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Stuart Raby and Geoffrey B.%est
Theoretical Division, T-8, Mail Stop 8285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 1 August 1988)

We evaluate the effects of final-state interactions on the decay of a light Higgs boson to two pions.
Although the formalism is completely general and can be applied to any strong-interaction decay
mode of the Higgs boson, we are particularly interested in the regime where the Higgs-boson mass

mI, satisfies the constraint 2m & m& & 2m&. In this case the dominant decay modes of the Higgs
boson are to p p and two pions. Final-state interactions tend to enhance the two-pion mode and
thus suppress the branching ratio to two rnuons. Since the two-muon mode is the cleanest signature
for identifying the Higgs boson, it is important to obtain a good determination of this branching ra-
tio. We find 8 (h ~p+p ) = 10 2-10

I. INTRODUCTION

8(m ~h+e v, )= &2GFm „f(x)
Pl

@48m m 1—
P 2

where

f(x)—:(1—8x +x'-)(1 —x ) —12x ln(x)

and x =mz/m . If there are no excessive losses due to
the efficiency of the apparatus, it appears that the SIN

One of the missing links in the verification of the stan-
dard model is the elusive Higgs boson. Since its mass is
not Axed by theory, it can only be found by an exhaustive
experimental search. The experimental lower limit on
the Higgs-boson mass is of order 14 MeV. This limit is
set by observing the decay of the 20.1-MeV excitation of
He (Ref. 1). If the Higgs boson is heavier than a TeV it

is necessarily a strong-interacting object. Many reviews
have been written on the phenomenology of Higgs bosons
with mass greater than several GeV. In this paper we are
interested in a light Higgs boson. The theoretical con-
straints on the mass of a light Higgs boson are discussed
in Appendixes A and B.

A light Higgs boson can either be produced directly in
high-energy collisions or it can be seen in the decays of
other particles. In either case, the experimental signature
of the Higgs boson depends crucially on its decay prod-
ucts. A Higgs boson will decay predominantly into the
heaviest states which are available. If the Higgs-boson
mass m& satisfies mz &2m„ then the dominant decay
modes are h ~yy or e+e (Ref. 4). Existing data on the
processes p+~e+e +e++v„+v, (Refs. 5 and 6) and
m+~e++e +e++v, (Ref. 7) have reached very high
statistics. (We would like to thank Cy Hoffman for in-
forming us of these data. ) They have been obtained as
background to the flavor-violating process without the
two neutrinos. The branching ratio for the process

h+e++v, is given by

data can be used to rule out a Higgs boson with mass
less than about 100 MeV. Clearly, the SIN data should
be reanalyzed to look for such a light Higgs boson. The
Crystal Box Collaboration at Los Alamos is now
reanalyzing their data for a light Higgs boson.

If mI, &2m„ then the Higgs boson will predominantly
decay to heavier final states. In fact the ratio

1.(h p+p —
) m„(1—4m„/mI, )

I (h~e+e } m, (l —4m, /mi, )

is well known. The two-muon decay mode is a very good
experimental signature of the Higgs boson. Unfortunate-
ly, when m& )2m„ the branching ratio 8(h -+p+p ) is
not well known. It requires an understanding of the
strong-interaction decay modes h ~me. or, for mI, & 2m+,
h ~KE. The purpose of this paper is to evaluate these
strong-interaction effects and thereby calculate
8 (h ~p+p ).

The following decays can be used to detect a Higgs bo-
son with a mass greater or less than 2m„—EC+

~h +e+v„E~n.+h, ri' —+g+h, v+~h+e++v,
+v„8~h +anything, 8~K +h Y~h +y. Existing
data on the ~ can be used to search for a Higgs boson
with mass less than O(m, ). (We would like to thank K.
K. Gan for informing us of the availability of these data. )

In all the other cases, strong-interaction dynamics is an
essential ingredient. E and g' decays have been studied
extensively. ' ' The calculated branching ratios for
these decays range from 10 to 10 . The problem has
been to correctly incorporate PCAC (partial conservation
of axial-vector current}, to evaluate the matrix elements
of the effective quark —Higgs-boson Lagrangian responsi-
ble for the process and, for the kaon, to include the
known LD =

—,
' enhancements.

E~m+h can be used to find a Higgs boson with mass
less than about 350 MeV. The effective Lagrangian in-
cludes both flavor-diagonal and flavor-changing cou-
plings. The flavor-diagonal Higgs-boson couplings are
given by the Yukawa couplings
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h
mass 1+ — g milli &

~2@
(2)

where m, is the mass of the quark Aavor labeled by the
index i and &2u =250 GeV. Note that )'i is the physical,
properly normalized, Higgs-boson field with mass m&.
The fiavor-changing couplings (relevant for K~sr+h)
are determined by the graphs in Figs. 1 and 2. The
hS =1 couplings obtained by integrating out the 8'at the
tree level (Fig. 1) are given by

[dy„(1—ys)u]

X [u y"(1—y5)s]+H. c. , (3)

where the V; are elements of the Kobayshi-Maskawa
(KM) matrix, with similar expressions for the other
Aavor-changing couplings. Note that as discussed by
Willey' the graphs with h coupled to the external quark
lines are suppressed by factors of me /A, where A, -m
Finally the fiavor-changing couplings induced at the
one-loop level (Fig. 2) are given by'

m3a ~ &, h

n 8 M v'2u

X [m, d(1+y5)s+med(1 —ys)s]+H. c. , (4)

FIG. 2. One-loop contribUtion to the decay K~m. +h.

77l N2

&(K, ~I }= —(1.SX10-"} 1+
mg

+ (0.72 X 10 ' }+g rl,
'

l+C

i g Qiy ~i&1i ++mass++tree++ I loop (5)

in a basis where the quark kinetic-energy terms are diago-
nal and properly normalized and the quark mass terms
are diagonal.

In order to compare with experiment one must take
the following effective quark-Higgs-boson Lagrangian

where

+B(0.68X10—lo) GeV
R

2 2
3a m;

2&2u 16m sin28s, "
Mli

(6)

normalized at a scale of order Msv and first run the
relevant parameters down to a scale -1 GeV and then
take matrix elements between the states K and m.. In a re-
cent paper by Chivukula and Manohar' a chiral pertur-
bation theory approach was used to obtain the K —m ma-
trix elements. This approach presumably takes into ac-
count the known b,I= ,' enhancement in K—decays. They
find the amplitude for KL ~m. h to be

The first term in (6) is the contribution of the bI=
term and the second is rl, . The third term is negligible
and in the fourth B is an undetermined parameter in the
chiral Lagrangian. Barring an "accidental" cancellation
the KL ~eh amplitude is therefore presumably at most
-10 ' GeV. Notice, however, that if 8=1, then, in
fact, this amplitude is —10 " GeV. The experimental
limits are'

B (Kl ~np+p }& 1.2X 10

and

B ( KI ~me+ e ) & 2. 3 X.10

which imply, respectively, that

A (K~ ~ srh ) & 0.20 X 10 '
( mx. I2p„)

X[B(h ~iM+p )
' ] GeV

and

~(KL~~h }&0.28X10 'o[B(h~e+e ) '~'] GeV .

