz U, (r) with R =s. Thus we can study
the contractibility of the path (55a) by applying it to the
product Ansatz. It then takes the form
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=AU, (R(B)r+sx)A A~,e

A (8)U, (R(B(8))r)A(8) = Ae ' U, (R (e ' }R(B)r+sx)r3U, (R(e ' )R (B)r —sx)73e

i O'T~ /2 —i Or
&
/2 i &1/2 —i O~) /2= AU&(R (B)r+sx)e ' r3e ' U&(R (B)r s—x)e '

w3e
' A

'U, (R (B)r s—x)e 'r3A

—i O~) /2

(59b)

Their corresponding energy eigenvalues are

i (i +1) j(j+1)2+
2U» 2V»

4.1+ K

2
(63)

Note that the second set of states in (62) with ~) 0 is pos-
sible only if i ~ 1 and j ~ 2.

From the calculated values of M2, U», U33 and V11
we may construct using (62) and (63} the entire mass
spectrum of allowed states. The masses of the lowest-
lying states are given in Table I in physical units using
the values (13) for f, e, and m„. We observe, in particu-
lar, that the ground state of the soliton,

im(K)+Ll )
e ' ' Iphys) = —Iphys), (60a)

e ' ' Iphys) = —Iphys) . (60b)

In the second line we have used the definition of path
(55a) and the definition of the product Ansatz in terms of
the Skyrme hedgehog U, . In the third line we employed
the special property of U, that U, (R (B)r)=BU,(r)B

i&1/2 ~
and the identity R (e ' )x=x. Continuously deforming
the two Skyrmions to infinite separation (s ~ ~ ), we now
recognize (59b) as the rotation of a single Skyrmion by 2n.
radians, which is a noncontractible path. We conclude
that physical states must satisfy the constraints

The solution of constraints (60) are most easily worked
out in the basis (50) with l3= —2k3 in accordance with
(48}. Consider the subspace of fixed total isospin (i =k)
and spin (j = l). We require the identities'

e' 'Iii, k, ) =(—1)'Iii, k, ),—
'Ijj313)=( —1)'jIj, l, ), —

e 'Ijj, l, ) =( —1)' 'Ijj, —l, )

(61)

(i) Iii30) Ijj30), provided i +j is odd, a =0

and (62)

(n) —[lii3a ) IJJ3
—2z) —( —1) ~Iii3 —z) Ijj 32m) ],

~=1, . . . , min{i, [j/2]I .

where, in the last equality, we have used the fact that 13 is
an even integer. Comparing (60) with (61) we see that the
two constraints (60) are equivalent and describe a single
condition on physical states. This condition is imple-

i&K{+L))
mented by an operator (e.g. , e ' '

), which simul-
taneously flips the sign of the k3 and l3 quantum numbers
while introducing a phase ( —1)'+ . As such it commutes
with the kinetic energy operator T, as required by the
consistency of the theory. Condition (60a) also partitions
the basis (50) into classes, depending on a.= Ik3I. Work-
ing out constraint (60a) in basis (50), the allowed states
are determined to be

1
i =0, j =1, ~=0: E =M2+

»
(64a)

is the unique state with the quantum numbers of the
deuteron. On the other hand, the first excited state

1
i =1, j =0, ~=0: E =M2+

»
(64b)

TABLE I. Mass spectrum (in MeV).

Classification i j a Parity Theory Experiment

Deuteron ('S&)
XN ('So)
. ('P)
NA ('S2)
Na ('S, )

. ('P3)
hA ('S3)
? (3P)
? ('D4)
~ (P,')
hA ('So)

0 1 0
1 0 0
1 2 1

1 2 0
2 1 0
1 3 1

0 3 0
2 2 1

2 4 2
2 3 1

3 0 0

1720
1755
1838
1938
2007
2022
2026
2030
2159
2213
2233

1876
1880'

'As extracted from Ref. 23.

may be identified with the isovector 'So state of the two-
nucleon system; it lies higher in mass than the deuteron
since V» & U». Note that the calculated mass spectrum
predicts that the deuteron and 'So state are stable against
decay into two nucleons, with binding energies of 158 and
123 MeV, respectively. However, it is well-established
experimentally that the deuteron is marginally bound by
only 2 MeV while the isovector 'So state is marginally
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50=(1,0)+(0, 1)+(2,1)+(1,2)+(3,0)+(0,3) . (65)

It is straightforward, by direct-product decomposition, to
assign each set of states in the 50 with fixed i and j to NN,
Nh, and hA pairs of three-quark subcomposites. This
assignment is also listed in Table I where the assignment
of the deuteron as an NN composite is understood. The
dibaryon resonances of the 50 (e.g., the Nb and b, b,
states) also appear in theoretical calculations based on the
spherical bag model.