FIG. 1. Tree-level contribution to the decay K ~n.+h.

It is clear that, even if the branching ratios are of —1

(which is the case for mi, & 2m„) the presence of the un-
known parameter B in Eq. (6) prohibits any definitive
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m
X=+ V& V,*, [m&s(1+ys)b]+H. c.

32m sin 8+ M~ 2v

Taking mb =4.5 GeV and using the experimental branch-
ing ratio for 8 —+evX of 12.3%%uo, we obtain, from Ref. 15,

/ v„v,', /' m,8 (8~h+ anything) =(0.35)
z

/ Vs]~ Mii,

2 2

(10)
mb

X 1—

The experimental limit for this process' is

8 ( B~h +aynthing)B (h ~p+p ) (0.008

for mI, )500 meV. The theoretical value depends cru-
cially on the top-quark mass, mixing angles and, of
course, on the h ~p+p branching ratio. A fourth gen-

x

FIG. 3. One-loop contribution to the decay
B~h +anything.

conclusion being drawn on the nonexistence of the Higgs
boson. For mi, ) 2m we shall show that 8 (h ~iM+iu )

is in fact ~
—,
' . Note that if the experimental branching

ratios are improved by at least 2 orders of magnitude, it
would then require a considerable fine-tuning of 8 (=1)
in order to avoid the conclusion that the Higgs boson is
ruled out with mh & 350 MeV.

There is a claim in the literature" that a Higgs boson
with mh &409 GeV can be excluded from the failure to
observe the decay g'~g+h. However, apart from the
considerable theoretical uncertainties in calculating this
decay, the claim is again based on the assumption that
8(h ~iu+p ) = l. A reanalysis of these results' ' leads
to the conclusion that they do not rule out a Higgs boson
with any mass.

Inclusive B meson decay minimizes the problems asso-
ciated with strong-interaction matrix elements. In princi-
ple, since the available energy for the Higgs boson is of
order ma/2, a perturbative calculation of 6 quark decay
b ~h +s should be sufficient to calculate 8 meson decay.
This process has been recently studied' ' ' and com-
pared with data for the branching fraction

I (8 —+h( —+p, +p, )+anything)
I (8~e+v, +anything)

The effective one-loop Lagrangian for this process is
given by (Fig. 3)

eration of quarks would also contribute with unknown
mixing angles. As discussed in Appendix A, in order to
have a light Higgs boson with just one Higgs doublet and
three families of quarks, the top-quark mass must be —80
GeV. Combining (10) and (11) this would require
8 (h ~iM p ) ~ 2. 7 X 10 . However, as can be seen
from Fig. 12, this condition is satisfied for m& greater
than approximately 700 MeV. Thus, contrary to the
claim of Ref. 15 one cannot entirely rule out even the sin-

gle Higgs doublet case. Furthermore, if there are more
families and/or more Higgs doublets, the situation is
even less definitive (see Appendixes A and B).

The exclusive process B~E+h has also been calculat-
ed by Godbole, Turke, and %irbel. ' The result relies
on less certain strong-interaction matrix elements. A
light Higgs boson cannot at the present be ruled out with
this process.

Let us finally consider the important process
Y~h +y. An extensive experimental search for a mono-
chromatic photon has been conducted by the CUSB Col-
laboration at CESR (Ref. 21). This process circumvents
the question of the Higgs-boson branching ratios. How-
ever, although no monochromatic photons have been
seen, it is difficult to set limits on the Higgs-boson mass
using this process, as a result of the unfortunate uncer-
tainties in the theoretical calculation. The process was
first calculated by Wilczek. Recently, both radiative
QCD corrections and relativistic corrections of the non-
relativistic Y wave function have been calculated.
The QCD radiative corrections give

~(+~~ + Y ) ~wilczek
4a,
3' aH(z) (12)

where z=—1 m&/mr= —1 and aH(1)=7+61n2 —n /
8=10. For a, (mz)=0. 15 the one-loop correction is
63%%uo of the tree-level result. Thus the use of a perturba-
tion expansion is suspect so no definitive statement can be
deduced from the data. Furthermore, the relativistic
corrections are just as large, but the two different calcula-
tions disagree in the sign of the effect. Hopefully this
distressing theoretical situation will improve with closer
scrutiny. In the meantime, this process can still be used
to search for a light Higgs boson.

As indicated in the above discussion, a major experi-
mental signature for such a particle is its decay into two
muons. In many of the previous analyses the branching
ratio for this decay seems to have been grossly overes-
timated leading to false conclusions about the possible ex-
istence of a low-mass Higgs boson. The main purpose of
this paper is to show how this branching ratio can be cal-
culated and in the next section we begin its evaluation.
The studious reader, who wants to know all the details of
the calculation, can read this paper straight through.
Otherwise, the results of the calculation and estimates for
the branching ratio are summarized in Sec. V. It is, how-
ever, worth making a few remarks here as to why this
branching ratio is so much smaller than one might other-
wise think.

Since the Higgs-boson coupling is proportional to mass
[see, e.g. , Eq. (2)] one might naively guess that
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I (h p+p )/I (h rr+m )-(m„/m )

Ho~ever, there are two sources that lead to the suppres-
sion of this estimate. The first is a low-energy theorem
which requires that the amplitude for the 2~ mode
behave like ( —", m + —,'mz ) for the case of three flavors of
quarks. Thus, as mz increases this amplitude is eventu-
ally proportional to m& rather than m (Ref. 26). The
second source is, in fact, associated with the extrapola-
tion of this low-energy theorem to larger values of mi,
and arises from the enhancement in the S-wave m-m

scattering amplitude. In the following sections we set up
the formalism for incorporating these effects directly
from a phase shift analysis. However, in making our esti-
mates, we have taken some standard resonance fits to the
data in order to give an idea of just how large and impor-
tant such contributions can be. A complete analysis of
the me data is beyond the scope of this paper but should
certainly be done when the data on the K and B decays
improve. As already stated, these enhancements in the
h ~2m. amplitude and the other uncertainties discussed
above nullify any definitive conclusion concerning the ex-
istence or nonexistence of a light Higgs boson.

q q.

ll, d

t=u, d
q, q

u, d

FIG. 4. The heavy-quark contribution to the decay h ~2~ as
a result of the h ~two-gluon triangle graph.

II. THE ROLE OF HEAVY QUARKS AND GLUONS

In the minimal model, the coupling of a Higgs boson
(h } to hadrons is governed by the Lagrangian [see Eq. (2)]

X = —(2'~ G )'r pm;q, q;, (13) m;q;q, =—
i =H

n~(F„', )
12m.

where q; are quark fields and the sum runs over all quark
flavors. In a multi-Higgs-boson model, where h is to be
interpreted as the lightest Higgs boson, the interaction
will also have this generic structure; however, it will now
depend upon various mixing angles. Although this
affects the details of our results it does not affect the basic
formalism presented below. As an example, we show in
Appendix 8 how our results generalize to a two-Higgs-
boson model constrained by supersymmetry.

For the decay of interest here, h ~2m, we need to
evaluate the matrix element

(14)

Since the pion is well described as a bound state of u and
d quarks, one might have expected from the Zweig rule
that the contribution of these quarks dominates the sum
over flavors. However, as pointed out by Shifman,
Vainshtein, and Zakharov, heavy quarks contribute in-
directly to this matrix element by virtue of the triangle
anomaly as illustrated in Fig. 4. They couple to the
gluon content of the pion via a quark-triangle graph
which, in the limit m, ~ oo, loses all explicit dependence
on m, . This is a direct consequence of the fact that the
Higgs-boson coupling to quarks grows with mass. For
small m„on the other hand, this mechanism only gives
rise to a small form factorlike contribution and so is
unimportant. These "hidden" heavy-quark terms can be
formally expressed in a heavy-quark operator-product ex-
pansion:

2+, g q yA'q, '+
mH i=u, d, s

(15)

(rr~m, ssa ) && (m ~m„uu ~n ) =(7r~mdddm ) =0(m „) .

Actually, for our purposes it will turn out that we shall
only require ( vr

~ m, ss
~
a ) && m&, which is certainly valid.

If s is a "heavy" quark, in the sense that m, »e, A,
then, of course, it must be included in the expansion (15)
contributing one unit to n~.

With this in mind we can express Eq. (14) in the form

Here n~ is the number of heavy-quark (H} flavors;
a, =g /4n. , where g is the quark-gluon coupling and F„',
the conventional gluon field tensor. One can think of (15)
as an expansion in the parameter (a, A /mn) where A is
some typical QCD mass scale (presumably several hun-
dred MeV). Clearly, this expansion is only meaningful
when m& »n, A and so excludes the u and d quarks,
but includes the c, b, t and any further heavy flavors. The
question of the role of the s quark is obviously borderline.
For the proton there is some evidence that, despite the
Zweig rule, the ratio (p ~ss ~p ) /(p ~uu ~p ) may not be
small but could be as large as 30% Ref. 27). If that is the
case then the s quark contributes significantly ( -40% ) to
the nucleon mass. For the pion, however, we shall as-
sume that this is not the case so that if s is treated as a
"light" quark (in the Shifman, Vainshtein, and Zakharov
sense) then
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(miriit ) =(2' GF)'

X mm rnqq-
u, d

nHa,
(F ) 0).i2~

(16)

8= pm qq+ (F„„)
q g

(ls)

where P{g) is the usual P function. [Note that, more pre-
cisely, the mass term enters with a factor 1+y (g), a
small correction, which we shall neglect. ] To leading or-
der in g it is given by

3

P(g) = — (33—2n ),
96&

(19)

where nf is the total number of quark flavors. We re-
mind the reader that the anomalous second term in (18)
also has its origins in the triangle graph. Working as be-
fore one can straightforwardly derive a formula for F(q )

analogous to Eq. (16}:namely,

PL (g)
F(q~ =)mw xm rq+ (F„„) 0) .

u, d
(20)

Here PL(g) is given by Eq. (19}but with nf replaced by
nz ( =nf nH

—), the —number of "light" quarks.
Now, on general grounds [see Eq. (37)], F(0)=2m .

On the other hand, in the chiral limit, where
rn„= md 0, m ~0 and so at q =0, we expect

ww xm, qq 0) =m',
u, d

and {21)

The gluon terms, representing the contribution of heavy
quarks, can be eliminated from Eq. (16) to give

Fs(q )= 2nH

33—2nI
F(q )

As stressed by Shifman, Vainshtein, and Zakhavov, this
amplitude is closely related to that of the trace of the
energy-momentum tensor 8:

F(q')=—(~~~8(0) .

Here q is the four-momentum carried by 8 (and therefore
the sum of the pion momenta). Recall that, in QCD,

2nH
Fi (0}= 1+

33 2nL
2m

Now, from general PCAC arguments, we expect the
second term in (22) to be O(m ) for all values of q (not
just at q =0). If the same could be said for the first term
F(q ) then the complete amplitude Fz(q ) would also be
O(m ). This would lead to a small branching ratio for
this mode and the decay into p, +y, would then dom-
inate. However, Novikov and Shifman have claimed
that in the chiral limit (m ~0) F(q2)=q so that
F(m&)=ml, . This result has been used by Voloshin to
argue that the mm mode is thereby considerably enhanced
and dominates the p+p mode. In the next section we
shall show that the Novikov-Shifman result is only valid
for small q and not for all q as implied by their paper.
However, in Sec. III we use a dispersion relation for
F(q ) together with elastic unitarity to make the extrapo-
lation to q2=mz~. We shall find that F(q ) is, indeed,

O{mz) but can be further enhanced by a possible reso-
nance in the S-wave rr rr scatt-ering amplitude. Our result
is, in fact, in qualitative agreement with that of Ellis,
Gaillard, and Nanopoulos even though they identify the
Higgs-boson coupling with 8„'

III. LO%-ENERGY THEOREMS
AND WARD IDENTITIES

8„„is the energy-momentum tensor, P the pion field, and

p and p' the pion momenta (see Fig. 5). The trace
T„"(p,q) is just the off-shell continuation of F (q ); i.e.,

This section is devoted to a review of low-energy
theorems and Ward identifies relevant to the amplitude
(23). We shall give reasonably detailed derivations since
there are some misleading and, at times somewhat ob-
scure, statements in the literature which we feel need
clarifying. Furthermore, as will become clear below,
there are some particularly subtle aspects to the soft-pion
(p-+0) and chiral (m -+0) limits for the three-point
function of interest here.