We have been unable, however, to find an analogous
quark model interpretation for any of the ~ & 0 states, and
have indicated this lack of interpretation with question
marks (.) in Table I. The principal difficulty here is that,
for states with ~ & 0, the total isospin and spin are bound-
ed from below by a nonzero integer (i & a, j & 2a). This
property is simply not shared by any six-quark SU(4) rep-
resentation, even if the intrinsic spins of quarks are cou-
pled to nonzero orbital angular momentum. Thus the
spectrum of dibaryon resonances in this model includes
states which could not appear in the spherical MIT bag
model.

Next we construct the conserved parity operator P
which yields the parity quantum numbers of the allowed
states (62). P is defined by the transformation

PO(r, r)P '=U( r, t) . — (66)

But the configuration U2 satisfies

Uz( —r) =r3vz(r)r3, (67)

unbound. The clear discrepancy of the calculations with
experiment can be understood as a particular limitation
of the semiclassical quantization procedure we have ap-
plied; see the discussion in Sec. V.

There is a remarkable correspondence between the
lowest-lying ~=0 states and the states expected in the
nonrelativistic quark model for the six-quark system.
Specifically, the states of Table I with ~=0 are found to
fill out the 50-dimensional irreducible representation of
the SU(4) group of spin flavor. This irreducible represen-
tation can be interpreted as a six-quark composite, with
each quark transforming as the fundamental representa-
tion 4 of SU(4). Under decomposition of the 4 with
respect to the SU(2) isospin SU(2) spin subalgebra, one
finds 4=( —,', —,'). The corresponding decomposition of the
50-dimensional representation is

i n.K3
i~plying P =e . Applying P to the allowed states (62)
we find that states have even (odd) parity if ~ is even
(odd). In particular, the lowest-mass state (64a) has the
correct parity (+ ) of the physical deuteron.

In Table I we have also endeavored to provide the stan-
dard spectroscopic classification '+ 'L of states. These
assignments are somewhat arbitrary, however, since in
our treatment of B =2 nuclei as quantum states of a
Skyrme soliton the nucleon constituents of these nuclear
states are not identifiable. Consequently, while the total
angular momentum j is well defined, it is not decompos-
able into separate contributions due to the total intrinsic
spin s of nucleon constituents and the relative orbital an-
gular momentum L. To arrive at the provisional assign-
ments of Table I we have input the known dominance of
the S-wave component of the deuteron to infer, by SU(4)
symmetry, that the remaining states of the 50 are also
predominantly S wave. The intrinsic spin s is then fixed
by the total angular momentum, s =j. For the remaining
~&0 states, the spectroscopic assignments are deter-
mined by the lowest orbital angular momentum L con-
sistent with the quantum numbers j and P and the fact
that s cannot exceed 3 for a six-quark system. Of course,
nothing said above precludes the admixture of higher or-
bital mornenta, such as the well-known D-wave com-
ponent of the deuteron, which are consistent with the
selection rules of parity and angular rnomenturn addition.

IV. STATIC ELECTROMAGNETIC PROPERTIES

Having confirmed that the lowest-lying state (64a) is
the unique state with the quantum numbers of the deute-
ron, we may check the identification with a calculation of
its static electromagnetic properties. Below we evaluate
the mean charge radius ( r )z, magnetic moment pd,
and quadrupole moment Q, all known experimentally for
the deuteron to quite high precision. We also present a
calculation of the photodisintegration transition moment

pd „~ associated with the process yd~'So. The elec-
tromagnetic form factors of the deuteron at nonzero
momentum transfer are the subject of a forthcoming pa-
per 1 6

The electromagnetic current J&' '(x) in the Skyrme
model consists of two pieces, isoscalar and isovector,
given by

J„" '(x)= ,'B„(x)+j„(x) . — (69)

PAP '= A(ir3), PBP '=B, (68)

as may be verified using Eqs. (9). Thus P must transform
the coordinates A and B according to B (x) is the baryon current density given by Eq. (16) and

I„(x)is the third component of the isospin current densi-
ty:

2
Q

I'(x)= Tr U —,U U 8 U-1T 'T

2 2' P

P

1

( j')' 2' , v'a„v [v'a„v, v'a v] (70)
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Equation (69), evaluated for the dynanucal field U, gives
the electromagnetic current operator J„' ' of the semi-

classical theory.
The deuteron charge radius (r )z~ is defined as the

square root of

(r')~=(dl fd'r r'J,' '(r, t)ld), (71)

where ld ) represents any of the spin states of the deute-
ron. Now only the isoscalar piece of J 0

' contributes to
the matrix element, in which case the indicated integral is
a pure c number. Thus the matrix element is trivial,
yielding

(r )q= fpdpdz(p +z )Bo(p,z) .
(ef )'

(72)

(Here and below all integrands expressed in cylindrical
coordinates have lengths in units of 1/ef „.) On the other
hand, the isoscalar parts of the magnetic and quadrupole
moments,

P;= ,' f d r—ekr J" '(r t),

Q;t= f d r(3r;r r 5,")Jo '(r, t)—,

(73a)

(73b)

are nontrivial q-number operators. Inserting the expres-
sion (36) for 0 we find

P. lt=o=
q IR~(B) pjkak+yj'aItk }

Q; lt o=R;, (B—) Q,bRbt(B)

(74a)

(74b)

Here R,"(B) is the rotation matrix (35), a„and b„rea
operators related to K and L via (40), and the c-number
tensors p,k, iM,'k, and Q,b are given by

1pk= fd r ,'et ri ,'Tr[U [—,'rk, U—]C (—r)],
(ef }'

(75a)

Finally the tracelessness of Q,b relates Q» and Qz2 with

Q&&. Altogether, this leaves three independent quantities:
I t

pl] P33 and Q33.
Using (77) in Eq. (74a) we first note that since

a&
—2b& =K&/U», the terms of iM; involving p&& multiply

the operator I(:3, which annihilates the deuteron state.
Using (41) and constraint (48), the remaining terms may
be cast in the form

I
I ll

P; lt=o= — J, +terms proportional to E3

Qij' iI=0 Q33[ pRi3(B) R3i(B) 2'fiij ] (79)

Consequently, only the quantities iM'» and Q» are re-
quired; as functionals of F(p, z) and 8(p, z) they are eval-
uated to be

p'„= — —fpdpdz(2z +p )Bo(p,z), (80a)
(ef )' 4

1
Q33 2

ir fp dp dz(2z —
p )Bo(p, z)

(ef )' (80b)

The motnents it& and Q of the deuteron are defined to
be the expectation values of iM& and Q33 between deuteron
states with j3 =1. One finds

I
P&i

p =&P )=— (81a)

Q =(Q~~ &
= --,'Q~~ (81b)

(78)

where V» is given by (39c). The symmetry relations for

Q,b also reduce the quadrupole moment operator to the
expression

1p'k= d r —,'e i ri —,'Tr[U ( irXV—)kU
(ef )

XC (r)],

1
Q,b=

z ,' f d r(3r, rb —r5,b)Bo(r), —
(ef )' '

(75b)

(75c)

Another observable of interest is the transition mo-
ment iM& „which parametrizes the amplitude, at low-
momentum transfer, for photodisintegration of the deute-
ron into the isovector 'So state. It is computed in terms
of the matrix element, between the j&=0 state of (64a)
and the i~=0 state of (64b), of the magnetic moment
operator P& defined by Eq. (73a):

where Bo(r) is the baryon-number density (29) and p~ ., =&'~o t~=0lP~l~ J~=0& . (82)

C.(r)= ', e.„,(U'a„U)(U'a, U) .
Sm

(76)
Evaluating the isovector part of p, for the dynamical field
Owe find

In (74a) we have introduced an anticommutator to ensure
that p, is a Hermitian operator.

As in the case of the inertia tensors, the work involved
in evaluating iM „,pj„, and Q,b is significantly reduced by
exploiting the particular symmetries of the configuration
U2. The discrete symmetries (9) imply that all three ten-
sors are diagonal and furthermore that p&] =@22=0. Cy-
lindrical symmetry then requires iM'» =iMz2 and Q» =Q22,
and produces the relation

p;it=i = —
—,'R~~( 3)W~kR„i(B), (83)

p31t = i U33R 33 ( & )R 33(B)

Evaluating the matrix element (82) one obtains

l rrPd np 3 33

(84)

(85)

where W',„ is the inertia tensor defined in (39b). Its only
nonzero component is 8'33=2U33, so the operator p3
reduces to

P33 — 2P (77) Results for (r )z, iM&, Q, and iLtz „are given in
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TABLE II. Static electromagnetic properties.

(r ) ~ (fm)

pd (nm}

Q (fm')

pd p (nm)

Theory

0.92
0.74
0.082

—4.4

Experiment

2.095'
0.8574'
0.2859'

—5+1b

'Reference 24.
As extracted from Refs. 23 and 25.

TABLE III. Parameter-independent results. The quantities
( r')~~2 and ( r')'„' are the charge radii of the proton and neu-
tron, respectively, while pp and p„are their magnetic moments.
Theoretical values for these nucleon observables are taken from
Ref. 4.

M, —Md
0

M~ —M~
(t2) I/2

((r ) +(r ) )'

Theory

0.12

1.35

0.097

Experiment

0.014

2.91

0.065

Pd

Pp+Pn
Pd-np

1.01

—1.37

0.97

—1.1+0.2

Table II in physical units, together with their experimen-
tal values. The results for these properties are a mixed
success. The magnetic and transition moments pd and

pd „are in reasonable accord with experiment. On the
other hand, the mean charge radius is at least a factor of
2 smaller than its experimental value while the discrepan-
cy for the quadrupole moment is even larger (a factor of 3
to 4}.

These discrepancies could be an artifact of the
Skyrme-model parameters f and e. Recall that the pa-
rameter set (13) was adjusted to optimize the predictions
of the model in the B =1 sector at the expense of the
B =0 sector which requires f =186 MeV. It should
come as no surprise that this is also not the optimal pa-
rarneter set to describe the 8 =2 sector. Observe that the
mean charge radius and quadrupole moment scale as
(ef„) ' and (ef„), respectively, while the magnetic
moment scales as e/f „. Thus the disagreement with ex-
periment could be assuaged by an adjustment of e and f
so that ef„decreases by about a factor of 2 while the ra-
tio e/f is held fixed.

In our view, however, it is more meaningful to consider
quantities that are as insensitive as possible to the choice
of these parameters. The relevant quantities are ratios of
observables constructed so that dependence on the
Skyrme-model parameters f„and e cancels out except
for a mild dependence on the dimensionless ratio
P=m„/ef„Asamplin. g of such quantities is given in

Table III. Here we observe that the ratio,
(r )d /((r )r+(r )„)', is approximately 1.4 in our

calculations while experimentally it is 2.91. Thus, in-
dependent of the scale provided by f, it appears that the
toroidal Skyrrnion U2 in this model is smaller than the
physical deuteron by half.

The agreement of the remaining parameter-
independent quantities in Table III with experiment is
good, with the exception of the ratio
(Mi& —Md )/(M~ —Miv). The theoretical values for this

0

ratio are an order of magnitude larger than experiment.
The discrepancy is perhaps not surprising since the
theoretical splitting M& —Md is proportional to the

0

difference 1/U» —1/V» and thus is highly sensitive to
the detailed structure of the soliton. Nevertheless, the
calculated splitting of 35 MeV represents an improve-
ment over the values of 70-80 MeV obtained in the bag
model.

V. DISCUSSION

The success of the Skyrme model in describing nu-
cleons as quantum states of the Skryrne soliton makes it
natural to also apply the model to bound states of nu-
cleons: namely, nuclei. Attempts to describe nuclei
within the Skryme model have followed two very
different approaches. In the "potential approach, " it is
assumed that the interactions of Skyrmions can be de-
scribed by an effective potential; nuclei would then arise
as bound states in this potential. This approach is very
close in spirit to traditional nuclear physics and was
pioneered by Jackson, Jackson, and Pasquier. They con-
structed a Skyrmion-Skyrmion potential under the as-
sumption that the field configurations for two interacting
Skyrmions could be approximated by the product Ansatz
(1). Unfortunately, after projection onto the quantum
numbers of the nucleon, the resulting nucleon-nucleon
potential fails to provide any intermediate-range attrac-
tion. This clearly spells disaster for the potential ap-
proach, since an intermediate-range attraction is neces-
sary to bind nucleons into nuclei. The work of Jackson,
Jackson, and Pasquier has been extended by adding more
terms to the Lagrangian and by using more complicated
Ansatze for the 2-Skyrmion configuration, but these
efforts have not succeeded in generating a significant in-
termediate range attraction.