We begin by considering the amplitude

T„„(p,q) = (p m)(p' —m ~—
)

4~ 4y e IP 'z+ lip'g

X (0) T[y'(x)8„„(y)y(O)]~0& .

(24)

2nH+ 1 — ve xmqqo),33—2nL
{22)

where for convenience we have introduced the form fac-
tor Fz(q }defined via

( err~ g ) (21/2GF )1/2F (q2) (23)

Here q is the four-momentum of the Higgs boson; for the
physical decay we obviously need to know Fz(mz ).

Note incidentally, that
FIG. 5. Pictorial representation of the amplitude T„,. [see Eq.

(24)].
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F(q )= lim T„"(p,q) .
p ~p ~m

The most general form for T„ is

(25) B(p —p' )
—Cq = —

—,'(p —m )(p' —m„)

X[6~(p } A—F(p' )]

and

(32)

T„„(p,q) = A (q g„„q„—q, )+BP„P,

+C(P„q„+q„P,)+Dq„q, , (26)

where P =(p' —p) and the form factors A, B, C, and D
are, like T"„, functions of q, p, and p' (in this order).
Note, incidentally, they are also explicit functions of m

The conservation of 8„„implies the existence of a con-
served momentum operator

P„=f d'x 8,„(x) (27)

with the property that

C(p —p' )
—Dq =

—,'(p —m )(p' —m )

X[EF(p )+bF(p' )] . (33)

and

B (O,p, m ) =B(O,m, p ) = —,',
C(q, p,p )=D(q, m„,m )=0,

(34)

(35)

Various results of interest can be derived from these: for
example,

[P„,P(x)]= —iB„Q(x) .

Up to Schwinger terms, the local form of this is

5(xo —yo)[80„(x),$(y)]= iB„—P(y)5 (x —y)

This can be used to derive the Ward identity

q"T„,= —(p —m )(p' —m )

X [p,b, F(p }+p'„bF(p' )],

(2&)

(29)

(30)

D(q,p,p )= —
&

&F(p )= —
&

. (36)
q q

The second of these verifies that, on shell, T„, is con-
served and that

F(q )=3q A (q, m, m )+(4m —q~}B(q,m, m2 } .

(37)

Combining this with (34) confirms that F(0)=2m 2.

We next want to exploit PCAC to obtain a normaliza-
tion constraint on A. To do so, introduce the amplitude

where

(p )—:fd x e'~ "(0~T[P'(x')P(0)]~0) (3l)

is the full pion propagator. As usual, we assume that the
contribution of Schwinger terms is canceled by possible
seagull terms in the definition of T„„,Eq. (24). We shall
return to this point below. Combining this with (26) then
gives

8"A„(x)=f m„P(x) .

The following Ward identity can now be derived:

(39)

2 2—m
T„„=— f d x e '~ "(nJT[8„,,(0')A (x)])0),f.m '.

(38)
where A is the axial-vector current and f the pion de-

cay coupling constant. In terms of these, PCAC reads

i( —m )
p T„„.=T„,—,fd'x e ""(xi[8„„(0),A, (x)]5(x,)~0) .f m' (40)

A (0,0,0)=B (0,0,0)= —,', (41)

In this equation T„„is to be evaluated with p' =m „. A
more general identity without this constraint and analo-
gous to Eq. (30) can be derived; however, for our pur-
poses it does not seem to contain any further useful infor-
mation beyond that implied by (40). The equal-time com-
mutator occurring in this equation can be eliminated by
setting p =m and going completely on shell. In this
case neither C nor D contributes to T„, which now
satisfies the simple equation T„=p T„. If we now set

p =0 we can eliminate the unknown amplitude T„ to
obtain the low-energy theorem T„,(O, q)=0. To state
this more precisely, note that when p =0, and p =m
then p' =q =m =0 and P =p'=q. In terms of Eq.
(26) the low-energy theorem therefore leads to

T„„(O,q)= (n.~[8„„(0),Q„(0)]~0), (42)

where Q„(xo) is the axial charge:

Q„(xo)=fd x Ao(x, xo) . (43)

Notice that in Eq. (42) one of the pions is now off shell
(since p =0&m ) so C and D contribute. However, if
we go to the chiral limit by taking m ~0 then this pion

the last equality coming from Eq. (34}. Notice that the
theorem only fixes A and 8 at one kinematical point
which is ultimately related to the chiral limit.

It is instructive to consider an alternative procedure in
which limits are taken in a different order. Suppose we
first set p =0 in Eq. (40); then
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&(xo —yo)[8OO(x), Ao(y)]= i —B„A"(y)5' '(x —y) (44)

= —if.m'. $(y)5"'(x —y) (45)

or

[{900(x),Q„(xo)]=—if„m2(((x} . (46}

goes back on shell (so C=D~O) and, moreover, the
cominutator in (42) vanishes since Qz is now conserved.
Clearly one is led back to the previous result, Eq. (41).
However, suppose we keep m &0; then PCAC requires
the right-hand side (RHS) of (42) to be O(m„). For ex-
ample, the local form of the commutation relation
[Po Qg ]= l B OQg can up to Schwinger terms be ex-
pressed as

gx, )[e„(x),A, (O)]=—ia, A, (0)fi"~(x) . (51)

This leads to an extension of Eq. (47} to other com-
ponents:

Toi qOqi (52)

Using (26), this gives back Eq. (50). However, this equa-
tion is surely incorrect in that it violates PCAC, for, from
Eq. (42) we know that To, must vanish when m„=O.
This suggests that there are further Schwinger-type con-
tributions to the relevant equal-time commutators which
ensure the consistency of the Ward identities with PCAC.

Now let us apply these results to F(q ) given in Eq.
(37). We have already seen that F(0)=2m . Let us now

evaluate

Using this in (42) gives

Too(O, q) =m (47)
F
, (0)=3A (O, m „m' )—8(O, m2, m'„)

q
This is valid only when p =0 and p

'2 =m i ~0. From
Eq. (40), this leads to

Bq
(53)

Am +qo(8+2C+D —A)=m2,

which, since qo is arbitrary, implies

(48)

=1+ 3[A(O, m, m2) —A(0, 0,0)]

A (m„,O, m )=1

and (at the same kinematic point)

B +2C+D —A =0 .

(49)

(50) Thus, for q ~0,
Bq

(54)

Using Eqs. (32) and (33) it is straightforward to check
that (50) is equivalent to (49). Note that Eqs. (41) and
(49) disagree in the chiral limit.

The nature of the ambiguity can be clearly illustrated
by examining Eq. (36) which is the p =p' limit of Eq.
(33). If p2 is first set equal to m then this gives

D(q, m, m )=0 in agreement with (35). If, however,
one first sets p =0 (so that p =0 and q =m ), then
D(m, 0, 0)=1. When the chiral limit is taken we clearly
end up with an ambiguous result for D (0,0,0).

These ambiguities in D stem from combining the Ward
identities with the right kinematical constraints of the
three-point function. Unlike the more familiar case of a
scattering amplitude, where setting the analog of p to
zero is relatively harmless, here it leads to stringent kine-
matic constraints especially when m „~0. It is our belief
that the appropriate value for D (0,0,0) is, in fact, zero
since this is the "smooth" analytic continuation of the
general result, Eq. (35). After all, p =p' =0 is the on
shell condition for a massless pion. The problem is that if
p =0 then for a massless pion q =0 forces D to be elim-
inated from the Ward identity, thereby making it indeter-
minate. This being the case we believe that the first
derivation presented above, in which the pions are both
put on shell before taking p =0, is the appropriate one.
This automatically eliminates the ambiguous form factor
D from the discussion.

It seems likely that the source of the problem is the as-
sumed cancellation between seagulls and Schwinger
terins. For example, in Eq. (40) the naive local form of
the commutator, analogous to Eqs. (44}—(46), is

F(q2)=2m„+q +O(q, m~2) . (55)

2)iH
Fl (q )= 1+

33 27lL

2nh

33 2n

+O(q, m~ ) . (56)

This result summarizes the low-energy theorem con-
straints arising from both PCAC and the conservation of
8„„.In the next section we shall show how to incorporate
it into a dispersion relation which can then be exploited
to calculate final-state interactions in the outgoing e-~
system.

Before doing so, however, we should make some re-
marks concerning the relationship of these results to ear-
lier work. We disagree in one major respect with the
work of Novikov and Shifman. They claim that in the
chiral limit the form factors A and B are constants, in-
dependent of q . This they obtain from Eq. (42) which, in
this limit, reads T„„(O,q}=0. When setting p=0 they
appear to have ignored energy-momentum conservation
since they imply that, although p =m =0, q is still ar-
bitrary. If this were valid, then, indeed, it would follow
that A =B=

—,
' for all q . However, as emphasized

above, when p =0, necessarily one must have

q =m =0.

From Eqs. (34}-(36),this implies that the physical ampli-
tude, defined in Eq. (23), has the following expansion
when q2~0:
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IV. DISPERSION RELATIONS
AND THE FINAL-STATE INTERACTION

In Sec. III we used the Ward identities coupled with
PCAC to derive the small-q expansion of F(q )—see
Eq. (55). We now want to explore the possibility of extra-
polating this result to q =ml, . The natural framework
for this is to write a dispersion relation for F and then
make some reasonable approximations for its imaginary
part.

Our first observation is that if one postulates unsub-
tracted dispersion relations for A and B, then Eq. (37)
suggests that F(q } be once subtracted. Basically this is
because (37) requires F to be one less power of q conver-
gent for large q than A or 8. Thus it is natural to write

F(q2)=2m' + q f dq'2 ImF( '
)

4m2 q'2(q'2 —q2)
(57)

We want to derive a general expression for F in terms of
the S-wave n alpha-se shift (5) in order to estimate the
corrections to a naive extrapolation of Eq. (55) to the
physical-Higgs-boson mass. We shall first discuss the
structure of F(q ) for the case when only the 2n inter-
mediate state is kept in the unitarity sum for ImF(q ).
F(q ) can thereby be expressed in terms of an Omnes
function involving an integration over 5(q ). We shall
begin by reviewing this formalism stressing those aspects
which are peculiar to this problem. This will then be ex-
tended to the two-channel case in which the 2E inter-
mediate state is also allowed to contribute. Since we are
only interested in the case where mz &1 GeV the in-
clusion of further states is unwarranted.

F(z)=~F(z)~e' '" .

This obviously implies that

ImlnF(q +ie)=a(q +ie}8(q —4m } .

(58)

(59)

By writing a dispersion relation for lnF(z) analogous to
Eq. (57) and assuming that F has no zeros we can deduce
the following representation for F(q }:

A. The Omnes-Mnskeleshvili representation (Ref. 28}

As implied by Eq. (57), F(z) is an analytic function of z

except for cuts on the positive real axis beginning at
Reza=q0=4m . Notice that in the chiral limit, this

threshold is driven to the origin and care must be taken
in evaluating the dispersive contribution. Suppose that
along the upper edge of the cut [i.e., along the line of in-

tegration of Eq. (57}] the phase of F(z) is a(z); so, for
z =q +it and q ~4m,

once-subtracted form. Now, recall that F(0)=2m and,
that when m ~0, F'(0)=1. From Eqs. (60) and (61)
these lead to the sum rule

1 - dq'
lim — a(q )=

m~ 0~ q 2m
(62)

which requires a(0)=2m. However, in that case, the
m ~0 limit of (60) and (61) gives

F(q )=
2m

4m„

(63)

F(q )=(2m +q )Q[a(q2)] . (64)

It is straightforward to check that the problems associat-
ed with the "naive" solution, Eqs. (60) and (61), are now
averted provided that a(0) vanishes. Finally, it should be
emphasized that the derivation of (64) requires Q(q ) to
have no zeros, so any zeros of F must be put in by hand.
Equation (64) therefore presumes that the only zero of F
is that required by the low-energy theorem, namely, at

2m ~.2 — 2

We now want to use unitarity, shown symbolically in
Fig. 6 to obtain an expression for a(q ). Below the 2E
threshold, only the 2m intermediate state contributes to
ImF. So in the region 4m & q (4m~,

a result which is clearly unphysical. Thus the representa-
tion (60} and (61}cannot, as it stands, be consistent with
the low-energy constraints of the Sec. III. It is straight-
forward to verify that further subtractions to (60} and
(61) do not circumvent this problem.