We argue that the lack of an intermediate-range attrac-
tion is simply an artifact of the potential approach. Skyr-
mions are extended Quid objects and they have particle-
like behavior only when they are well separated. When
they overlap they can completely lose their individuality.
This is demonstrated dramatically by the minimal-energy
static B =2 solution U2(r}, in which the two Skyrmions
have merged into a toroidal configuration. As explained
in the Introduction, such a configuration is not describ-
able as a product Ansatz. Since it is unable to probe the
lowest-energy B =2 configurations, the product Ansatz
underestimates the attractive force between Skyrmions.
While one might be able to find indications of a stronger
attraction by using a more elaborate Ansatz, it is unlikely
that the effects of these toroidal configurations could be
adequately represented by a potential between two indivi-
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dual Skyrmions.
The alternative approach to describing nuclei in the

Skyrme model is the "soliton approach" which was
pioneered in Ref. 9. Although this is a very natural ap-
proach to follow in a field theory, it is quite radical from
the point of view of conventional nuclear physics. Not
only does it abandon the concept of a potential but it also
abandons the conventional picture of nuclei as bound
states of individual nucleons. Instead a nucleus is
identified with the lowest quantum states of the static sol-
iton solution with the appropriate topological charge.
That is, they are treated in exactly the same way as the
nucleon in the 8 =1 sector. While this provides a rather
counterintuitive model for the nucleus, it should not be
immediately dismissed. Rather one should study the
properties of the soliton and determine whether it suc-
cessfully reproduces the physical properties of the nu-
cleus. In particular, it should have the same spectrum of
excited states, it should have the same static properties,
and it should scatter electrons, pions, and nucleons in the
same way as the physical nucleus.

In this paper we have made the first steps in applying
the soliton approach to the simplest compound nucleus,
the deuteron. The resulting model for the deuteron is
indeed rather counterintuitive. The static 8 =2 soliton
solution is a toroidal condensation of pion fields and the
deuteron is a quantum superposition of these solutions
with isospin 0 and total angular momentum 1. This
seems at first to bear very little resemblance to the con-
ventional model in which the deuteron is interpreted as a
loosely bound state (which is mostly S wave) of a neutron
and a proton. A possible connection is that the baryon
density of a proton and a neutron orbiting classically in
the nuclear potential is in fact toroidal due to the short-
range repulsion between the two nucleons. However, the
real test of the model is to examine its predictions for the
physical properties of the deuteron. The ground state of
the toroidal soliton automatically has the quantum num-
bers of the deuteron due to the symmetries of the 8 =2
solution, and its first excited state has the quantum num-
bers of the unbound spin-singlet state of the deuteron. At
the qualitative level, our calculations of the static elec-
tromagnetic properties of the ground state of this soliton
are also compatible with its identification with the deute-
ron. Although these predictions are not quantitatively
accurate, this is not disturbing since we are using a crude
effective Lagrangian whose parameters have been adjust-
ed to optimize the properties of the nucleon in the 8 = 1

sector. This set of parameter values is not the optimal
choice for the 8 =0 sector, however, and it is therefore
not surprising that it is also not the optimal choice for
describing the 8 =2 sector. Of course, an accurate
effective Lagrangian should be able to describe al1 the
sectors with the same set of parameters.

We now comment on the limitations of the calculations
that were presented in this paper. These limitations ap-
ply equally we11 to the existing treatments of the nucleon
in the Skyrme model. We have worked within the frame-
work of the semiclassical approximation in which the
fluctuations of the pion fields around the classical static
solution are quantized. These fluctuations include the

collective modes for translations, rotations, and isospin
rotations; we will refer to the remaining degrees of free-
dom as vibrational modes.

We have followed previous calculations of the spec-
trurn in the 8 =1 sector by quantizing the collective
modes for rotations and isorotations, while ignoring the
vibrational modes. This will not yield a consistent semi-
classical expansion for the energy levels, because each of
the vibrational modes contributes a zero-point energy to
the mass of the soliton which is of lower order in the
semiclassical expansion (order R) than the energy splitting
between different quantum states (order A ). These con-
tributions are ignored simply because they are plagued by
ultraviolet divergences due to the nonrenormalizability of
the model. They could only be calculated by imposing an
ultraviolet cutoff on the field theory. For the same
reason, the calculations of static properties have not been
carried out within a strict semiclassical expansion.