The way out of this apparent dilemma is to recognize
that, unlike an ordinary dispersion relation, the Omnes
representation does not uniquely specify F if we are given
only Eq. (58). For example, as should already be clear
from the above discussion, a change in a(z) by 2n n which
leaves (58) invariant, changes Q to (1—

q !4m„) "Q.
Such an additional factor would imply that F(q ) either
vanishes or diverges at q =4m „and so one is forced to
choose n =0. More relevant to our situation is the obser-
vation that Q(q ) can be multiplied by an arbitrary poly-
nomial in q with real coefficients. For example, consider
the function F(q )=(A+Bq )Q; clearly the phase
lnF(q )=a(q ) mod(2n) if A and B are real. This obvi-
ously does not change Eq. (58). More generally, rnultiply-
ing Q by a polynomial of degree n (with real coefficients)
simply shifts a(q ) by 2~n. For the case of interest here
we can use this freedom to write

F(q )=F(0)Q[a(q )], (60) ImF(q )=F (q }T(q~), (65)

where

Q[a(q }]—:exp f4m' z(z —q2)
(61)

The function 0 will be referred to as the Omnes function.
As with any dispersion relation, this representation can
be subtracted any number of times and, in fact, (60} is the

Z &6[ ~) ~

where T(q )=e' iv 'sin5(q ), 5(q2) being the I =0, S-
wave n-m phase shift. Note that 5(q~} is real and that the
m.-m. S matrix is given by

S(q2)= 1+2&T(q~)=e

Equation (65) immediately tells us that a(q )=5(q ),
which is simply a statement of the %atson final-state
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/

Q.Q
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+ s ~ ~

FIG. 6. A pictorial representation of the unitarity relation
for F(q') [see Eq. (65)].

(1—
mi, /M ) "=(1+nmi, /M ) .

This contribution can therefore be neglected when
M &&n '

mI, . Experimentally, 5- 3m /2 at M —1.3
GeV/c; if there are no resonances in this channel beyond
this, then one can choose n =2. In that case one would
safely cut off the integral in 0 at a value of M))1.5
GeV. This means that one should certainly take into ac-
count the 2E intermediate state. In the following subsec-
tion we discuss how this can be done. Although the
method presented can be generalized to more than two
channels, the effort hardly seems worth it.

theorem. Thus, in the single-channel elastic unitarity ap-
proximation,

F(q )=(2m +q )Q[5(q )] . (66)

In principle, one can insert the existing experimental data
for 5(q ) into Eqs. (60) and (61) to determine Q. A useful
approximation is to take a resonance form

ImF;(q2)=F;(q )Tj;(q ), (72)

B. The boo-channel Omnes-Muskeleshvili representation

This subsection is devoted to a generalization of the
previous discussion to include the 2'. intermediate state.
If we label the pion variables by a suffix 1 and the kaon
ones by a suffix 2, then the generalization of the unitarity
constraint, Eq. (65},reads

'r(q') =
i i

kr
MR~ —

q
~ —ik I

(67)
where i and j both run from 1 to 2 and T is the I =0, S-
wave scattering amplitude. This can conveniently be ex-
pressed as

M„ is the position of the resonance, I" its width, and
k =(—,'q —m „)'~ . This is equivalent to

F;(q )=S;,(q )F,*(q ) . (73)

tan5(q )= kI
M~ —

q
(68)

(74)

Note that S is symmetric (i.e., S;, =S, or S =S ) and
that it can be diagonalized by a unitary transformation

S = USU'= US(U')'.

(2m„+q )(MR+m 1 )

F(q )=
Mz~ —

q
2 —ik I

(69)

which when inserted in (66) gives the resonance approxi-
mation for F:

S'=
2l 0'p

e

S' can be expressed in the form
2l CT

1e
(75)

2nH
Fh(q }= 1+

33—2nL
m + 2nH

2nL

Note, incidentally, that Eq. (68) incorporates the correct
threshold behavior of 5, namely, 5 ~ k, so that 5 vanishes
when m =0 as required for Eq. (66) to be valid. For the
physical decay rate we need Fj,(q ) with q:mi„which-
is given by

where the a, are real. The transpose of Eq. (74) reads

S'=U SU (76)

By comparing Eqs. (74) and (76) we see that we can
choose U to be real (i.e., these equations can be simul-
taneously satisfied by setting U = U*). This allows us to
diagonalize Eq. (73): introduce F'=—UF; then Eq. (73}
transforms to F'=S'F" whose elements read

X Q[5(q )] . (70) 2( ( )

F'(q )=e ' F;"(q ) . (77)

In the resonance approximation we have

2nh
1+

33 2nL

2nH' 33-2,
+m r

MR —
q

—ik1
(71)

Clearly if there is a resonance in the range Mz -mz one
can expect a considerable enhancement. In Sec. V we
shall discuss the numerical aspects of these equations.

Before concluding this subsection, it is worth noting
that if 5(q ) ~ n m for q

~ M )mi, then the integral in Q
from M to ao contributes a multiplicative factor to
F(mi, ) which is smaller than

Thus cr; can be identified as the phase of F which can
therefore be represented in Omnes form as

F,'(q )=F,'(0)Q[o, (q )] . (78)

g Sin Sj n
=5ij (79)

constrains the I =0, S-wave T matrix to satisfy

Since F=U 'F'=U F', a solution for F; can then be
obtained. Although the above discussion was given
within the context of a two-channel problem, it is clear
that the strategy applies to the general multichannel case.

Let us now apply this formalism directly to the prob-
lem at hand. The unitarity of the S matrix
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g T,„T*„=ImT," . (80}

When combined with the symmetry property T, =T;
(which is a consequence of PT invariance), this leads to
the following general structure for Sprouided one is above
the 2K threshold (i.e., that q & 4mx ):

ge
2i6

i ( 1 —~2)1/2e I 2i(6 +6 )

S=
l(san+52) 2i 5~

1 —ri) e 'ge

(81}

K K
/

r
K K

K K

r
K K

2K 'K

cosOe'~ i sinO
S=e'&

i sinO cosOe
(82)

where g and the 5; are all real and r) (the inelasticity) & 1.
Introduce r)=cos8, /=5&+5z, and y=5& —5z,' then S
can be reexpressed in the form

K K
/

K K

K K
/

:O.G,
27'

Its eigenvalues are e'~+~' and e "~ 1" where p is given by
FIG. 7. Unitarity relation for the two-channel scattering am-

plitude below the 2K threshold [see Eq. (87)j.

cosp= cosOcosy .

Thus

and

o )
=

—,'(P+p)

rr2= —,'({t—p) .

The matrix U is now easily determined to be

(83)

(84)

(85)

threshold where the kaon contribution comes into effect
on the RHS of Eq. (87) does the unitarity of S;~ and, con-
comitantly, matrix multiplication get reinstated.

The analog to Eq. (73) with the sum over intermediate
states excluding the kaon, now reads

(89)

1 yU=
1+y' (86)

where y = ( sinp —cos8 siny ) / sin 0. Notice that this
confirms that U is indeed a real matrix and that
U=U '=U =U*

Below the 2K threshold the general form of S changes,
since the 2K intermediate states do not contribute to the
sum over intermediate states in Eq. (80). Thus, for exam-
ple, even though T,z&0 below 4mx, it makes no contri-
bution to the left-hand side of (80). The set of unitarity
relations therefore reads

Again, matrix multiplication implied by (73) does not
apply. However, it is possible to express this in matrix
form, analogous to Eq. (73), by writing

F 2l5) F
1 e 0

5 (90)
2iae

Let us denote the matrix occurring in this equation as S
(to be distinguished from the S matrix). Then the solu-
tion of this equation can be obtained by defining F'= UF
such that USU '=S'„S' being diagonal and U=U'.
Note that in this case S is not symmetric so U is not uni-
tary. The general solution has the form

and

ImT» =
~ T» ~, ImT, z

= T» T*,2,

ImT„=
~
T„~',

(87)
1 0 2ib)

e
and S 0 1

(91)

2i 51e

ibad

2iae
ibl 22iae 2ib + 1 —2a ~ (88)

as illustrated in Fig. 7.
Notice, therefore, that for this region, the matrix mul-

tiplication implied in Eqs. (79) and (80) is no longer valid.
From these equations we can now straightforwardly
deduce the general structure of S: namely,

where u and U are real functions of q satisfying
u/u = —sin5, /a. Hence, for q &4mx, we have
FI (q ) =F~(q ). Note that continuity of the real part of
the T matrix forces g=1 and a =62=b =0 at q =4m+
which implies that y vanishes at this threshold.

The solution to the Omnes equation for the pion form
factor below the K threshold is now given by
F, (q2) =Q[o,(q )]F,(0), where o, is given by

where a and b are real functions of q . It is important to
recognize that although unitarity has been used to deter-
mine this form, S is not a unitary matrix since only pions
contribute to the intermediate states. Only above the 2K

5,(q ), 4m &q &4m+,
o, (q )= ',

—,'(P+p), q &4mx . (92)
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In a similar way, we can write down the solutions for
both the pion and kaon form factors above the K thresh-
old. In the next section, we shall apply these results to
evaluate the branching ratio for the decay h ~LM+p . As
expected F, is determined from the measurable quantities

5, , g, and P; in principle, one need "only" feed these into
Eqs. (92) and (61). However, this requires data analysis
which is beyond the scope of the present paper. Instead
we shall follow what has typically been done in the past
and use resonant approximations, as given in Eqs.
(67)—(69).

I'I, (ml, }= 2n@
1+

33—2nL

X Q[o. , (mh }]

2nH
m +

2nL
m h

(95)

andi is an isospin index. For the definition of Q[o &(q )],
see Eqs. (61} and (92). The constants nL (nH) are the
number of light (heavy} quarks, respectively. If we take
the u, d, and s quarks as light, then nl =3 and nH =3 for
three generations of quarks or n&=5 for four genera-
tions. %e shall leave nH as a free parameter. In the
single-resonance approximation, the function 0 is given
by the expression [see Eqs. (67}and (69}]

V. RESULTS FOR THE BRANCHING RATIO h ~ IM, +IM,

The relevant amplitudes for this process are given by

2
MR+ m.r

Q[o, (mi, )]=
Mg —mI', —+ I" (96}

T(h ~p+p )=(&2GF)' m„u(p')v(p), (93)
where R denotes the I =0, J =0++ resonances with
mass (MR ) and width (I ) and k =(mh /4 —m „)'~ . The
final form for the branching ratio is given by

T(h ~n;m, ) =(&. 2GF )' Fz(mz ),
where

(94)

where p and p' are the outgoing four-momenta and u and
U are Dirac spinors, and

3

1(h ~m, n, }

B(h~p+p, )=, f=
I +f I (h ~p+p )

The branching fraction f is given by

(97)

2nH
3 1+

33 2nL

2
2nH

m +
27

mg
(Mz+m I )

(~2 —m2)2+k I m/,
' 3/2

4m„
4m &my 1

mg

(98)

In the fo11owing examples we take nH=3. Now we

must face the question, what values should we use for the
resonance parameters? In Fig. 8 we have reproduced the
most recent compilation on 5,(q ). Earlier data did not
reach a suSciently high energy for 5& to reach 90' and the
S-wave enhancement was parametrized by a broad reso-
nance referred to as the o. with a mass Mz -700 MeV
and width -300 MeV.

Recent data as illustrated in Fig. 8 shows no dramatic
sign of a resonance; they do show that 5, passes through
90' at roughly 850 MeV (rather than at 700 MeV}. A fit
of Eq. (68) to the data in this region leads to a corre-
sponding width I -1.3 GeV. These parameters may not
conform to one's natural intuition as to what a resonance
should look like, but they do fit the data. We have there-
fore used them to evaluate (97) and the results for this
case are shown in Fig. 9. The parameters for this case
are, in fact, quite close to a resonance fit made by Au,
Morgan, and Pennington in their relatively exhaustive
treatment of the problem. They have attempted to fit all
relevant m.m data (including the inelasticities) with a series
of resonances in order to try to isolate a scalar glueball.
They find three resonances below 1.6 GeU which couple
to ~m: a broad one at 900 MeV with a width of 1.4 GeV
(obviously the analog of the one used to obtain Fig. 9), a
relatively narrow one (the glueball candidate) at 991 MeV

OG
8

OO
OQ

240—

180—

~ l/IP

tl ~

120—

I

0.4 0.6 0.8 1.0 1.2 1.4

m„z(Gev)

FIG. 8. The S-wave m-~ phase-shift data (see Ref. 29).
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with a width of 80 MeV, and another broad one at 1.43
GeV with a width of 800 MeV. Note, incidentally, that
the Particle Data Group tables' list a narrow resonance
at 975 MeV with a width of 33 MeV (presumably the ana-
log of the Au, Morgan, and Pennington glueball candi-
date) and a broad resonance at 1300 MeV with a width of
150—400 MeV.

The effect of a narrow resonance is considerably larger
in the vicinity of the pole than a broad resonance. This is
illustrated in Figs. 10 and 11 where, as an example, we
have taken the parameters from the Particle Data Group
tables: (M„=975 MeV, I =33 MeV). Figure 11 shows
a blowup of the shoulder and tail of Fig. 10. The final re-
sult for f is the sum of the contributions of all of these
resonances. We shall approximate this by the incoherent
sum of resonances as given by the product of Omnes
functions [Eq. (96)] for the individual resonances. This is
shown in Fig. 12. Clearly, in order to do a better job on
this problem it will be necessary to include the results of
phase shift analyses for the m.-m and 1-K systems. We
hope our formalism will be useful in this endeavor.

To conclude, it is clear that final-state interactions will

enhance the vr-m decay mode of the Higgs boson. As a re-
sult, the p+p decay mode may be greatly suppressed
leading to values —10 ' —10 . This result has
significant consequences for experiments designed to
search for a light Higgs boson via its two-muon decay
channel.