Because we have ignored the vibrational modes we are
unable to calculate the binding energy of the deuteron.
To determine the binding energy we would have to calcu-
late the energy of the ground state of the 8 =2 soliton,
including the sum of the zero-point energies from all its
vibrational modes, and subtract twice the energy of the
nucleon including the sum of all of its zero-point ener-
gies. The difference would depend sensitively on the ul-
traviolet cutoff as well as on the parameters of the field
theory. This also explains why the spin-singlet state of
the two-nucleon system appears along with the deuteron
as a bound quantum state of the 8 =2 soliton. Only by
including the vibrational modes could one determine
whether or not it is really bound.

The identification of the singlet state as an excited state
of the soliton has implications for calculations of
nucleon-nucleon scattering in the Skyrme model. A pro-
cedure for calculating the semiclassical limit of the
scattering amplitudes has been outlined in Ref. 21. How-
ever, the splitting between the deuteron and the singlet
state is of higher order in the semiclassical expansion
than the binding energy, so in the semiclassical limit both
states would be bound. This binding should be reflected
in the scattering amplitudes in the form of positive
scattering lengths for both the singlet and triplet chan-
nels. A negative sign for the singlet channel could only
be recovered after including the effects of vibrational
modes.

Finally, we comment on previous attempts at describ-
ing the deuteron within the Skyrme model. Nyman and
Riska have computed static properties of the deuteron
under the assumption that the deuteron field
configurations could be represented by a product Ansatz.
This assumption has been discredited by the discovery
that the lowest energy B=2 configurations cannot be ac-
commodated by a product Ansatz. The product Ansatz
configurations were singled out for algebraic convenience
only, and any predictions based on them are simply ar-
tifacts of the Ansatz and not predictions of the Skyrme
model. Of course, this criticism also holds for our earlier
calculation.

VWW%' have also tried to identify the static 8 =2 sol-
iton with the deuteron. In addition to quantizing the col-
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lective modes of the soliton, they have also considered a
"radial" degree of freedom R. They defined a potential
V(R) by calculating the minimal energy among field

configurations constrained to have the first moment of
the baryon distribution equa1 to R. The configuration
corresponding to the minimum of the potential is in fact
the static B =2 solution. VWWW found that, within the
WKB approximation, the potential V(R) did not support
a bound state. However, the prescription of VWWW for
the potential V(R) singles out a one-parameter family of
configurations which is completely ad hoc, and other
choices would have given different results. Our experi-
ence with the product Ansatz has shown that it is not a
good idea to isolate certain degrees of freedom merely for
calculational convenience. In the framework of the semi-
classical expansion, a more consistent procedure would
be to consider all the vibrational modes at once. This is
clearly a difficult task and we have therefore made no at-
tempt to consider any of the vibrational degrees of free-
dom.

In this paper we have taken the first step toward show-

ing that the ground state of the toroidal B =2 Skyrmion
provides a reasonable model for the deuteron. We have
shown that the spectrum and static properties of this soli-
ton are in fact consistent with this interpretation. Fur-
ther support is provided by calculations of the elec-
tromagnetic form factors, which will be described else-
where. ' The next step in this program would be to com-
pute pion-deuteron scattering amplitudes. This will be
far more difficult than the pion-nucleon calculations be-
cause of the reduced symmetry of the static solution.
This reduced symmetry is not a serious complication for
numerical calculations of nucleon-deuteron scattering
amplitudes, so these calculations should not be much
more difficult the nucleon-nucleon scattering ampli-

tudes 2~

If the soliton approach is in fact the proper way to ap-
ply the Skyrme model to nuclear physics, then heavier
nuclei should also be identified with quantum states of
solitons. At this time, the static solutions for B 3 are
not yet known. In most cases, these solutions will prob-
ably not have any continuous symmetries and a fully
three-dimensional calculation will be required. We are
confident however that these solutions will in fact display
some of the systematic features of physical nuclei. In
particular, we expect the strong binding of the a particle
to be reflected in a classical binding energy for the B =4
Skyrmion which is significantly larger than that for B =3
or 5.

1Vote added. After this paper was completed, the pa-
pers of Schramm, Dothan, and Biedenharn came to our
attention. Independent of the work of Verbaarschot
et al. ' and Kopeliovich and Shtern, " they calculated the
minimal-energy solution U2(r) numerically and evaluated
its charge radius and quadrupole moment. While we
agree with their values for these static properties, one
should note that their value of the quadrupole moment is
that of the classical solution, and is denoted by —

Q33 in

Eq. (80b). On the other hand, the quadrupole moment of
the deuteron quantum state is an expectation value of a
quantum operator and in smaller than —

Q33 by the fac-
tor of 5 given in Eq. (8 lb).
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