Note added in proof

Willey (Ref. 30) has recently emphasized that ri, may

be the dominant contribution to Eq. (6). Using mixing-

angle limits obtained from the Particle Data Group, one
finds ri, ~0.2', [m, /(40 GeV/c )] . Thus for m,
&80 GeV/c, g, &g, . However, using Bd-8 d mixing,
he finds ri, ~ ri, [m, /(20 GeV/c )] and ri, dominates for

m, -80 GeV/c . Our conclusion is nevertheless un-

changed. Willey has not kept the arbitrary parameter 8
[Eq. (6)] in his analysis. He has used vacuum insertion to
fix the value of 8.

If no Higgs boson is found in K decay, we can at most
claim to have measured the value of the arbitrary param-

40-
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fx10
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281 381 481

I I t
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I I

881 981
I

1081

FIG. 10. Contribution to f of the n @res-onance with mass

M& =975 MeV and width I =33 MeV.

APPENDIX A: THE LINDE-WEINBERG BOUND
(REF. 31)

In the standard single-Higgs-doublet model, the one-

loop effective potential is

V, ( h ) = —p h + A.h + Ch ln
M

where p, A. , and M are constants which can be related to
the physical mass and vacuum expectation value of the

Higgs boson. The constant C is given by

1C=
~ 4 3+Mv+ms —4+mf

16m. v
(A2)

where V runs over the vector bosons in the theory ( IV —+

and Z ) and f over the fermions (quarks and leptons).
Generically V~(h) has three minima: one at h =0 and
two at h =+ho. By definition U =~ 2ho and

eter 8. On the other hand, if a Higgs boson is found in K
decay, we would learn a great deal about the standard
model.
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FIG. 9. Contribution to f of the vr-m resonance with mass

MR =850 MeV and width I = 1.3 GeV.
FIG. 11. Blow up of the region described in Fig. 11 below

780 MeV.
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350-

to "down" type. The mass eigenstates (h
1

and h2 ) are re-
lated to the P; by a mixing angle a:
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FIG. 12. Incoherent sum of the resonance contributions for
M& =850 MeV I =1.3 GeV, and M& =975 MeV, I =33 MeV.

In such models there are, in general, two neutral-scalar-
mass eigenstates (h, and h2), one neutral pseudoscalar
(g ), and two charged scalars (y +—). Their masses remain
arbitrary since they are governed by arbitrary parameters
in the potential. However, for the supersymmetric case,
the potential is highly constrained with the result that, at
the tree level, the physical masses are given by

1 a'V,
m = — =2@ +4Ch"0 0

The Linde-Weinberg bound arises from the stability re-
quirement that V, ( h 0 }( V& (0 }=0. This condition en-

sures that the spontaneous symmetry breaking takes
place in a vacuum which is an absolute minimum. This
leads to the constraint

and

m'0 =2m, csc2P,

m +=m 0+M~,2 = 2 2

X X

mi, q
=

—,'I(m p+Mz)

+[(m +Mz) —4m OM cos 2p)'

(B4)

(B5)

(B6)

p +Cho) 0,
which, when combined with (A3), gives

mI, )Cv

(A4)

(A5)

If there are no heavy ferrnions then C is dominated by
the W —and Z bosons with the result that

where tanp:—u2/u& with u;—= (Oip;i0). Note that m3 is
arbitrary and that u&+vz=v =2 GF '. Thus m +

X
and mI, are all greater than M~, whereas m& can, in

2 1

principle, be as light as one pleases. Thus, even in this
special situation, a light Higgs boson (h, ) is permissible.
However, this only obtains with some fine-tuning as can
be seen by rewriting (B6}in the form

3(2M~+ Mz )
mh) =7 QeV .

16m v
(A6)

m 0~z
X

(m +M )'m 0 Z

2 2
'

vi vp

v +v
(B7)

This is the Linde-Weinberg bound. If, however, there
is a heavy fermion such as the top quark with mass of ap-
proximately 80 GeV then C and concomitantly the bound
vanishes. Thus a lighter Higgs boson is allowed. For fer-
mion masses greater than 80 GeV the lower bound on the
Higgs-boson mass rises rapidly.

A natural way to avoid the bound which was, in fact,
already pointed out in the original papers is to have more
than one Higgs doublet. In that case, no general state-
ment can be made. The reader is referred to Ref. 32 for a
complete discussion of the problem. Appendix B is de-
voted to a discussion of some aspects of having two dou-
blets, which is relevant to the problem of Higgs-boson de-
cay.

APPENDIX B: REMARKS CONCERNING
THE GENERALIZATION TO TWO HIGGS DOUBLETS

In a two-Higgs-boson model the interaction with had-
rons is governed by the Lagrangian

This clearly requires either a light m 0 or u, =uz (i.e.,
XP-45'}. If we now consider one-loop corrections to the

Higgs-boson potential, we find that a light Higgs boson is
still possible providing we fine-tune certain relations be-
tween scalar-quark and -lepton masses, gaugino masses,
in addition to the usual quark, lepton, and gauge-boson
masses. Thus, there is no theoretical lower limit on ml, .

From X', quark masses are generated in the usual way
through the v, giving rise to mass matrices m,.".=v, g;".

and m;i =u2g~i. Equations (B2}and (B3) can be inverted
to give

Re/| =A, cosa —hz sina,

Regz=h, sina+hzcosa .

(B8)

(B9)

X' can now be diagonalized and written in terms of the
physical Higgs boson. The interaction terms involving
the light Higgs boson h, thereby read

X'=g Ju, q, P, +gjd, g.g2 (ij -=1,2, 3) . (B1)

To avoid dangerous strangeness-changing neutral
currents we have coupled $1 to "up"-type quarks and P2 (B10)
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where the sums are over the "up-" and "down"-type
quarks separately. The minimal Higgs-boson model is
the special case where P, =Pz in Eq. (Bl) and a=P=45'
(so that v, =vz). In that case (B10) reduces to Eq. (13).

In terms of the coupling to pions, the light-quark (u
and d) contribution can no longer be directly identified
with the q =0 behavior of F(q ) as in Eq. (22) since they
no longer contribute in the same way as in the stress ten-
sor. On the other hand, from PCAC they must still

cosa „sina
nH=—

cosP sinP

where nH'"' is the number of up (down) quarks.

(Bl 1)

remain O(m„). The heavy quarks, however, contribute
much as before; since their contribution is mass indepen-
dent they are simply incorporated by replacing nH (the
number of heavy-quark flavors) by
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